Showing posts with label complex numbers. Show all posts
Showing posts with label complex numbers. Show all posts

22 August 2025

On Complex Numbers XX

"If we refused to use complex numbers out of stubbornness disguised as some kind of bogus philosophical objection, a solution to a whole range of important problems would remain forever out of reach.[...] The plane of the complex numbers is the natural arena of discourse for much if not most of mathematics." (Peter M Higgins, "Number Story: From Counting to Cryptography", 2008)

"Nonetheless, some hesitation persisted. After all, the very word imaginary betrays ambivalence, and suggests that in our heart of hearts we do not believe these numbers exist. On the other hand, by calling every number representable by a decimal expansion real, we are making the psychological distinction more stark. Indeed the adjective imaginary is a somewhat unfortunate one - although an intriguing name, some students’ perceptions are so colored by the word that they consequently fail to come to grips with the idea." (Peter M Higgins, "Number Story: From Counting to Cryptography", 2008)

"Perhaps the greatest legacy of the solution of the cubic was the arrival, without invitation, of the imaginary number i into the world of mathematics." (Peter M Higgins, "Number Story: From Counting to Cryptography", 2008)

"Analyticity can often be exploited to advantage in the study of problems of approximation, even when the objects to be approximated are functions of a real variable." (Peter D Lax & Lawrence Zalcman, "Complex proofs of real theorems", 2012)

"It has been said that the three most effective problem-solving devices in mathematics are calculus, complex variables, and the Fourier transform." (Peter D Lax & Lawrence Zalcman, "Complex proofs of real theorems", 2012)

"Nothing illustrates the extraordinary power of complex function theory better than the ease and elegance with which it yields results which challenged and often baffled the very greatest mathematicians of an earlier age." (Peter D Lax & Lawrence Zalcman, "Complex proofs of real theorems", 2012)

"In fact the term ‘real number’ was invented after the discovery of its complex extension as a means of distinguishing between the two types of number. The terminology, in retrospect, is unfortunate. The concrete representation of √ −1 either as a π/2 -radian anticlockwise rotation of the plane about the origin or as a point in the plane neatly conceals its troubled history. The conceptual crisis faced by the sixteenth century mathematicians is clear: the other ‘new numbers’ of history: zero; negative numbers; irrational numbers (all of these will be formally introduced shortly) are at least interpretable as a magnitude of some sort, or as a directed length, whereas √ −1 seemed, at first, to come from another realm entirely." (Barnaby Sheppard, "The Logic of Infinity", 2014)

"The words 'imaginary' and 'complex' again demonstrate how difficult it is to make a major change in conceptual systems - a difficulty that we already encountered with negative numbers, fractions, zero, and irrational numbers. The word 'imaginary' tells us that these numbers are unreal from the perspective of someone grounded in the real number system." (William Byers, "Deep Thinking: What Mathematics Can Teach Us About the Mind", 2015)

30 October 2023

On Complex Numbers XXI (Euler’s Formula III)

"Mathematics, indeed, is the very example of brevity, whether it be in the shorthand rule of the circle, c = πd, or in that fruitful formula of analysis, e^iπ = -1, — a formula which fuses together four of the most important concepts of the science — the logarithmic base, the transcendental ratio π, and the imaginary and negative units." (David E Smith, "The Poetry of Mathematics", The Mathematics Teacher, 1926)

"Other questions must be answered as well. Why should e^πi equal, of all things, -1? e^πi has an imaginary number in it; wouldn't you therefore expect the result to be imaginary, not real? e is about differentiation, about change, and π is about circles. What do the ideas involved in change and in circles have to do with the answer? e and n are both transcendental numbers - numbers that are not roots of any algebraic equation. If you operate on one transcendental number with another and then operate on the result with an imaginary number, why should you get a simple integer like -1?" (George Lakoff & Rafael E Nuñez, "Where Mathematics Come From: How the Embodied Mind Brings Mathematics into Being", 2000)

"What a wealth of insight Euler’s formula reveals and what delicacy and precision of reasoning it exhibits. It provides a definition of complex exponentiation: It is a definition of complex exponentiation, but the definition proceeds in the most natural way, like a trained singer’s breath. It closes the complex circle once again by guaranteeing that in taking complex numbers to complex powers the mathematician always returns with complex numbers. It justifies the method of infinite series and sums. And it exposes that profound and unsuspected connection between exponential and trigonometric functions; with Euler’s formula the very distinction between trigonometric and exponential functions acquires the shimmer of a desert illusion." (David Berlinski, "Infinite Ascent: A short history of mathematics", 2005)

"I think e^iπ+1=0 is beautiful because it is true even in the face of enormous potential constraint. The equality is precise; the left-hand side is not 'almost' or 'pretty near' or 'just about' zero, but exactly zero. That five numbers, each with vastly different origins, and each with roles in mathematics that cannot be exaggerated, should be connected by such a simple relationship, is just stunning. It is beautiful. And unlike the physics or chemistry or engineering of today, which will almost surely appear archaic to technicians of the far future, Euler's formula will still appear, to the arbitrarily advanced mathematicians ten thousand years hence, to be beautiful and stunning and untarnished by time." (Paul J Nahin, "Dr. Euler's Fabulous Formula: Cures Many Mathematical Ills", 2006)

"Imagine a person with a gift of ridicule [He might say] First that a negative quantity has no logarithm [ln(-1)]; secondly that a negative quantity has no square root [√-1]; thirdly that the first non-existent is to the second as the circumference of a circle is to the diameter [π]." (Augustus De Morgan)

"Like a Shakespearean sonnet that captures the very essence of love, or a painting that brings out the beauty of the human form that is far more than just skin deep, Euler's equation reaches down into the very depths of existence." (Keith Devlin)

On Complex Numbers XXII

"I have finally discovered the true solution: in the same way that to one sine there correspond an infinite number of different angles I have found that it is the same with logarithms, and each number has an infinity of different logarithms, all of them imaginary unless the number is real and positive; there is only one logarithm which is real, and we regard it as its unique logarithm." (Leonhard Euler, [letter to Cramer] 1746)

"If we then compare the position in which we stand with respect to divergent series, with that in which we stood a few years ago with respect to impossible quantities [that is, complex numbers], we shall find a perfect similarity […] It became notorious that such use [of complex numbers] generally led to true results, with now and then an apparent exception. […] But at last came the complete explanation of the impossible quantity, showing that all the difficulty had arisen from too great limitation of definitions." (Augustus de Morgan, Penny Cyclopaedia, cca. 1833-1843)

"The set of complex numbers is another example of a field. It is handy because every polynomial in one variable with integer coefficients can be factored into linear factors if we use complex numbers. Equivalently, every such polynomial has a complex root. This gives us a standard place to keep track of the solutions to polynomial equations." (Avner Ash & Robert Gross, "Fearless Symmetry: Exposing the hidden patterns of numbers", 2006)

"The beauty of the complex plane is that we may finally carry out all our mathematical work in a single number arena. However, although there may be no pressing mathematical difficulty that is driving us further, we can ask the question whether or not it is possible to go beyond the complex plane into some larger realm of number." (Peter M Higgins, "Number Story: From Counting to Cryptography", 2008)

"[...] the use of complex numbers reveals a connection between the exponential, or power function and the seemingly unrelated trigonometric functions. Without passing through the portal offered by the square root of minus one, the connection may be glimpsed, but not understood. The so-called hyperbolic functions arise from taking what are known as the even and odd parts of the exponential function."  (Peter M Higgins, "Number Story: From Counting to Cryptography", 2008)

"Another reason for our ambivalence about the complex numbers is that they feel less real than real numbers. [...] We can directly relate the real numbers to quantities such as time, mass, length, temperature, and so on (though for this usage, we never need the infinite precision of the real number system), so it feels as though they have an independent existence that we observe. But we do not run into the complex numbers in that way. Rather, we play what feels like a sort of game - imagine what would happen if -1 did have a square root." (Timothy Gowers, "Is Mathematics Discovered or Invented?",  ["The Best Writing of Mathematics: 2012"] 2012)

"All of this could have been said using notation that kept √-1 instead of the new representative i, which has the same virtual meaning. But i isolates the concept of rotation from the perception of root extraction, offering the mind a distinction between an algebraic result and an extension of the idea of number." (Joseph Mazur, "Enlightening Symbols: A Short History of Mathematical Notation and Its Hidden Powers", 2014)

"It may come as a surprise that the symbol i (even though it is just an abbreviation of the word 'imaginary') has a marked advantage over √-1. In reading mathematics, the difference between a + b√-1 and a + bi is the difference between eating a strawberry while holding your nose, missing the luscious taste, and eating a strawberry while breathing normally." (Joseph Mazur, "Enlightening Symbols: A Short History of Mathematical Notation and Its Hidden Powers", 2014)

"Imagine a person with a gift of ridicule [He might say] First that a negative quantity has no logarithm [ln(-1)]; secondly that a negative quantity has no square root [√-1]; thirdly that the first non-existent is to the second as the circumference of a circle is to the diameter [π]." (Augustus De Morgan) [attributed]

14 March 2022

Paul J Nahin - Collected Quotes

"How beautifully simple is Wessel’s idea. Multiplying by √-1 is, geometrically, simply a rotation by 90 degrees in the counter clockwise sense [...] Because of this property √-1 is often said to be the rotation operator, in addition to being an imaginary number. As one historian of mathematics has observed, the elegance and sheer wonderful simplicity of this interpretation suggests 'that there is no occasion for anyone to muddle himself into a state of mystic wonderment over the grossly misnamed ‘imaginaries'. This is not to say, however, that this geometric interpretation wasn’t a huge leap forward in human understanding. Indeed, it is only the start of a tidal wave of elegant calculations." (Paul J Nahin, "An Imaginary Tale: The History of √-1", 1998)

"The discovery of complex numbers was the last in a sequence of discoveries that gradually filled in the set of all numbers, starting with the positive integers (finger counting) and then expanding to include the positive rationals and irrational reals, negatives, and then finally the complex." (Paul J Nahin, "An Imaginary Tale: The History of √-1", 1998)

"When we try to take the square root of -1 (a real number), for example, we suddenly leave the real numbers, and so the reals are not complete with respect to the square root operation. We don’t have to be concerned that something like that will happen with the complex numbers, however, and we won’t have to invent even more exotic numbers (the ‘really complex’!) Complex numbers are everything there is in the two-dimensional plane." (Paul J Nahin, "An Imaginary Tale: The History of √-1", 1998)

"[…] and unlike the physics or chemistry or engineering of today, which will almost surely appear archaic to technicians of the far future, Euler’s formula will still appear, to the arbitrarily advanced mathematicians ten thousand years hence, to be beautiful and stunning and untarnished by time." (Paul J Nahin, "Dr. Euler's Fabulous Formula: Cures Many Mathematical Ills", 2006)

"Being able to appreciate beautiful mathematics is a privilege, and many otherwise educated people who can't sadly understand that they are 'missing out' on something precious." (Paul J Nahin, "Dr. Euler's Fabulous Formula: Cures Many Mathematical Ills", 2006)

"I think e^iπ+1=0 is beautiful because it is true even in the face of enormous potential constraint. The equality is precise; the left-hand side is not 'almost' or 'pretty near' or 'just about' zero, but exactly zero. That five numbers, each with vastly different origins, and each with roles in mathematics that cannot be exaggerated, should be connected by such a simple relationship, is just stunning. It is beautiful. And unlike the physics or chemistry or engineering of today, which will almost surely appear archaic to technicians of the far future, Euler's formula will still appear, to the arbitrarily advanced mathematicians ten thousand years hence, to be beautiful and stunning and untarnished by time." (Paul J Nahin, "Dr. Euler's Fabulous Formula: Cures Many Mathematical Ills", 2006)

"[...] one of the fundamental intellectual breakthroughs in the historical understanding of just what i = √-1 means, physically, came with the insight that multiplication by a complex number is associated with a rotation in the complex plane. That is, multiplying the vector of a complex number by the complex exponential e^iθ rotates that vector counterclockwise through angle θ." (Paul J Nahin, "Dr. Euler's Fabulous Formula: Cures Many Mathematical Ills", 2006)

"Ugly creations, in my opinion, be they theories or paintings, are ones that obey no constraints, that have no discipline in their nature." (Paul J Nahin, "Dr. Euler's Fabulous Formula: Cures Many Mathematical Ills", 2006)

19 February 2022

On Complex Numbers XIX

"At this point it may be useful to observe that a certain type of intellect is always worrying itself and others by discussion as to the applicability of technical terms. Are the incommensurable numbers properly called numbers? Are the positive and negative numbers really numbers? Are the imaginary numbers imaginary, and are they numbers?-are types of such futile questions. Now, it cannot be too clearly understood that, in science, technical terms are names arbitrarily assigned, like Christian names to children. There can be no question of the names being right or wrong. They may be judicious or injudicious; for they can sometimes be so arranged as to be easy to remember, or so as to suggest relevant and important ideas. But the essential principle involved was quite clearly enunciated in Wonderland to Alice by Humpty Dumpty, when he told her, apropos of his use of words, 'I pay them extra and make them mean what I like.' So we will not bother as to whether imaginary numbers are imaginary, or as to whether they are numbers, but will take the phrase as the arbitrary name of a certain mathematical idea, which we will now endeavour to make plain." (Alfred N Whitehead, "Introduction to Mathematics", 1911)

"It is a curious fact that the first introduction of the imaginaries occurred in the theory of cubic equations, in the case where it was clear that real solutions existed though in an unrecognisable form, and not in the theory of quadratic equations, where our present textbooks introduce them." (Dirk J Struik, A Concise History of Mathematics", 1948)

"There are many useful connections between these two disciplines [geometry and algebra]. Many applications of algebra to geometry and of geometry to algebra were known in antiquity; nearer to our time there appeared the important subject of analytical geometry, which led to algebraic geometry, a vast and rapidly developing science, concerned equally with algebra and geometry. Algebraic methods are now used in projective geometry, so that it is uncertain whether projective geometry should be called a branch of geometry or algebra. In the same way the study of complex numbers, which arises primarily within the bounds of algebra, proved to be very closely connected with geometry; this can be seen if only from the fact that geometers, perhaps, made a greater contribution to the development of the theory than algebraists." (Isaak M Yaglom, "Complex Numbers in Geometry", 1968)

"Besides being essential in modern physics, the complex-number field provides pure mathematics with a multitude of brain-boggling theorems. It is worth keeping in mind that complex numbers, although they include the reals.as a subset, differ from real numbers in startling ways. One cannot, for example, speak of a complex number as being either positive or negative: those properties apply only to the reals and the pure imaginaries. It is equally meaningless to say that one complex number is larger or smaller than another." (Martin Gardner, "Fractal Music, Hypercards and More... Mathematical Recreations from Scientific American Magazine", 1992)

"The seemingly preposterous assumption that there is a square root of -1 was justified on pragmatic grounds: it simplified certain calculations and so could be used as long as 'real' values were obtained at the end. The parallel with the rules for using negative numbers is striking. If you are trying to determine how many cows there are in a field (that is, if you are working in the domain of positive integers), you may find negative numbers useful in the calculation, but of course the final answer must be in terms of positive numbers because there is no such thing as a negative cow." (Martin Gardner, "Fractal Music, Hypercards and More... Mathematical Recreations from Scientific American Magazine", 1992)

"Likewise, complex functions are actually better behaved than real functions, and the subject of complex analysis is known for its regularity and order, while real analysis is known for wildness and pathology A smooth complex function is predictable, in the sense that the values of the function in an arbitrarily small region determine its values everywhere. A smooth real function can be completely unpredictable for example, it can be constantly zero for a long interval, then smoothly change to the value 1." (John Stillwell, "Yearning for the Impossible: The Surprising Truths of Mathematics", 2006)

"The word 'complex' was introduced m a well-meaning attempt to dispel the mystery surrounding 'imaginary' or 'impossible' numbers, and (presumably) because two dimensions are more complex than one Today, 'complex' no longer seems such a good choice of word. It is usually interpreted as 'complicated', and hence is almost as prejudicial as its predecessors. Why frighten people unnecessarily? If you are not sure what 'analysis' is, you won't want to know about 'complex analysis' - but it is the best part of analysis." (John Stillwell, "Yearning for the Impossible: The Surprising Truths of Mathematics", 2006)

"Complex numbers do not fit readily into many people’s schema for ‘number’, and students often reject the concept when it is first presented. Modern mathematicians look at the situation with the aid of an enlarged schema in which the facts make sense." (Ian Stewart & David Tall, "The Foundations of Mathematics" 2nd Ed., 2015)

"When we extend the system of natural numbers and counting to embrace infinite cardinals, the larger system need not have all of the properties of the smaller one. However, familiarity with the smaller system leads us to expect certain properties, and we can become confused when the pieces don’t seem to fit. Insecurity arose when the square of a complex number violated the real number principle that all squares are positive. This was resolved when we realised that the complex numbers cannot be ordered in the same way as their subset of reals." (Ian Stewart & David Tall, "The Foundations of Mathematics" 2nd Ed., 2015)

"Much of the final resistance to complex numbers faded as it became clear that their behavior posed no threat to the rules and operations of algebra. On the contrary, quite often the complex realm opened paths that made already existing results easier to prove." (David Perkins, "φ, π, e & i", 2017)

02 August 2021

On Complex Numbers XVIII

"I consider it as one of the most important steps made by Analysis in the last period, that of not being bothered any more by imaginary quantities, and to be able to submit them to calculus, in the same way as the real ones." (Joseph-Louis de Lagrange, [letter to Antonio Lorgna] 1777)

"What should one understand by ∫ ϕx · dx for x = a + bi? Obviously, if we want to start from clear concepts, we have to assume that x passes from the value for which the integral has to be 0 to x = a + bi through infinitely small increments (each of the form x = a + bi), and then to sum all the ϕx · dx. Thereby the meaning is completely determined. However, the passage can take placein infinitely many ways: Just like the realm of all real magnitudes can be conceived as an infinite straight line, so can the realm of all magnitudes, real and imaginary, be made meaningful by an infinite plane, in which every point, determined by abscissa = a and ordinate = b, represents the quantity a+bi. The continuous passage from one value of x to another a+bi then happens along a curve and is therefore possible in infinitely many ways. I claim now that after two different passages the integral ∫ ϕx · dx acquires the same value when ϕx never becomes equal to ∞ in the region enclosed by the two curves representing the two passages."(Carl F Gauss, [letter to Bessel] 1811)

"Without doubt one of the most characteristic features of mathematics in the last century is the systematic and universal use of the complex variable. Most of its great theories received invaluable aid from it, and many owe their very existence to it." (James Pierpont, "History of Mathematics in the Nineteenth Century", Congress of Arts and Sciences Vol. 1, 1905)

"There is thus a possibility that the ancient dream of philosophers to connect all Nature with the properties of whole numbers will some day be realized. To do so physics will have to develop a long way to establish the details of how the correspondence is to be made. One hint for this development seems pretty obvious, namely, the study of whole numbers in modern mathematics is inextricably bound up with the theory of functions of a complex variable, which theory we have already seen has a good chance of forming the basis of the physics of the future. The working out of this idea would lead to a connection between atomic theory and cosmology." (Paul A M Dirac, [Lecture delivered on presentation of the James Scott prize] 1939)

"The real numbers are one of the most audacious idealizations made by the human mind, but they were used happily for centuries before anybody worried about the logic behind them. Paradoxically, people worried a great deal about the next enlargement of the number system, even though it was entirely harmless. That was the introduction of square roots for negative numbers, and it led to the 'imaginary' and 'complex' numbers. A professional mathematican should never leave home without them […]" (Ian Stewart, "Nature's Numbers: The unreal reality of mathematics", 1995)

"Beyond the theory of complex numbers, there is the much greater and grander theory of the functions of a complex variable, as when the complex plane is mapped to the complex plane, complex numbers linking themselves to other complex numbers. It is here that complex differentiation and integration are defined. Every mathematician in his education studies this theory and surrenders to it completely. The experience is like first love." (David Berlinski, "Infinite Ascent: A short history of mathematics", 2005)

"Algebraic geometry uses the geometric intuition which arises from looking at varieties over the complex and real case to deduce important results in arithmetic algebraic geometry where the complex number field is replaced by the field of rational numbers or various finite number fields." (Raymond O Wells Jr, "Differential and Complex Geometry: Origins, Abstractions and Embeddings", 2017)

"The primary aspects of the theory of complex manifolds are the geometric structure itself, its topological structure, coordinate systems, etc., and holomorphic functions and mappings and their properties. Algebraic geometry over the complex number field uses polynomial and rational functions of complex variables as the primary tools, but the underlying topological structures are similar to those that appear in complex manifold theory, and the nature of singularities in both the analytic and algebraic settings is also structurally very similar." (Raymond O Wells Jr, "Differential and Complex Geometry: Origins, Abstractions and Embeddings", 2017)

"The very idea of raising a number to an imaginary power may well have seemed to most of the era’s mathematicians like asking the ghost of a late amphibian to jump up on a harpsichord and play a minuet." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"Today it’s easy to see the beauty of i, thanks, among other things, to its prominence in mathematics’ most beautiful equation. Thus, it may seem strange that it was once regarded as akin to a small waddling gargoyle. Indeed, the simplicity of its definition suggests unpretentious elegance: i is just the square root of −1. But as with many definitions in mathematics, i’s is fraught with provocative implications, and the ones that made it a star in mathematics weren’t apparent until long after it first came on the scene." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

15 June 2021

On Real Numbers II

"To describe how quantum theory shapes time and space, it is helpful to introduce the idea of imaginary time. Imaginary time sounds like something from science fiction, but it is a well-defined mathematical concept: time measured in what are called imaginary numbers. […] Imaginary numbers can then be represented as corresponding to positions on a vertical line: zero is again in the middle, positive imaginary numbers plotted upward, and negative imaginary numbers plotted downward. Thus imaginary numbers can be thought of as a new kind of number at right angles to ordinary real numbers. Because they are a mathematical construct, they don't need a physical realization […]" (Stephen W Hawking, "The Universe in a Nutshell", 2001)

"A sudden change in the evolutive dynamics of a system (a ‘surprise’) can emerge, apparently violating a symmetrical law that was formulated by making a reduction on some (or many) finite sequences of numerical data. This is the crucial point. As we have said on a number of occasions, complexity emerges as a breakdown of symmetry (a system that, by evolving with continuity, suddenly passes from one attractor to another) in laws which, expressed in mathematical form, are symmetrical. Nonetheless, this breakdown happens. It is the surprise, the paradox, a sort of butterfly effect that can highlight small differences between numbers that are very close to one another in the continuum of real numbers; differences that may evade the experimental interpretation of data, but that may increasingly amplify in the system’s dynamics." (Cristoforo S Bertuglia & Franco Vaio, "Nonlinearity, Chaos, and Complexity: The Dynamics of Natural and Social Systems", 2003)

"When real numbers are used as coordinates, the number of coordinates is the dimension of the geometry. This is why we call the plane two-dimensional and space three-dimensional. However, one can also expect complex numbers to be useful, knowing their geometric properties." (John Stillwell,"Yearning for the impossible: the surpnsing truths of mathematics", 2006)

"The complex numbers extend the real numbers by throwing in a new kind of number, the square root of minus one. But the price we pay for being able to take square roots of negative numbers is the loss of order. The complex numbers are a complete system but are spread out across a plane rather than aligned in a single orderly sequence." (Ian Stewart, "Why Beauty Is Truth", 2007)

"A complex number is just a pair of real numbers, manipulated according to a short list of simple rules. Since a pair of real numbers is surely just as ‘real’ as a single real number, real and complex numbers are equally closely related to reality, and ‘imaginary’ is misleading." (Ian Stewart, "Why Beauty Is Truth", 2007)

"Quantum theory may be formulated using Hilbert spaces over any of the three associative normed division algebras: the real numbers, the complex numbers and the quaternions. Indeed, these three choices appear naturally in a number of axiomatic approaches. However, there are internal problems with real or quaternionic quantum theory. Here we argue that these problems can be resolved if we treat real, complex and quaternionic quantum theory as part of a unified structure. Dyson called this structure the ‘three-fold way’ […] This three-fold classification sheds light on the physics of time reversal symmetry, and it already plays an important role in particle physics." (John C Baez, "Division Algebras and Quantum Theory", 2011)

"[…] the symmetry group of the infinite logarithmic spiral is an infinite group, with one element for each real number . Two such transformations compose by adding the corresponding angles, so this group is isomorphic to the real numbers under addition." (Ian Stewart, "Symmetry: A Very Short Introduction", 2013)

"Complex numbers seem to be fundamental for the description of the world proposed by quantum mechanics. In principle, this can be a source of puzzlement: Why do we need such abstract entities to describe real things? One way to refute this bewilderment is to stress that what we can measure is essentially real, so complex numbers are not directly related to observable quantities. A more philosophical argument is to say that real numbers are no less abstract than complex ones, the actual question is why mathematics is so effective for the description of the physical world." (Ricardo Karam, "Why are complex numbers needed in quantum mechanics? Some answers for the introductory level", American Journal of Physics Vol. 88 (1), 2020)

On Real Numbers I

"Because all conceivable numbers are either greater than zero or less than 0 or equal to 0, then it is clear that the square roots of negative numbers cannot be included among the possible numbers [real numbers]. Consequently we must say that these are impossible numbers. And this circumstance leads us to the concept of such numbers, which by their nature are impossible, and ordinarily are called imaginary or fancied numbers, because they exist only in the imagination." (Leonhard Euler, "Vollständige Anleitung zur Algebra", 1768-69)

"[…] with few exceptions all the operations and concepts that occur in the case of real numbers can indeed be carried over unchanged to complex ones. However, the concept of being greater cannot very well be applied to complex numbers. In the case of integration, too, there appear differences which rest on the multplicity of possible paths of integration when we are dealing with complex variables. Nevertheless, the large extent to which imaginary forms conform to the same laws as real ones justifies the introduction of imaginary forms into geometry." (Gottlob Frege, "On a Geometrical Representation of Imaginary forms in the Plane", 1873)

"Mathematics is a study which, when we start from its most familiar portions, may be pursued in either of two opposite directions. The more familiar direction is constructive, towards gradually increasing complexity: from integers to fractions, real numbers, complex numbers; from addition and multiplication to differentiation and integration, and on to higher mathematics. The other direction, which is less familiar, proceeds, by analyzing, to greater and greater abstractness and logical simplicity." (Bertrand Russell, "Introduction to Mathematical Philosophy", 1919)

"There is more to the calculation of π to a large number of decimal places than just the challenge involved. One reason for doing it is to secure statistical information concerning the 'normalcy' of π. A real number is said to be simply normal if in its decimal expansion all digits occur with equal frequency, and it is said to be normal if all blocks of digits of the same length occur with equal frequency. It is not known if π (or even √2, for that matter) is normal or even simply normal." (Howard Eves, "Mathematical Circles Revisited", 1971)

"Surreal numbers are an astonishing feat of legerdemain. An empty hat rests on a table made of a few axioms of standard set theory. Conway waves two simple rules in the air, then reaches into almost nothing and pulls out an infinitely rich tapestry of numbers that form a real and closed field. Every real number is surrounded by a host of new numbers that lie closer to it than any other 'real' value does. The system is truly 'surreal.'" (Martin Gardner, "Mathematical Magic Show", 1977)

"If explaining minds seems harder than explaining songs, we should remember that sometimes enlarging problems makes them simpler! The theory of the roots of equations seemed hard for centuries within its little world of real numbers, but it suddenly seemed simple once Gauss exposed the larger world of so-called complex numbers. Similarly, music should make more sense once seen through listeners' minds." (Marvin Minsky, "Music, Mind, and Meaning", 1981)

“The letter ‘i’ originally was meant to suggest the imaginary nature of this number, but with the greater abstraction of mathematics, it came to be realized that it was no more imaginary than many other mathematical constructs. True, it is not suitable for measuring quantities, but it obeys the same laws of arithmetic as do the real numbers, and, surprisingly enough, it makes the statement of various physical laws very natural.” (John A Paulos, “Beyond Numeracy”, 1991)

"A real number that satisfies (is a solution of) a polynomial equation with integer coefficients is called algebraic. […] A real number that is not algebraic is called transcendental. There is nothing mystic about this word; it merely indicates that these numbers transcend (go beyond) the realm of algebraic numbers."  (Eli Maor, "e: The Story of a Number", 1994)

"The real numbers are one of the most audacious idealizations made by the human mind, but they were used happily for centuries before anybody worried about the logic behind them. Paradoxically, people worried a great deal about the next enlargement of the number system, even though it was entirely harmless. That was the introduction of square roots for negative numbers, and it led to the 'imaginary' and 'complex' numbers. A professional mathematican should never leave home without them […]" (Ian Stewart, "Nature's Numbers: The unreal reality of mathematics", 1995)

06 June 2021

String Theory III

"String theory promises to take a further step beyond that taken by Einstein's picture of force subsumed within curved space and time geometry. Indeed, string theory contains Einstein's theory of gravitation within itself. Loops of string behave like the exchange particles of the gravitational forces, or 'gravitons' as they are called in the point-particle picture of things. But it has been argued that it must be possible to extract even the geometry of space and time from the characteristics of the strings and their topological properties. At present, it is not known how to do this and we merely content ourselves with understanding how strings behave when they sit in a background universe of space and time." (John D. Barrow, "Theories of Everything: The Quest for Ultimate Explanation", 1991)

"A five-dimensional space is not a strange deformation of ordinary space, one that only mathematicians can see, but a place where numbers are collected in ordered sets. When string theorists talk of the eleven dimensions required by their latest theory, they are not encouraging one another to search for eight otherwise familiar spatial dimensions that have somehow become lost. They are saying only that for their purposes, eleven numbers are needed to specify points. Where they are is no one’s business." (David Berlinski, "Infinite Ascent: A short history of mathematics", 2005) 

"One could also question whether we are looking for a single overarching mathematical structure or a combination of different complementary points of view. Does a fundamental theory of Nature have a global definition, or do we have to work with a series of local definitions, like the charts and maps of a manifold, that describe physics in various 'duality frames'. At present string theory is very much formulated in the last kind of way." (Robbert Dijkgraaf, "Mathematical Structures", 2005)

"Quantum physics, in particular particle and string theory, has proven to be a remarkable fruitful source of inspiration for new topological invariants of knots and manifolds. With hindsight this should perhaps not come as a complete surprise. Roughly one can say that quantum theory takes a geometric object (a manifold, a knot, a map) and associates to it a (complex) number, that represents the probability amplitude for a certain physical process represented by the object." (Robbert Dijkgraaf, "Mathematical Structures", 2005)

"String theory was not invented to describe gravity; instead it originated in an attempt to describe the strong interactions, wherein mesons can be thought of as open strings with quarks at their ends. The fact that the theory automatically described closed strings as well, and that closed strings invariably produced gravitons and gravity, and that the resulting quantum theory of gravity was finite and consistent is one of the most appealing aspects of the theory." (David Gross, "Einstein and the Search for Unification", 2005)

"Like many a maturing beauty, string theory has gotten rich in relationships, complicated, hard to handle and widely influential. Its tentacles have reached so deeply into so many areas in theoretical physics, it’s become almost unrecognizable, even to string theorists." (K C Cole, "The Strange Second Life of String Theory", Quanta Magazine", 2016) [source

"String theory today looks almost fractal. The more closely people explore any one corner, the more structure they find. Some dig deep into particular crevices; others zoom out to try to make sense of grander patterns. The upshot is that string theory today includes much that no longer seems stringy. Those tiny loops of string whose harmonics were thought to breathe form into every particle and force known to nature (including elusive gravity) hardly even appear anymore on chalkboards at conferences." (K C Cole, "The Strange Second Life of String Theory", Quanta Magazine", 2016) [source]

03 June 2021

Calculus II: Integral Calculus

"I see with much pleasure that you are working on a large work on the integral Calculus [...] The reconciliation of the methods which you are planning to make, serves to clarify them mutually, and what they have in common contains very often their true metaphysics; this is why that metaphysics is almost the last thing that one discovers. The spirit arrives at the results as if by instinct; it is only on reflecting upon the route that it and others have followed that it succeeds in generalising the methods and in discovering its metaphysics." (Pierre-Simon Laplace [letter to Sylvestre F Lacroix] 1792)

"The effects of heat are subject to constant laws which cannot be discovered without the aid of mathematical analysis. The object of the theory is to demonstrate these laws; it reduces all physical researches on the propagation of heat, to problems of the integral calculus, whose elements are given by experiment. No subject has more extensive relations with the progress of industry and the natural sciences; for the action of heat is always present, it influences the processes of the arts, and occurs in all the phenomena of the universe." (Jean-Baptiste-Joseph Fourier, "The Analytical Theory of Heat", 1822)

"If one looks at the different problems of the integral calculus which arise naturally when he wishes to go deep into the different parts of physics, it is impossible not to be struck by the analogies existing. Whether it be electrostatics or electrodynamics, the propagation of heat, optics, elasticity, or hydrodynamics, we are led always to differential equations of the same family." (Henri Poincaré, "Sur les Equations aux Dérivées Partielles de la Physique Mathématique", American Journal of Mathematics Vol. 12, 1890)

"Everyone who understands the subject will agree that even the basis on which the scientific explanation of nature rests is intelligible only to those who have learned at least the elements of the differential and integral calculus, as well as analytical geometry." (Felix Klein, Jahresbericht der Deutsche Mathematiker Vereinigung Vol. 1, 1902)

"The chief difficulty of modern theoretical physics resides not in the fact that it expresses itself almost exclusively in mathematical symbols, but in the psychological difficulty of supposing that complete nonsense can be seriously promulgated and transmitted by persons who have sufficient intelligence of some kind to perform operations in differential and integral calculus […]" (Celia Green, "The Decline and Fall of Science", 1976)

"The acceptance of complex numbers into the realm of algebra had an impact on analysis as well. The great success of the differential and integral calculus raised the possibility of extending it to functions of complex variables. Formally, we can extend Euler's definition of a function to complex variables without changing a single word; we merely allow the constants and variables to assume complex values. But from a geometric point of view, such a function cannot be plotted as a graph in a two-dimensional coordinate system because each of the variables now requires for its representation a two-dimensional coordinate system, that is, a plane. To interpret such a function geometrically, we must think of it as a mapping, or transformation, from one plane to another." (Eli Maor, "e: The Story of a Number", 1994)

"By studying analytic functions using power series, the algebra of the Middle Ages was connected to infinite operations (various algebraic operations with infinite series). The relation of algebra with infinite operations was later merged with the newly developed differential and integral calculus. These developments gave impetus to early stages of the development of analysis. In a way, we can say that analyticity is the notion that first crossed the boundary from finite to infinite by passing from polynomials to infinite series. However, algebraic properties of polynomial functions still are strongly present in analytic functions." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"Thus, calculus proceeds in two phases: cutting and rebuilding. In mathematical terms, the cutting process always involves infinitely fine subtraction, which is used to quantify the differences between the parts. Accordingly, this half of the subject is called differential calculus. The reassembly process always involves infinite addition, which integrates the parts back into the original whole. This half of the subject is called integral calculus." (Steven H Strogatz, "Infinite Powers: The Story of Calculus - The Most Important Discovery in Mathematics", 2019)

"This method of subjecting the infinite to algebraic manipulations is called differential and integral calculus. It is the art of numbering and measuring with precision things the existence of which we cannot even conceive. Indeed, would you not think that you are being laughed at, when told that there are lines infinitely great which form infinitely small angles? Or that a line which is straight so long as it is finite would, by changing its direction infinitely little, become an infinite curve? Or that there are infinite squares, infinite cubes, and infinities of infinities, one greater than another, and that, as compared with the ultimate infinitude, those which precede it are as nought. All these things at first appear as excess of frenzy; yet, they bespeak the great scope and subtlety of the human spirit, for they have led to the discovery of truths hitherto undreamt of." (Voltaire)

Calculus I: Differential Calculus I

"Thus, differential calculus has all the exactitude of other algebraic operations." (Pierre-Simon Laplace, "A Philosophical Essay on Probabilities", 1814)

"The invention of a new symbol is a step in the advancement of civilisation. Why were the Greeks, in spite of their penetrating intelligence and their passionate pursuit of Science, unable to carry Mathematics farther than they did? and why, having formed the conception of the Method of Exhaustions, did they stop short of that of the Differential Calculus? It was because they had not the requisite symbols as means of expression. They had no Algebra. Nor was the place of this supplied by any other symbolical language sufficiently general and flexible; so that they were without the logical instruments necessary to construct the great instrument of the Calculus." (George H Lewes "Problems of Life and Mind", 1873)

"Everyone who understands the subject will agree that even the basis on which the scientific explanation of nature rests is intelligible only to those who have learned at least the elements of the differential and integral calculus, as well as analytical geometry." (Felix Klein, Jahresbericht der Deutsche Mathematiker Vereinigung Vol. 1, 1902)

"The chief difficulty of modern theoretical physics resides not in the fact that it expresses itself almost exclusively in mathematical symbols, but in the psychological difficulty of supposing that complete nonsense can be seriously promulgated and transmitted by persons who have sufficient intelligence of some kind to perform operations in differential and integral calculus […]" (Celia Green, "The Decline and Fall of Science", 1976)

"The invention of the differential calculus was based on the recognition that an instantaneous rate is the asymptotic limit of averages in which the time interval involved is systematically shrunk. This is a concept that mathematicians recognized long before they had the skill to actually compute such an asymptotic limit." (Michael Guillen,"Bridges to Infinity: The Human Side of Mathematics", 1983)

"The acceptance of complex numbers into the realm of algebra had an impact on analysis as well. The great success of the differential and integral calculus raised the possibility of extending it to functions of complex variables. Formally, we can extend Euler's definition of a function to complex variables without changing a single word; we merely allow the constants and variables to assume complex values. But from a geometric point of view, such a function cannot be plotted as a graph in a two-dimensional coordinate system because each of the variables now requires for its representation a two-dimensional coordinate system, that is, a plane. To interpret such a function geometrically, we must think of it as a mapping, or transformation, from one plane to another." (Eli Maor, "e: The Story of a Number", 1994)

"By studying analytic functions using power series, the algebra of the Middle Ages was connected to infinite operations (various algebraic operations with infinite series). The relation of algebra with infinite operations was later merged with the newly developed differential and integral calculus. These developments gave impetus to early stages of the development of analysis. In a way, we can say that analyticity is the notion that first crossed the boundary from finite to infinite by passing from polynomials to infinite series. However, algebraic properties of polynomial functions still are strongly present in analytic functions." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996) 

"In fact the complex numbers form a field. [...] So however strange you may feel the very notion of a complex number to be, it does turn out to provide a 'normal' type of arithmetic. In fact it gives you a tremendous bonus not available with any of the other number systems. [...] The fundamental theorem of algebra is just one of several reasons why the complex-number system is such a 'nice' one. Another important reason is that the field of complex numbers supports the development of a powerful differential calculus, leading to the rich theory of functions of a complex variable." (Keith Devlin, "Mathematics: The New Golden Age", 1998)

"Thus, calculus proceeds in two phases: cutting and rebuilding. In mathematical terms, the cutting process always involves infinitely fine subtraction, which is used to quantify the differences between the parts. Accordingly, this half of the subject is called differential calculus. The reassembly process always involves infinite addition, which integrates the parts back into the original whole. This half of the subject is called integral calculus." (Steven H Strogatz, "Infinite Powers: The Story of Calculus - The Most Important Discovery in Mathematics", 2019)

"Nothing has afforded me so convincing a proof of the unity of the Deity as these purely mental conceptions of numerical and mathematical science which have been by slow degrees vouchsafed to man, and are still granted in these latter times by the Differential Calculus, now superseded by the Higher Algebra, all of which must have existed in that sublimely omniscient Mind from eternity." (Mary Somerville)

10 February 2021

On Complex Numbers XIX (Euler's Formula II)

"The equation e^πi+1 = 0 is true only by virtue of a large number of profound connections across many fields. It is true because of what it means! And it means what it means because of all those metaphors and blends in the conceptual system of a mathematician who understands what it means. To show why such an equation is true for conceptual reasons is to give what we have called an idea analysis of the equation." (George Lakoff & Rafael E Nuñez, "Where Mathematics Come From: How the Embodied Mind Brings Mathematics into Being", 2000)

"The equation e^πi =-1 says that the function w= e^z, when applied to the complex number πi as input, yields the real number -1 as the output, the value of w. In the complex plane, πi is the point [0,π) - π on the i-axis. The function w=e^z maps that point, which is in the z-plane, onto the point (-1, 0) - that is, -1 on the x-axis-in the w-plane. […] But its meaning is not given by the values computed for the function w=e^z. Its meaning is conceptual, not numerical. The importance of  e^πi =-1 lies in what it tells us about how various branches of mathematics are related to one another - how algebra is related to geometry, geometry to trigonometry, calculus to trigonometry, and how the arithmetic of complex numbers relates to all of them." (George Lakoff & Rafael E Nuñez, "Where Mathematics Come From: How the Embodied Mind Brings Mathematics into Being", 2000)

"The significance of e^πi+1 = 0 is thus a conceptual significance. What is important is not just the numerical values of e, π, i, 1, and 0 but their conceptual meaning. After all, e, π, i, 1, and 0 are not just numbers like any other numbers. Unlike, say, 192,563,947.9853294867, these numbers have conceptual meanings in a system of common, important nonmathematical concepts, like change, acceleration, recurrence, and self-regulation.

They are not mere numbers; they are the arithmetizations of concepts. When they are placed in a formula, the formula incorporates the ideas the function expresses as well as the set of pairs of complex numbers it mathematically determines by virtue of those ideas." (George Lakoff & Rafael E Nuñez, "Where Mathematics Come From: How the Embodied Mind Brings Mathematics into Being", 2000)

"We will now turn to e^πi+1 = 0. Our approach will be there as it was here. e^πi+1 = 0 uses the conceptual structure of all the cases we have discussed so far - trigonometry, the exponentials, and the complex numbers. Moreover, it puts together all that conceptual structure. In other words, all those metaphors and blends are simultaneously activated and jointly give rise to inferences that they would not give rise to separately. Our job is to see how e^πi+1 = 0 is a precise consequence that arises when the conceptual structure of these three domains is combined to form a single conceptual blend." (George Lakoff & Rafael E Nuñez, "Where Mathematics Come From: How the Embodied Mind Brings Mathematics into Being", 2000)

"[…] the equation’s five seemingly unrelated numbers (e, i, π, 1, and 0) fit neatly together in the formula like contiguous puzzle pieces. One might think that a cosmic carpenter had jig-sawed them one day and mischievously left them conjoined on Euler’s desk as a tantalizing hint of the unfathomable connectedness of things.[…] when the three enigmatic numbers are combined in this form, e^iπ, they react together to carve out a wormhole that spirals through the infinite depths of number space to emerge smack dab in the heartland of integers." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"Thus, while feelings may be the essence of subjectivity, they are by no means part of our weaker nature - the valences they automatically generate are integral to our thought processes and without them we’d simply be lost. In particular, we’d have no sense of beauty at all, much less be able to feel (there’s that word again) that we’re in the presence of beauty when contemplating a work such as Euler’s formula. After all, e^iπ + 1 = 0 can give people limbic-triggered goosebumps when they first peer with understanding into its depths." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"Today, Euler’s formula is a tool as basic to electrical engineers and physicists as the spatula is to short-order cooks. It’s arguable that the formula’s ability to simplify the design and analysis of circuits contributed to the accelerating pace of electrical innovation during the twentieth century." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"[…] when the three enigmatic numbers are combined in this form, e^iπ, they react together to carve out a wormhole that spirals through the infinite depths of number space to emerge smack dab in the heartland of integers." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"Euler’s formula - although deceptively simple - is actually staggeringly conceptually difficult to apprehend in its full glory, which is why so many mathematicians and scientists have failed to see its extraordinary scope, range, and ontology, so powerful and extensive as to render it the master equation of existence, from which the whole of mathematics and science can be derived, including general relativity, quantum mechanics, thermodynamics, electromagnetism and the strong and weak nuclear forces! It’s not called the God Equation for nothing. It is much more mysterious than any theistic God ever proposed." (Thomas Stark, "God Is Mathematics: The Proofs of the Eternal Existence of Mathematics", 2018)

On Complex Numbers XVI

"When the formulas admit of intelligible interpretation, they are accessions to knowledge; but independently of their interpretation they are invaluable as symbolical expressions of thought. But the most noted instance is the symbol called the impossible or imaginary, known also as the square root of minus one, and which, from a shadow of meaning attached to it, may be more definitely distinguished as the symbol of semi-inversion. This symbol is restricted to a precise signification as the representative of perpendicularity in quaternions, and this wonderful algebra of space is intimately dependent upon the special use of the symbol for its symmetry, elegance, and power."  (Benjamin Peirce, "On the Uses and Transformations of Linear Algebra", 1875)

 "√-1 is take for granted today. No serious mathematician would deny that it is a number. Yet it took centuries for √-1 to be officially admitted to the pantheon of numbers. For almost three centuries, it was controversial; mathematicians didn't know what to make of it; many of them worked with it successfully without admitting its existence. […] Primarily for cognitive reasons. Mathematicians simply could not make it fit their idea of what a number was supposed to be. A number was supposed to be a magnitude. √-1 is not a magnitude comparable to the magnitudes of real numbers. No tree can be √-1 units high. You cannot owe someone √-1 dollars. Numbers were supposed to be linearly ordered. √-1 is not linearly ordered with respect to other numbers." (George Lakoff & Rafael E Nuñez, "Where Mathematics Come From: How the Embodied Mind Brings Mathematics into Being, 2000)

"From a formal perspective, much about complex numbers and arithmetic seems arbitrary. From a purely algebraic point of view, i arises as a solution to the equation x^2+1=0. There is nothing geometric about this - no complex plane at all. Yet in the complex plane, the i-axis is 90° from the x-axis. Why? Complex numbers in the complex plane add like vectors. Why? Complex numbers have a weird rule of multiplication […]" (George Lakoff & Rafael E Nuñez, "Where Mathematics Come From: How the Embodied Mind Brings Mathematics into Being, 2000)

"[…] i is not a real number-not ordered anywhere relative to the real numbers! In other words, it does not even have the central property of ‘numbers’, indicating a magnitude that can be linearly compared to all other magnitudes. You can see why i has been called imaginary. It has almost none of the properties of the small natural numbers-not subitizability, not groupability, and not even relative magnitude. If i is to be a number, it is a number only by virtue of closure and the laws of arithmetic." (George Lakoff & Rafael E Nuñez, "Where Mathematics Come From: How the Embodied Mind Brings Mathematics into Being, 2000)

"The complex plane is just the 90° rotation plane-the rotation plane with the structure imposed by the 90° Rotation metaphor added to it. Multiplication by i is 'just' rotation by 90°. This is not arbitrary; it makes sense. Multiplication by-1 is rotation by 180°. A rotation of 180° is the result of two 90° rotations. Since i times i is -1, it makes sense that multiplication by i should be a rotation by 90°, since two of them yield a rotation by 180°, which is multiplication by -1." (George Lakoff & Rafael E Nuñez, "Where Mathematics Come From: How the Embodied Mind Brings Mathematics into Being, 2000)

"Negative numbers posed some of the same quandaries that the imaginary numbers did to Renaissance mathematicians - they didn’t seem to correspond to quantities associated with physical objects or geometrical figures. But they proved less conceptually challenging than the imaginaries. For instance, negative numbers can be thought of as monetary debts, providing a readily grasped way to make sense of them." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"Raising e to an imaginary-number power can be pictured as a rotation operation in the complex plane. Applying this interpretation to e raised to the 'i times π' power means that Euler’s formula can be pictured in geometric terms as modeling a half-circle rotation." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"The association of multiplication with vector rotation was one of the geometric interpretation's most important elements because it decisively connected the imaginaries with rotary motion. As we'll see, that was a big deal." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"The fact that multiplying positive 4i times positive 4i yields negative 16 seems like saying that the friend of my friend is my enemy. Which in turn suggests that bad things would happen if i and its offspring were granted citizenship in the number world. Unlike real numbers, which always feel friendly toward the friends of their friends, the i-things would plainly be subject to insane fits of jealousy, causing them to treat numbers that cozy up to their friends as threats. That might cause a general breakdown of numerical civility." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"Basis real and imaginary numbers have eternal and necessary reality. Complex numbers do not. They are temporal and contingent in the sense that for complex numbers to exist, we first have to carry out an operation: adding basis real and imaginary numbers together. Complex numbers therefore do not exist in their own right. They are constructed. They are derived. Symmetry breaking is exactly where constructed numbers come into existence. The very act of adding a sine wave to a cosine wave is the sufficient condition to create a broken symmetry: a complex number. The 'Big Bang', mathematically, is simply where a perfect array of basis sine and cosine waves start entering into linear combinations, creating a chain reaction, an 'explosion', of complex numbers - which corresponds to the 'physical' universe." (Thomas Stark, "God Is Mathematics: The Proofs of the Eternal Existence of Mathematics", 2018)

30 January 2021

On Complex Numbers XVII (Euler's Formula I)

"There is a famous formula, perhaps the most compact and famous of all formulas developed by Euler from a discovery of de Moivre: It appeals equally to the mystic, the scientist, the philosopher, the mathematician." (Edward Kasner & James R Newman, "Mathematics and the Imagination", 1940)

"Such a close connection between trigonometric functions, the mathematical constant 'e', and the square root of -1 is already quite startling. Surely, such an identity cannot be a mere accident; rather, we must be catching a glimpse of a rich, complicated, and highly abstract mathematical pattern that for the most part lies hidden from our view." (Keith Devlin, "Mathematics: the Science of Patterns", 1994)

"[…] and unlike the physics or chemistry or engineering of today, which will almost surely appear archaic to technicians of the far future, Euler’s formula will still appear, to the arbitrarily advanced mathematicians ten thousand years hence, to be beautiful and stunning and untarnished by time." (Paul J Nahin, "Dr. Euler's Fabulous Formula: Cures Many Mathematical Ills", 2006)

"But the number i is special for a decidedly different sort of reason - it’s math’s version of the ugly duckling. [...] The geometric interpretation of e^iπ is rich with emblematic potential. You could see its suggestion of a 180-degree spin as standing for a soldier’s about-face, a ballet dancer’s half pirouette, a turnaround jump shot, the movement of someone setting out on a long journey who looks back to wave farewell, the motion of the sun from dawn to dusk, the changing of the seasons from winter to summer, the turning of the tide. You could also associate it with turning the tables on someone, a reversal of fortune, turning one’s life around, the transformation of Dr. Jekyll into Mr. Hyde (and vice versa), the pivoting away from loss or regret to face the future, the ugly duckling becoming a beauty, drought giving way to rain. You might even interpret its highlighting of opposites as an allusion to elemental dualities—shadow and light, birth and death, yin and yang." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"Euler’s general formula, e^iθ = cos θ + i sin θ, also played a role in bringing about the happy ending of the imaginaries’ ugly duckling story. [...] Euler showed that e raised to an imaginary-number power can be turned into the sines and cosines of trigonometry." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"Raising e to an imaginary-number power can be pictured as a rotation operation in the complex plane. Applying this interpretation to e raised to the 'i times π' power means that Euler’s formula can be pictured in geometric terms as modeling a half-circle rotation." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"So here’s the main reason that Euler’s formula is flabbergasting: the top five celebrity numbers of all time appear together in it with no other numbers. (In addition, it includes three primordial peers from arithmetic: +, =, and exponentiation.) This conjunction of important numbers, which sprang up in different contexts in math and thus would seem to be completely unrelated, is staggering, and it accounts for much of the hullabaloo about the equation." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"We've seen how it [Euler's identity] can easily be deduced from results of Johann Bernoulli and Roger Cotes, but that neither of them seem to have done so. Even Euler does not seem to have written it down explicitly - and certainly it doesn't appear in any of his publications - though he must surely have realized that it follows immediately from his identity [i.e. Euler's formula], e^ix = cos x + i sin x. Moreover, it seems to be unknown who first stated the result explicitly." (Robin Wilson, "Euler's Pioneering Equation: The most beautiful theorem in mathematics", 2918)

"Gentlemen, that is surely true, it is absolutely paradoxical; we cannot understand it, and we don’t know what it means. But we have proved it, and therefore we know it is the truth." (Benjamin Peirce [in William E Byerly, "Benjamin Peirce: II. Reminiscences", The American Mathematical Monthly 32 (1), 1925]

"Mathematics is very much like poetry... what makes a good poem - a great poem - is that there is a large amount of thought expressed in very few words. In this insense formulas like e^iπ + 1 = 0 [...] are poems." (Lipman Bers)

29 January 2021

On Integrals I

"I see with much pleasure that you are working on a large work on the integral Calculus [...] The reconciliation of the methods which you are planning to make, serves to clarify them mutually, and what they have in common contains very often their true metaphysics; this is why that metaphysics is almost the last thing that one discovers. The spirit arrives at the results as if by instinct; it is only on reflecting upon the route that it and others have followed that it succeeds in generalising the methods and in discovering its metaphysics." (Pierre-Simon Laplace [letter to Sylvestre F Lacroix] 1792)

"Certain authors who seem to have perceived the weakness of this method assume virtually as an axiom that an equation has indeed roots, if not possible ones, then impossible roots. What they want to be understood under possible and impossible quantities, does not seem to be set forth sufficiently clearly at all. If possible quantities are to denote the same as real quantities, impossible ones the same as imaginaries: then that axiom can on no account be admitted but needs a proof necessarily." (Carl F Gauss, "New proof of the theorem that every algebraic rational integral function in one variable can be resolved into real factors of the first or the second degree", 1799)

"The integrals which we have obtained are not only general expressions which satisfy the differential equation, they represent in the most distinct manner the natural effect which is the object of the phenomenon [...] when this condition is fulfilled, the integral is, properly speaking, the equation of the phenomenon; it expresses clearly the character and progress of it, in the same manner as the finite equation of a line or curved surface makes known all the properties of those forms." (Jean-Baptiste-Joseph Fourier, "Théorie Analytique de la Chaleur", 1822)

"If one looks at the different problems of the integral calculus which arise naturally when he wishes to go deep into the different parts of physics, it is impossible not to be struck by the analogies existing. Whether it be electrostatics or electrodynamics, the propagation of heat, optics, elasticity, or hydrodynamics, we are led always to differential equations of the same family." (Henri Poincaré, "Sur les Equations aux Dérivées Partielles de la Physique Mathématique", American Journal of Mathematics Vol. 12, 1890)

"Every one who understands the subject will agree that even the basis on which the scientific explanation of nature rests, is intelligible only to those who have learned at least the elements of the differential and integral calculus, as well as of analytical geometry." (Felix Klein, Jahresbericht der Deutschen Mathematiker Vereinigung Vol. 11, 1902)

"The method of successive approximations is often applied to proving existence of solutions to various classes of functional equations; moreover, the proof of convergence of these approximations leans on the fact that the equation under study may be majorised by another equation of a simple kind. Similar proofs may be encountered in the theory of infinitely many simultaneous linear equations and in the theory of integral and differential equations. Consideration of the semiordered spaces and operations between them enables us to easily develop a complete theory of such functional equations in abstract form." (Leonid Kantorovich, "On one class of functional equations", 1936)

"The chief difficulty of modern theoretical physics resides not in the fact that it expresses itself almost exclusively in mathematical symbols, but in the psychological difficulty of supposing that complete nonsense can be seriously promulgated and transmitted by persons who have sufficient intelligence of some kind to perform operations in differential and integral calculus […]" (Celia Green, "The Decline and Fall of Science", 1976)

"But just as much as it is easy to find the differential of a given quantity, so it is difficult to find the integral of a given differential. Moreover, sometimes we cannot say with certainty whether the integral of a given quantity can be found or not." (Johann Bernoulli) [attributed to]

"Therefore one has taken everywhere the opposite road, and each time one encounters manifolds of several dimensions in geometry, as in the doctrine of definite integrals in the theory of imaginary quantities, one takes spatial intuition as an aid. It is well known how one gets thus a real overview over the subject and how only thus are precisely the essential points emphasized." (Bernhard Riemann)

28 January 2021

On Manifolds V (Geometry III)

"Whereas the conception of space and time as a four-dimensional manifold has been very fruitful for mathematical physicists, its effect in the field of epistemology has been only to confuse the issue. Calling time the fourth dimension gives it an air of mystery. One might think that time can now be conceived as a kind of space and try in vain to add visually a fourth dimension to the three dimensions of space. It is essential to guard against such a misunderstanding of mathematical concepts. If we add time to space as a fourth dimension it does not lose any of its peculiar character as time. [...] Musical tones can be ordered according to volume and pitch and are thus brought into a two dimensional manifold. Similarly colors can be determined by the three basic colors red, green and blue… Such an ordering does not change either tones or colors; it is merely a mathematical expression of something that we have known and visualized for a long time. Our schematization of time as a fourth dimension therefore does not imply any changes in the conception of time. [...] the space of visualization is only one of many possible forms that add content to the conceptual frame. We would therefore not call the representation of the tone manifold by a plane the visual representation of the two dimensional tone manifold." (Hans Reichenbach, "The Philosophy of Space and Time", 1928)

"The sequence of numbers which grows beyond any stage already reached by passing to the next number is a manifold of possibilities open towards infinity, it remains forever in the status of creation, but is not a closed realm of things existing in themselves. That we blindly converted one into the other is the true source of our difficulties […]" (Hermann Weyl, "Mathematics and Logic", 1946)

"The first attempts to consider the behavior of so-called 'random neural nets' in a systematic way have led to a series of problems concerned with relations between the 'structure' and the 'function' of such nets. The 'structure' of a random net is not a clearly defined topological manifold such as could be used to describe a circuit with explicitly given connections. In a random neural net, one does not speak of 'this' neuron synapsing on 'that' one, but rather in terms of tendencies and probabilities associated with points or regions in the net." (Anatol Rapoport, "Cycle distributions in random nets", The Bulletin of Mathematical Biophysics 10(3), 1948)

"The main object of study in differential geometry is, at least for the moment, the differential manifolds, structures on the manifolds (Riemannian, complex, or other), and their admissible mappings. On a manifold the coordinates are valid only locally and do not have a geometric meaning themselves." (Shiing-Shen Chern, "Differential geometry, its past and its future", 1970)

"[...] a manifold is a set M on which 'nearness' is introduced (a topological space), and this nearness can be described at each point in M by using coordinates. It also requires that in an overlapping region, where two coordinate systems intersect, the coordinate transformation is given by differentiable transition functions." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"It is commonly said that the study of manifolds is, in general, the study of the generalization of the concept of surfaces. To some extent, this is true. However, defining it that way can lead to overshadowing by 'figures' such as geometrical surfaces." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"One could also question whether we are looking for a single overarching mathematical structure or a combination of different complementary points of view. Does a fundamental theory of Nature have a global definition, or do we have to work with a series of local definitions, like the charts and maps of a manifold, that describe physics in various 'duality frames'. At present string theory is very much formulated in the last kind of way." (Robbert Dijkgraaf, "Mathematical Structures", 2005)

"Quantum physics, in particular particle and string theory, has proven to be a remarkable fruitful source of inspiration for new topological invariants of knots and manifolds. With hindsight this should perhaps not come as a complete surprise. Roughly one can say that quantum theory takes a geometric object (a manifold, a knot, a map) and associates to it a (complex) number, that represents the probability amplitude for a certain physical process represented by the object." (Robbert Dijkgraaf, "Mathematical Structures", 2005)

"The primary aspects of the theory of complex manifolds are the geometric structure itself, its topological structure, coordinate systems, etc., and holomorphic functions and mappings and their properties. Algebraic geometry over the complex number field uses polynomial and rational functions of complex variables as the primary tools, but the underlying topological structures are similar to those that appear in complex manifold theory, and the nature of singularities in both the analytic and algebraic settings is also structurally very similar." (Raymond O Wells Jr, "Differential and Complex Geometry: Origins, Abstractions and Embeddings", 2017)

"Therefore one has taken everywhere the opposite road, and each time one encounters manifolds of several dimensions in geometry, as in the doctrine of definite integrals in the theory of imaginary quantities, one takes spatial intuition as an aid. It is well known how one gets thus a real overview over the subject and how only thus are precisely the essential points emphasized." (Bernhard Riemann)

28 November 2020

On Complex Numbers XV

"The theory of which we have just given an overview may be considered from a point of view apt to set aside the obscure in what it presents, and which seems to be the primary aim, namely: to establish new notions on imaginary quantities. Indeed, putting to one side the question of whether these notions are true or false, we may restrict ourselves to viewing this theory as a means of research, to adopt the lines in direction only as signs of the real or imaginary quantities, and to see, in the usage to which we have put them, only the simple employment of a particular notation. For that, it suffices to start by demonstrating, through the first theorems of trigonometry, the rules of multiplication and addition given above; the applications will follow, and all that will remain is to examine the question of didactics. And if the employment of this notation were to be advantageous? And if it were to open up shorter and easier paths to demonstrate certain truths? That is what fact alone can decide." (Jean-Robert Argand, "Essai sur une manière de représenter les quantités imaginaires, dans les constructions géométriques", Annales Tome IV, 1813) 

"The true meaning of √-1 reveals itself vividly before my soul, but it will be very difficult to express it in words, which can give only an image suspended in the air." (Carl F Gauss, [Letter to Peter Hanson] 1825)

"Mathematics is a study which, when we start from its most familiar portions, may be pursued in either of two opposite directions. The more familiar direction is constructive, towards gradually increasing complexity: from integers to fractions, real numbers, complex numbers; from addition and multiplication to differentiation and integration, and on to higher mathematics. The other direction, which is less familiar, proceeds, by analyzing, to greater and greater abstractness and logical simplicity." (Bertrand Russell, "Introduction to Mathematical Philosophy", 1919)

"[…] the words real and imaginary are picturesque relics of an age when the nature of complex numbers was not properly understood." (Harold S M Coxeter, "The Real Projective Plane" 3rd Ed, 1993)

"The dictum that everything that people do is 'cultural' licenses the idea that every cultural critic can meaningfully analyze even the most intricate accomplishments of art and science. [...] It is distinctly weird to listen to pronouncements on the nature of mathematics from the lips of someone who cannot tell you what a complex number is!" (Norman Levitt, "The Flight from Science and Reason", Science, 1996)

"At this stage you might be thinking that there is no justification for calling something of the form a+bi a number, even if you are prepared to countenance i = √-1 in the first place. But remember, it is not what numbers are that matters, but how they behave. Provided the complex numbers have a workable and useful (either in mathematics itself or possibly in a wider context) arithmetic, possibly forming a field, then they have as much right to be called 'numbers' as do any others." (Keith Devlin, "Mathematics: The New Golden Age", 1998)

"In fact the complex numbers form a field. [...] So however strange you may feel the very notion of a complex number to be, it does turn out to provide a 'normal' type of arithmetic. In fact it gives you a tremendous bonus not available with any of the other number systems. [...] The fundamental theorem of algebra is just one of several reasons why the complex-number system is such a 'nice' one. Another important reason is that the field of complex numbers supports the development of a powerful differential calculus, leading to the rich theory of functions of a complex variable." (Keith Devlin, "Mathematics: The New Golden Age", 1998)

"The whole apparatus of the calculus takes on an entirely different form when developed for the complex numbers." (Keith Devlin, "Mathematics: The New Golden Age", 1998)

"[…] because imaginary time is at right angles to real time, it behaves like a fourth spatial direction. It can therefore have a much richer range of possibilities than the railroad track of ordinary real time, which can only have a beginning or an end or go around in circles. It is in this imaginary sense that time has a shape." (Stephen W Hawking, "The Universe in a Nutshell", 2001)

"To describe how quantum theory shapes time and space, it is helpful to introduce the idea of imaginary time. Imaginary time sounds like something from science fiction, but it is a well-defined mathematical concept: time measured in what are called imaginary numbers. […] Imaginary numbers can then be represented as corresponding to positions on a vertical line: zero is again in the middle, positive imaginary numbers plotted upward, and negative imaginary numbers plotted downward. Thus imaginary numbers can be thought of as a new kind of number at right angles to ordinary real numbers. Because they are a mathematical construct, they don't need a physical realization […]" (Stephen W Hawking, "The Universe in a Nutshell", 2001)

15 May 2020

Misquoted: Jacque Hadamard on Complex Numbers

"The shortest path between two truths in the real domain passes through the complex domain." 
Probably this is one of the most known quotes on complex numbers as it easy to remember and reflects the fact that important problems in algebra, analysis, geometry, number theory and physics can be simplified by considering them into the complex plane. Even if the quote reflects pretty good the idea, the actual quote comes from Jacque Hadamard’s "An Essay on the Psychology of Invention in the Mathematical Field" published in 1945:
"It has been written that the shortest and best way between two truths of the real domain often passes through the imaginary one."
[French: "On a pu écrire depuis que la voie la plus courte et la meilleure entre deux vérités du domaine réel passe souvent par le domaine imaginaire." (Jacques Hadamard, "Essai sur la psychologie de l'invention dans le domaine mathématique", 1945)]

Here Hadamard refers to Paul Painlevé, who in his "Analyse des travaux scientifiques" published in 1900 wrote as follows:
"The natural development of this work soon led the geometers in their studies to embrace imaginary as well as real values of the variable. The theory of Taylor series, that of elliptic functions, the vast field of Cauchy analysis, caused a burst of productivity derived from this generalization. It came to appear that, between two truths of the real domain, the easiest and shortest path quite often passes through the complex domain."
Actually, "la voie" can be translated as "the way" as well as "the path", the latter being closer to Painlevé’s quote, to whom the metaphor can be attributed to. Painlevé is not the first who stressed this important advantage of the complex numbers over the real ones, however his metaphor captures this aspect the best. 
"At the beginning I would ask anyone who wants to introduce a new function in analysis to clarify whether he intends to confine it to real magnitudes (real values of the argument) and regard the imaginary values as just vestigial - or whether he subscribes to my fundamental proposition that in the realm of magnitudes the imaginary ones a+b√−1 = a+bi have to be regarded as enjoying equal rights with the real ones. We are not talking about practical utility here; rather analysis is, to my mind, a self-sufficient science. It would lose immeasurably in beauty and symmetry from the rejection of any fictive magnitudes. At each stage truths, which otherwise are quite generally valid, would have to be encumbered with all sorts of qualifications." (Carl F Gauss, [letter to Bessel] 1811)

"The origin and the immediate purpose for the introduction of complex number into mathematics is the theory of creating simpler dependency laws (slope laws) between complex magnitudes by expressing these laws through numerical operations. And, if we give these dependency laws an expanded range by assigning complex values to the variable magnitudes, on which the dependency laws are based, then what makes its appearance is a harmony and regularity which is especially indirect and lasting." (Bernhard Riemann, "Grundlagen für eine allgemeine Theorie der Funktionen einer veränderlichen complexen Grösse", 1851)

"The conception of the inconceivable [imaginary], this measurement of what not only does not, but cannot exist, is one of the finest achievements of the human intellect. No one can deny that such imaginings are indeed imaginary. But they lead to results grander than any which flow from the imagination of the poet. The imaginary calculus is one of the master keys to physical science. These realms of the inconceivable afford in many places our only mode of passage to the domains of positive knowledge. Light itself lay in darkness until this imaginary calculus threw light upon light. And in all modern researches into electricity, magnetism, and heat, and other subtile physical inquiries, these are the most powerful instruments." (Thomas Hill, “The Imagination in Mathematics”, North American Review Vol. 85, 1857)
||>> Next Post 

14 May 2020

On Complex Numbers XIV

"It is greatly to be lamented that this virtue of the real numbers [the ordinary integers], to be decomposable into prime factors, always the same ones [...]  does not also belong to the complex numbers [complex integers]; were this the case, the whole theory [...] could easily be brought to its conclusion. For this reason, the complex numbers we have been considering seem imperfect, and one may well ask whether one ought not to look for another kind which would preserve the analogy with the real numbers with respect to such a fundamental property." (Ernst E Kummer, 1844)

"If contradictory attributes be assigned to a concept, I say, that mathematically the concept does not exist. So, for example, a real number whose square is -1 does not exist mathematically." (David Hilbert, [address to the International Congress of Mathematicians], 1900) 

"When we get used to playing with these complex numbers, we cease to think of a + ib as a pair of things, namely the two real numbers a and b, but we think of a+ib as an entire thing on its own, and we could use a single letter, say:, to denote the whole complex number z = a+ib. It may be checked that all the normal rules of algebra are satisfied by complex numbers. In fact, all this is a good deal more straightforward than checking everything for real numbers. […] From this point of view, it seems rather extraordinary that complex numbers were viewed with suspicion for so long, whereas the much more complicated extension from the nationals to the reals had, after ancient Greek times, been generally accepted without question." (Sir Roger Penrose, "The Road to Reality: A Complete Guide to the Laws of the Universe", 2004)

"Apparent Impossibilities that Are New Truths […] irrational numbers, imaginary numbers, points at infinity, curved space, ideals, and various types of infinity. These ideas seem impossible at first because our intuition cannot grasp them, but they can be captured with the help of mathematical symbolism, which is a kind of technological extension of our senses." (John Stillwell,"Yearning for the impossible: the surpnsing truths of mathematics", 2006)

"In fact, complex numbers are not much more complicated than reals, and many structures built on the complex numbers actually have simpler behavior than the corresponding structures built on the real numbers." (John Stillwell,"Yearning for the impossible: the surpnsing truths of mathematics", 2006)

"It is impossible for √-1 to be a real number, since its square is negative. This implies that √-1 is neither greater nor less than zero, so we cannot see √-1 on the real line. However, √-1 behaves like a number with respect to + and x. This prompts us to look elsewhere for it, and indeed we find it on another line (the imaginary axis) perpendicular to the real line." (John Stillwell,"Yearning for the impossible: the surpnsing truths of mathematics", 2006)

"Consider for example the complex numbers x + iy, where you of course ask what is i = √ −1 when you first encounter this mathematical construction. But that uncomfortable feeling of what this strange imaginary unit really is fades away as you get more experienced and learn that C is a field of numbers that is extremely useful, to say the least. You no longer care what kind of object i is but are satisfied only to know that i^2 = −1, which is how you calculate with i." (Andreas Rosén,"Geometric Multivector Analysis: From Grassmann to Dirac", 2019)

"Therefore one has taken everywhere the opposite road, and each time one encounters manifolds of several dimensions in geometry, as in the doctrine of definite integrals in the theory of imaginary quantities, one takes spatial intuition as an aid. It is well known how one gets thus a real overview over the subject and how only thus are precisely the essential points emphasized." (Bernhard Riemann)

"Imaginary numbers have an intuitive explanation: they 'rotate' numbers, just like negatives make a 'mirror image' of a number. […] Seeing imaginary numbers as rotations gives us a new mindset to approach problems; the 'plug and chug' formulas can make intuitive sense, even for a strange topic like complex numbers." (Kalid Azal, Math, Better Explained) 

"Zero is such a weird idea, having 'something' represent 'nothing', and it eluded the Romans. Complex numbers are similar - it’s a new way of thinking. But both zero and complex numbers make math much easier. If we never adopted strange, new number systems, we’d still be counting on our fingers." (Kalid Azal, Math,"Better Explained") 

26 April 2020

On Complex Numbers XIII

"A second type of the false position makes use of roots of negative numbers. I will give an example: If someone says to you, divide 10 into two parts, one of which multiplied into the other shall produce 30 or 40, it is evident that this case or question is impossible. Nevertheless, we shall solve it in this fashion. This, however, is closest to the quantity which is truly imaginary since operations may not be performed with it as with a pure negative number, nor as in other numbers. [...] This subtlety results from arithmetic of which this final point is, as I have said, as subtle as it is useless." (Girolamo Cardano, "Ars Magna", 1545)

"And just as the advantage of decimals consists in this, that when all fractions and roots have been reduced to them they take on in a certain measure the nature of integers, so it is the advantage of infinite variable-sequences that classes of more complicated terms (such as fractions whose denominators are complex quantities, the roots of complex quantities and the roots of affected equations) may be reduced to the class of simple ones: that is, to infinite series of fractions having simple numerators and denominators and without the all but insuperable encumbrances which beset the others." (Isaac Newton, "De methodis serierum et fluxionum" ["The Method of Fluxions and Infinite Series"], 1671)

"The nature, mother of the eternal diversities, or the divine spirit, are zaelous of her variety by accepting one and only one pattern for all things, By these reasons she has invented this elegant and admirable proceeding. This wonder of Analysis, prodigy of the universe of ideas, a kind of hermaphrodite between existence and non-existence, which we have named imaginary root?" (Gottfried W Leibniz, "De Bisectione Latereum", 1675)

"From the irrationals are born the impossible or imaginary quantities whose nature is very strange but whose usefulness is not to be despised." (Gottfried W Leibniz, "Specimen novum analyses pro Scientia infinity circa summas et quadraturas", 1700)

"[…] even if someone refuses to admit infinite and infinitesimal lines in a rigorous metaphysical sense and as real things, he can still use them with confidence as ideal concepts (notions ideales) which shorten his reasoning, similar to what we call imaginary roots in the ordinary algebra, for example, √-2." (Gottfried W Leibniz, [letter to Varignon], 1702)

"Even though these are called imaginary, they continue to be useful and even necessary in expressing real magnitudes analytically. For example, it is impossible to express the analytic value of a straight line necessary to trisect a given angle without the aid of imaginaries. Just so it is impossible to establish our calculus of transcendent curves without using differences which are on the point of vanishing, and at last taking the incomparably small in place of the quantity to which we can assign smaller values to infinity." (Gottfried W Leibniz, [letter to Varignon], 1702)

"In the following I shall denote the expression √-1 by the letter i so that i*i =-1.” (Leohnard Euler, "De formulis differentialibus angularibus" Vol. IV, 1794)

"How is it that -1 can have a square root? The square of a positive number is always positive, and the square of a negative number is again positive (and the square of 0 is just 0 again, so that is hardly of use to us here). It seems impossible that we can find a number whose square is actually negative." (Sir Roger Penrose, "The Road to Reality: A Complete Guide to the Laws of the Universe", 2004)

"Quaternions are not actual extensions of imaginary numbers, and they are not taking complex numbers into a multi-dimensional space on their own. Quaternion units are instances of some number-like object type, identified collectively, but they are not numbers (be it real or imaginary). In other words, they form a closed, internally consistent set of object instances; they can of course be plotted visually on a multi-dimensional space but this only is a visualization within their own definition." (Huseyin Ozel, "Redefining Imaginary and Complex Numbers, Defining Imaginary and Complex Objects", 2018)

"The existing definition of imaginary numbers is solely based on the fact that certain mathematical operation, square operation, would not yield certain type of outcome, negative numbers; hence such operational outcome could only be imagined to exist. Although complex numbers actually form the largest set of numbers, it appears that almost no thought has been given until now into the full extent of all possible types of imaginary numbers." (Huseyin Ozel, "Redefining Imaginary and Complex Numbers, Defining Imaginary and Complex Objects", 2018)
Related Posts Plugin for WordPress, Blogger...

On Leonhard Euler

"I have been able to solve a few problems of mathematical physics on which the greatest mathematicians since Euler have struggled in va...