Showing posts with label intuition. Show all posts
Showing posts with label intuition. Show all posts

15 April 2022

On Intuition (Unsourced)

"But it should always be required that a mathematical subject not be considered exhausted until it has become intuitively evident […]" (Felix Klein)

"Cognitive psychology has shown that the mind best understands facts when they are woven into a conceptual fabric, such as a narrative, mental map, or intuitive theory. Disconnected facts in the mind are like unlinked pages on the Web: They might as well not exist." (Steven Pinker)

"Intuition is the supra-logic that cuts out all routine processes of thought and leaps straight from the problem to the answer." (Robert Graves)

"Logic merely sanctions the conquests of the intuition." (Jacques S Hadamard)

"[…] mathematics has been most advanced by those who distinguished themselves by intuition rather than by rigorous proofs." (Felix Klein)

"The disclosure of a new fact, the leap forward, the conquest over yesterday’s ignorance, is an act not of reason but of imagination, of intuition." (Charles Nicolle)

"The supreme task is to arrive at those universal elementary laws from which the cosmos can be built up by pure deduction. There is no logical path to these laws; only intuition, resting on sympathetic understanding of experience, can lead to them." (Albert Einstein)

"Undoubtedly, the capstone of every mathematical theory is a convincing proof of all of its assertions. Undoubtedly mathematics inculpates itself when it foregoes convincing proofs. But the mystery of brilliant productivity will always be the posing of new questions, the anticipation of new theorems that make accessible valuable results and connections. Without the creation of new viewpoints, without the statement of new aims, mathematics would soon exhaust itself in the rigor of its logical proofs and begin to stagnate as its substance vanish. Thus, in a sense, mathematics has been most advanced by those who distinguished themselves by intuition rather than by rigorous proofs." (Felix Klein)

27 July 2021

Out of Context: On Intuition (Definitions)

"By intuition is frequently understood perception, or the knowledge of actual reality, the apprehension of something as real. […] Intuition is the undifferentiated unity of the perception of the real and of the simple image of the possible. " (Benedetto Croce, "The Essence of Æsthetic", 1921) 

"A new idea comes suddenly and in a rather intuitive way. But intuition is nothing but the outcome of earlier intellectual experience." (Albert Einstein, [Letter to Dr. H. L. Gordon] 1949)

"Instinct, intuition, or insight is what first leads to the beliefs which subsequent reason confirms or confutes; [...] (Bertrand Russell, "Our Knowledge of the External World", 1914)

"Intuition is the collection of odds and ends where we place all the intellectual mechanisms which we do not know how to analyze or even name with precision, or which we are not interested in analyzing or naming." (Mario Bunge, "Intuition and Science", 1962)

"Mathematical intuition is more often conservative than revolutionary, more often hampering than liberating." (Freeman Dyson, "Mathematics in the Physical Sciences", Scientific American Vol,. 211 (3), 1964)

"That is to say, intuition is not a direct perception of something existing externally and eternally. It is the effect in the mind of certain experiences of activity and manipulation of concrete objects (at a later stage, of marks on paper or even mental images)." (Philip J Davis & Reuben Hersh, "The Mathematical Experience", 1981)

"Intuition is the art, peculiar to the human mind, of working out the correct answer from data that is, in itself, incomplete or even, perhaps, misleading." (Isaac Asimov, "Forward the Foundation", 1993)

"Intuition is forged in the hellish fires of the everyday world, which makes it so eminently useful in our daily struggle for survival." (Vincent Icke, "The Force of Symmetry", 1995)

"Intuition isn't direct perception of something external. It's the effect in the mind/brain of manipulating concrete objects - at a later stage, of making marks on paper, and still later, manipulating mental images. This experience leaves a trace, an effect, in your mind/brain." (Reuben Hersh, "What Is Mathematics, Really?", 1998)

"Mathematical intuition is the mind’s ability to sense form and structure, to detect patterns that we cannot consciously perceive." (Ian Stewart, "Visions of Infinity", 2013)

"An intuition is neither caprice nor a sixth sense but a form of unconscious intelligence." (Gerd Gigerenzer, "Risk Savvy", 2015)

"Intuition is a spiritual faculty and does not explain, but simply points the way." (Florence S Shinn)

"Intuition is a method of feeling one's way intellectually into the inner heart of a thing to locate what is unique and inexpressible in it." (Henri Bergson)

"Intuition is not infallible; it only seems to be the truth. It is a message which we may interpret wrongly." (Christina Stead)

17 June 2021

On Knowledge (1950-1959)

"Every bit of knowledge we gain and every conclusion we draw about the universe or about any part or feature of it depends finally upon some observation or measurement. Mankind has had again and again the humiliating experience of trusting to intuitive, apparently logical conclusions without observations, and has seen Nature sail by in her radiant chariot of gold in an entirely different direction." (Oliver J Lee, "Measuring Our Universe: From the Inner Atom to Outer Space", 1950)

"The essence of knowledge is generalization. That fire can be produced by rubbing wood in a certain way is a knowledge derived by generalization from individual experiences; the statement means that rubbing wood in this way will always produce fire. The art of discovery is therefore the art of correct generalization." (Hans Reichenbach, "The Rise of Scientific Philosophy", 1951)

"[The information of a message can] be defined as the 'minimum number of binary decisions which enable the receiver to construct the message, on the basis of the data already available to him.' These data comprise both the convention regarding the symbols and the language used, and the knowledge available at the moment when the message started." (Dennis Gabor, "Optical transmission" in Information Theory : Papers Read at a Symposium on Information Theory, 1952)

"The world is not made up of empirical facts with the addition of the laws of nature: what we call the laws of nature are conceptual devices by which we organize our empirical knowledge and predict the future." (Richard B Braithwaite, "Scientific Explanation", 1953)

"Knowledge rests on knowledge; what is new is meaningful because it departs slightly from what was known before; this is a world of frontiers, where even the liveliest of actors or observers will be absent most of the time from most of them." (J Robert Oppenheimer, "Science and the Common Understanding", 1954)

"Science, then, is the attentive consideration of common experience; it is common knowledge extended and refined. Its validity is of the same order as that of ordinary perception; memory, and understanding. Its test is found, like theirs, in actual intuition, which sometimes consists in perception and sometimes in intent." (George Santayana, "The Life of Reason, or the Phases of Human Progress", 1954)

"Scientific metaphors are called models. They are made with the full knowledge that the connection between the metaphor and the real thing is primarily in the mind of the scientist. And they are made with a clearly definable purpose - as starting points of a deductive process. […] Like every other aspect of scientific procedure, the scientific metaphor is a pragmatic device, to be used freely as long as it serves its purpose, to be discarded without regrets when it fails to do so." (Anatol Rapoport, "Operational Philosophy", 1954)

"The laws of science are the permanent contribution to knowledge - the individual pieces which are fitted together attempt to form a picture of the physical universe in action." (Edwin P Hubble, "The Nature of Science and Other Lectures", 1954)

"Science cannot be based on dogma or authority of any kind, nor on any institution or revelation, unless indeed it be of the Book of Nature that lies open before our eyes. We need not dwell on the processes of acquiring knowledge by observation, experiment, and inductive and deductive reasoning. The study of scientific method both in theory and practice is of great importance. It is inherent in the philosophy that the record may be imperfect and the conceptions erroneous; the potential fallibility of our science is not only acknowledged but also insisted upon." (Sir Robert Robinson, "Science and the Scientist", Nature Vol. 176 (4479), 1955)

"There comes a point where the mind takes a leap - call it intuition or what you will - and comes out upon a higher plane of knowledge, but can never prove how it got there. All great discoveries have involved such a leap." (Albert Einstein, [interview in Life, "Death of a Genius"] 1955)

"There is no correlation between the cause and the effect. The events reveal only an aleatory determination, connected not so much with the imperfection of our knowledge as with the structure of the human world." (Raymond Aron, "The Opium of the Intellectuals", 1955)

"General Systems Theory is a name which has come into use to describe a level of theoretical model-building which lies somewhere between the highly generalized constructions of pure mathematics and the specific theories of the specialized disciplines. Mathematics attempts to organize highly general relationships into a coherent system, a system however which does not have any necessary connections with the 'real' world around us. It studies all thinkable relationships abstracted from any concrete situation or body of empirical knowledge." (Kenneth E Boulding, "General Systems Theory - The Skeleton of Science", Management Science Vol. 2 (3), 1956)

"In no subject is there a rule, compliance with which will lead to new knowledge or better understanding. Skillful observations, ingenious ideas, cunning tricks, daring suggestions, laborious calculations, all these may be required to advance a subject. Occasionally the conventional approach in a subject has to be studiously followed; on other occasions it has to be ruthlessly disregarded. Which of these methods, or in what order they should be employed is generally unpredictable. Analogies drawn from the history of science are frequently claimed to be a guide; but, as with forecasting the next game of roulette, the existence of the best analogy to the present is no guide whatever to the future. The most valuable lesson to be learnt from the history of scientific progress is how misleading and strangling such analogies have been, and how success has come to those who ignored them." (Thomas Gold, "Cosmology", 1956) 

"Knowledge is not something which exists and grows in the abstract. It is a function of human organisms and of social organization. Knowledge, that is to say, is always what somebody knows: the most perfect transcript of knowledge in writing is not knowledge if nobody knows it. Knowledge however grows by the receipt of meaningful information - that is, by the intake of messages by a knower which are capable of reorganising his knowledge." (Kenneth E Boulding, "General Systems Theory - The Skeleton of Science", Management Science Vol. 2 (3), 1956)

"The mathematical formulas indeed no longer portray nature, but rather our knowledge of nature." (Werner K Heisenberg, "The Representation of Nature in Contemporary Physics", Daedalus Vol. 87 (3), 1958)

"Science does not mean an idle resting upon a body of certain knowledge; it means unresting endeavor and continually progressing development toward an end which the poetic intuition may apprehend, but which the intellect can never fully grasp." (Max Planck, "The New Science", 1959)

On Knowledge (1775-1799)

"Cultivate that kind of knowledge which enables us to discover for ourselves in case of need that which others have to read or be told of." (Georg C Lichtenberg, Notebook D, 1773-1775)

"Knowledge is of two kinds. We know a subject ourselves, or we know where we can find information upon it." (Samuel Johnson, 1775)

"Our knowledge springs from two fundamental sources of the mind; the first is the capacity of receiving representations (receptivity for impressions), the second is the power of knowing an object through these representations (spontaneity [in the production] of concepts)." (Immanuel Kant, "Critique of Pure Reason", 1781)

"Philosophical knowledge is the knowledge gained by reason from concepts; mathematical knowledge is the knowledge gained by reason from the construction of concepts." (Immanuel Kant, "Critique of Pure Reason", 1781)

"Thoughts without content are empty, intuitions without concepts are blind. The understanding can intuit nothing, the senses can think nothing. Only through their unison can knowledge arise." (Immanuel Kant, "Critique of Pure Reason", 1781)

"The word ‘chance’ then expresses only our ignorance of the causes of the phenomena that we observe to occur and to succeed one another in no apparent order. Probability is relative in part to this ignorance, and in part to our knowledge." (Pierre-Simon Laplace, "Mémoire sur les Approximations des Formules qui sont Fonctions de Très Grands Nombres", 1783)

"The mathematician pays not the least regard either to testimony or conjecture, but deduces everything by demonstrative reasoning, from his definitions and axioms. Indeed, whatever is built upon conjecture, is improperly called science; for conjecture may beget opinion, but cannot produce knowledge." (Thomas Reid, "Essays on the Intellectual Powers of Man", 1785)

"On completing one discovery we never fail to get an imperfect knowledge of others of which you could have no idea before […]" (Joseph Priestley, 1786)

"As there is no study which may be so advantageously entered upon with a less stock of preparatory knowledge than mathematics, so there is none in which a greater number of uneducated men have raised themselves, by their own exertions, to distinction and eminence. […] Many of the intellectual defects which, in such cases, are commonly placed to the account of mathematical studies, ought to be ascribed to the want of a liberal education in early youth." (Dugald Stewart, "Elements of the Philosophy of the Human Mind", 1792)

"The power of Reason […] is unquestionably the most important by far of those which are comprehended under the general title of Intellectual. It is on the right use of this power that our success in the pursuit of both knowledge and of  happiness depends; and it is by the exclusive possession of it that man is distinguished, in the most essential respects, from the lower animals. It is, indeed, from their subserviency to its operations, that the other faculties […] derive their chief value." (Dugald Stewart, "Elements of the Philosophy of the Human Mind", 1792)

"Conjecture may lead you to form opinions, but it cannot produce knowledge. Natural philosophy must be built upon the phenomena of nature discovered by observation and experiment." (George Adams, "Lectures on Natural and Experimental Philosophy" Vol. 1, 1794)

02 June 2021

On Structure: Structure in Mathematics II

"[…] the major mathematical research acquires an organization and orientation similar to the poetical function which, adjusting by means of metaphor disjunctive elements, displays a structure identical to the sensitive universe. Similarly, by means of its axiomatic or theoretical foundation, mathematics assimilates various doctrines and serves the instructive purpose, the one set up by the unifying moral universe of concepts." (Dan Barbilian, "The Autobiography of the Scientist", 1940)

"Mathematicians deal with possible worlds, with an infinite number of logically consistent systems. Observers explore the one particular world we inhabit. Between the two stands the theorist. He studies possible worlds but only those which are compatible with the information furnished by observers. In other words, theory attempts to segregate the minimum number of possible worlds which must include the actual world we inhabit. Then the observer, with new factual information, attempts to reduce the list further. And so it goes, observation and theory advancing together toward the common goal of science, knowledge of the structure and observation of the universe." (Edwin P Hubble, "The Problem of the Expanding Universe", 1941)

"To say that mathematics in general has been reduced to logic hints at some new firming up of mathematics at its foundations. This is misleading. Set theory is less settled and more conjectural than the classical mathematical superstructure than can be founded upon it." (Willard van Orman Quine, "Elementary Logic", 1941)

"One expects a mathematical theorem or a mathematical theory not only to describe and to classify in a simple and elegant way numerous and a priori disparate special cases. One also expects ‘elegance’ in its ‘architectural’ structural makeup." (John von Neumann, "The Mathematician" [in "Works of the Mind" Vol. I (1), 1947])

"The constructions of the mathematical mind are at the same time free and necessary. The individual mathematician feels free to define his notions and set up his axioms as he pleases. But the question is will he get his fellow-mathematician interested in the constructs of his imagination. We cannot help the feeling that certain mathematical structures which have evolved through the combined efforts of the mathematical community bear the stamp of a necessity not affected by the accidents of their historical birth. Everybody who looks at the spectacle of modern algebra will be struck by this complementarity of freedom and necessity." (Hermann Weyl, "A Half-Century of Mathematics", The American Mathematical Monthly, 1951)

"Mathematicians create by acts of insight and intuition. Logic then sanctions the conquests of intuition. It is the hygiene that mathematics practice to keep its ideas healthy and strong. Moreover, the whole structure rests fundamentally on uncertain ground, the intuitions of man." (Morris Kline, "Mathematics in Western Culture", 1953)

"Mathematics is not only the model along the lines of which the exact sciences are striving to design their structure; mathematics is the cement which holds the structure together." (Tobias Dantzig, "Number: The Language of Science" 4th Ed, 1954)

"Mathematics, springing from the soil of basic human experience with numbers and data and space and motion, builds up a far-flung architectural structure composed of theorems which reveal insights into the reasons behind appearances and of concepts which relate totally disparate concrete ideas." (Saunders MacLane, "Of Course and Courses"The American Mathematical Monthly, Vol 61, No 3, 1954)

"Chess combines the beauty of mathematical structure with the recreational delights of a competitive game." (Martin Gardner, "Mathematics, Magic, and Mystery", 1956)

"Probability is a mathematical discipline with aims akin to those, for example, of geometry or analytical mechanics. In each field we must carefully distinguish three aspects of the theory: (a) the formal logical content, (b) the intuitive background, (c) the applications. The character, and the charm, of the whole structure cannot be appreciated without considering all three aspects in their proper relation." (William Feller, "An Introduction to Probability Theory and Its Applications", 1957)

"If the system exhibits a structure which can be represented by a mathematical equivalent, called a mathematical model, and if the objective can be also so quantified, then some computational method may be evolved for choosing the best schedule of actions among alternatives. Such use of mathematical models is termed mathematical programming."  (George Dantzig, "Linear Programming and Extensions", 1959)

01 June 2021

On Structure: Structure in Mathematics III

"Mathematicians create by acts of insight and intuition. Logic then sanctions the conquests of intuition. It is the hygiene that mathematics practices to keep its ideas healthy and strong. Moreover, the whole structure rests fundamentally on uncertain ground, the intuition of humans. Here and there an intuition is scooped out and replaced by a firmly built pillar of thought; however, this pillar is based on some deeper, perhaps less clearly defined, intuition. Though the process of replacing intuitions with precise thoughts does not change the nature of the ground on which mathematics ultimately rests, it does add strength and height to the structure." (Morris Kline, "Mathematics in Western Culture ", 1964)

"The probability concept used in probability theory has exactly the same structure as have the fundamental concepts in any field in which mathematical analysis is applied to describe and represent reality." (Richard von Mises, "Mathematical Theory of Probability and Statistics", 1964)

"The question ‘What is mathematics?’ cannot be answered meaningfully by philosophical generalities, semantic definitions or journalistic circumlocutions. Such characterizations also fail to do justice to music or painting. No one can form an appreciation of these arts without some experience with rhythm, harmony and structure, or with form, color and composition. For the appreciation of mathematics actual contact with its substance is even more necessary." (Richard Courant, "Mathematics in the Modern World", Scientific American Vol. 211 (3), 1964)

"[Game theory is] essentially a structural theory. It uncovers the logical structure of a great variety of conflict situations and describes this structure in mathematical terms. Sometimes the logical structure of a conflict situation admits rational decisions; sometimes it does not." (Anatol Rapoport, "Prisoner's dilemma: A study in conflict and cooperation", 1965)

"The most natural way to give an independence proof is to establish a model with the required properties. This is not the only way to proceed since one can attempt to deal directly and analyze the structure of proofs. However, such an approach to set theoretic questions is unnatural since all our intuition come from our belief in the natural, almost physical model of the mathematical universe." (Paul J Cohen, "Set Theory and the Continuum Hypothesis", 1966)

"The structures with which mathematics deals are more like lace, the leaves of trees, and the play of light and shadow on a human face, than they are like buildings and machines, the least of their representatives. The best proofs in mathematics are short and crisp like epigrams, and the longest have swings and rhythms that are like music. The structures of mathematics and the propositions about them are ways for the imagination to travel and the wings, or legs, or vehicles to take you where you want to go." (Scott Buchanan, "Poetry and Mathematics", 1975)

"In each branch of mathematics it is essential to recognize when two structures are equivalent. For example two sets are equivalent, as far as set theory is concerned, if there exists a bijective function which maps one set onto the other. Two groups are equivalent, known as isomorphic, if there exists a a homomorphism of one to the other which is one-to-one and onto. Two topological spaces are equivalent, known as homeomorphic, if there exists a homeomorphism of one onto the other." (Sydney A Morris, "Topology without Tears", 2011)

25 May 2021

On Structure: Structure in Mathematics I

"The first step, whenever a practical problem is set before a mathematician, is to form the mathematical hypothesis. It is neither needful nor practical that we should take account of the details of the structure as it will exist. We have to reason about a skeleton diagram in which bearings are reduced to points, pieces to lines, etc. and [in] which it is supposed that certain relations between motions are absolutely constrained, irrespective of forces." (Charles S Peirce, "Report on Live Loads", cca. 1895)

"For thought raised on specialization the most potent objection to the possibility of a universal organizational science is precisely its universality. Is it ever possible that the same laws be applicable to the combination of astronomic worlds and those of biological cells, of living people and the waves of the ether, of scientific ideas and quanta of energy? [...] Mathematics provide a resolute and irrefutable answer: yes, it is undoubtedly possible, for such is indeed the case. Two and two homogenous separate elements amount to four such elements, be they astronomic systems or mental images, electrons or workers; numerical structures are indifferent to any element, there is no place here for specificity." (Alexander Bogdanov, "Tektology: The Universal Organizational Science" Vol. I, 1913)

"Once a statement is cast into mathematical form it may be manipulated in accordance with [mathematical] rules and every configuration of the symbols will represent facts in harmony with and dependent on those contained in the original statement. Now this comes very close to what we conceive the action of the brain structures to be in performing intellectual acts with the symbols of ordinary language. In a sense, therefore, the mathematician has been able to perfect a device through which a part of the labor of logical thought is carried on outside the central nervous system with only that supervision which is requisite to manipulate the symbols in accordance with the rules." (Horatio B Williams, "Mathematics and the Biological Sciences", Bulletin of the American Mathematical Society Vol. 38, 1927)

"Physics is the attempt at the conceptual construction of a model of the real world and its lawful structure." (Albert Einstein, [letter to Moritz Schlick] 1931)

"Today's scientists have substituted mathematics for experiments, and they wander off through equation after equation, and eventually build a structure which has no relation to reality." (Nikola Tesla, "Radio Power Will Revolutionize the World", Modern Mechanics and Inventions, 1934)

"Men of science belong to two different types - the logical and the intuitive. Science owes its progress to both forms of minds. Mathematics, although a purely logical structure, nevertheless makes use of intuition. " (Alexis Carrel, "Man the Unknown", 1935)

"Statistics is a scientific discipline concerned with collection, analysis, and interpretation of data obtained from observation or experiment. The subject has a coherent structure based on the theory of Probability and includes many different procedures which contribute to research and development throughout the whole of Science and Technology." (Egon Pearson, 1936)

09 May 2021

On Heuristics II

"Models of bounded rationality describe how a judgement or decision is reached (that is, the heuristic processes or proximal mechanisms) rather than merely the outcome of the decision, and they describe the class of environments in which these heuristics will succeed or fail." (Gerd Gigerenzer & Reinhard Selten [Eds., "Bounded Rationality: The Adaptive Toolbox", 2001)

"A second class of metaphors - mathematical algorithms, heuristics, and models - brings us closer to the world of computer science programs, simulations, and approximations of the brain and its cognitive processes." (Diego Rasskin-Gutman, "Chess Metaphors: Artificial Intelligence and the Human Mind", 2009)

"In particular, the accurate intuitions of experts are better explained by the effects of prolonged practice than by heuristics. We can now draw a richer and more balanced picture, in which skill and heuristics are alternative sources of intuitive judgments and choices." (Daniel Kahneman, "Thinking, Fast and Slow", 2011)

"This is the essence of intuitive heuristics: when faced with a difficult question, we often answer an easier one instead, usually without noticing the substitution." (Daniel Kahneman, "Thinking, Fast and Slow", 2011)

"Heuristics are an evolutionary solution to an ongoing problem: we have limited mental resources. As such, they have a very long and thoroughly time-tested history of helping us - on average - make better decisions." (Peter H Diamandis, "Abundance: The Future is Better Than You Think", 2012)

"Heuristics are simplified rules of thumb that make things simple and easy to implement. But their main advantage is that the user knows that they are not perfect, just expedient, and is therefore less fooled by their powers. They become dangerous when we forget that." (Nassim N Taleb, "Antifragile: Things that gain from disorder", 2012)

"The art of reasoned persuasion is an iterative, recursive heuristic, meaning that we must go back and forth between the facts and the rules until we have a good fit. We cannot see the facts properly until we know what framework to place them into, and we cannot determine what framework to place them into until we see the basic contours of the facts." (Joel P Trachtman, "The Tools of Argument", 2013)

"Heuristic decision making is fast and frugal and is often based on the evaluation of one or two salient bits of information." (Amitav Chakravarti, "Why People (Don’t) Buy: The Go and Stop Signals", 2015)

"A heuristic is a strategy we derive from previous experience with a similar problem." (Darius Foroux, "Think Straight", 2017)

"The social world that humans have made for themselves is so complex that the mind simplifies the world by using heuristics, customs, and habits, and by making models or assumptions about how things generally work (the ‘causal structure of the world’). And because people rely upon (and are invested in) these mental models, they usually prefer that they remain uncontested." (Dr James Brennan, "Psychological  Adjustment to Illness and Injury", West of England Medical Journal Vol. 117 (2), 2018)

04 May 2021

On Facts (1890-1899)

"The study of theory must go hand in hand with that of facts: and for dealing with most modern problems it is modern facts that are of the greatest use." (Alfred Marshall, "Principles of Economics", 1890)

"The graphical method has considerable superiority for the exposition of statistical facts over the tabular. A heavy bank of figures is grievously wearisome to the eye, and the popular mind is as incapable of drawing any useful lessons from it as of extracting sunbeams from cucumbers." (Arthur B Farquhar & Henry Farquhar, "Economic and Industrial Delusions", 1891)

"All great scientists have, in a certain sense, been great artists; the man with no imagination may collect facts, but he cannot make great discoveries." (Karl Pearson, "The Grammar of Science", 1892)

"It is a capital mistake to theorize before one has data. Insensibly one begins to twist facts to suit theories, instead of theories to suit facts." (Sir Arthur C Doyle, "The Adventures of Sherlock Holmes", 1892)

"The classification of facts, the recognition of their sequence and relative significance is the function of science, and the habit of forming a judgment upon these facts unbiased by personal feeling is characteristic of what may be termed the scientific frame of mind." (Karl Pearson, "The Grammar of Science", 1892)

"The true aim of the teacher must be to impart an appreciation of method and not a knowledge of facts." (Karl Pearson, "The Grammar of Science", 1892)

"Facts are not much use, considered as facts. They bewilder by their number and their apparent incoherency. Let them be digested into theory, however, and brought into mutual harmony, and it is another matter. Theory is of the essence of facts. Without theory scientific knowledge would be only worthy of the mad house." (Oliver Heaviside, "Electromagnetic Theory", 1893)

"Scientific facts accumulate rapidly, and give rise to theories with almost equal rapidity. These theories are often wonderfully enticing, and one is apt to pass from one to another, from theory to theory, without taking care to establish each before passing on to the next, without assuring oneself that the foundation on which one is building is secure. Then comes the crash; the last theory breaks down utterly, and on attempting to retrace our steps to firm ground and start anew, we may find too late that one of the cards, possibly at the very foundation of the pagoda, is either faultily placed or in itself defective, and that this blemish easily remedied if detected in time has, neglected, caused the collapse of the whole structure on whose erection so much skill and perseverance have been spent." (Arthur M Marshall, 1894)

"Without a theory all our knowledge of nature would be reduced to a mere inventory of the results of observation. Every scientific theory must be regarded as an effort of the human mind to grasp the truth, and as long as it is consistent with the facts, it forms a chain by which they are linked together and woven into harmony." (Thomas Preston, "The Theory of Heat", 1894)

"The first step, whenever a practical problem is set before a mathematician, is to form the mathematical hypothesis. It is neither needful nor practical that we should take account of the details of the structure as it will exist. We have to reason about a skeleton diagram in which bearings are reduced to points, pieces to lines, etc. and [in] which it is supposed that certain relations between motions are absolutely constrained, irrespective of forces. Some writers call such a hypothesis a fiction, and say that the mathematician does not solve the real problem, but only a fictitious one. That is one way of looking at the matter, to which I have no objection to make: only, I notice, that in precisely the same sense in which the mathematical hypothesis is 'false', so also is this statement 'false', that it is false. Namely, both representations are false in the sense that they omit subsidiary elements of the fact, provided that element of the case can be said to be subsidiary which those writers overlook, namely, that the skeleton diagram is true in the only sense in which from the nature of things any mental representation, or understanding, of the brute existent can be true. For every possible conception, by the very nature of thought, involves generalization; now generalization omits, means to omit, and professes to omit, the differences between the facts generalized." (Charles S Peirce, "Report on Live Loads", cca. 1895)

"The world is chiefly a mental fact. From mind it receives the forms of time and space, the principle of causality, color, warmth, and beauty. Were there no mind, there would be no world." (John L Spalding, "Means and Ends of Education", 1895)

"In scientific investigations, it is permitted to invent any hypothesis and, if it explains various large and independent classes of facts, it rises to the ranks of a well-grounded theory." (Charles Darwin, "The Variations of Animals and Plants Under Domestication" Vol. 1, 1896)

"Mathematics is the most abstract of all the sciences. For it makes no external observations, nor asserts anything as a real fact. When the mathematician deals with facts, they become for him mere ‘hypotheses’; for with their truth he refuses to concern himself. The whole science of mathematics is a science of hypotheses; so that nothing could be more completely abstracted from concrete reality." (Charles S Peirce, "The Regenerated Logic", The Monist Vol. 7 (1), 1896)

"Round about the accredited and orderly facts of every science there ever fl oats a sort of dust-cloud of exceptional observations, of occurrences minute and irregular and seldom met with, which it always proves more easy to ignore than to attend to […]" (William James, "The Will to Believe", 1896)

"Science like life feeds on its own decay. New facts burst old rules; then newly developed concepts bind old and new together into a reconciling law." (William James, "The Will to Believe and Other Essays in Popular Philosophy", 1896)

"The scientific value of truth is not, however, ultimate or absolute. It rests partly on practical, partly on aesthetic interests. As our ideas are gradually brought into conformity with the facts by the painful process of selection, - for intuition runs equally into truth and into error, and can settle nothing if not controlled by experience, - we gain vastly in our command over our environment. This is the fundamental value of natural science" (George Santayana, "The Sense of Beauty: Being the Outlines of Aesthetic Theory", 1896)

"To use an old analogy - and here we can hardly go except upon analogy - while the building of Nature is growing spontaneously from within, the model of it, which we seek to construct in our descriptive science, can only be constructed by means of scaffolding from without, a scaffolding of hypotheses. While in the real building all is continuous, in our model there are detached parts which must be connected with the rest by temporary ladders and passages, or which must be supported till we can see how to fill in the understructure. To give the hypotheses equal validity with facts is to confuse the temporary scaffolding with the building itself." (John H Poynting, 1899)

20 April 2021

On Coincidence III

"Is it mere coincidence that the universe happens to possess just those properties which allow part of it to be alive? Some people say yes; it was simply good luck that the universe was born with the particular characteristics that it has. Others say no; our universe is only one of many universes." (Ken Croswell, "Planet Quest: The Epic Discovery of Alien Solar Systems", 1997)

"Most systems displaying a high degree of tolerance against failures are a common feature: Their functionality is guaranteed by a highly interconnected complex network. A cell's robustness is hidden in its intricate regulatory and metabolic network; society's resilience is rooted in the interwoven social web; the economy's stability is maintained by a delicate network of financial and regulator organizations; an ecosystem's survivability is encoded in a carefully crafted web of species interactions. It seems that nature strives to achieve robustness through interconnectivity. Such universal choice of a network architecture is perhaps more than mere coincidences." (Albert-László Barabási, "Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life", 2002)

"Coincidence surprises us because our intuition about the likelihood of an event is often wildly inaccurate." (Michael Starbird, "Coincidences, Chaos, and All That Math Jazz", 2005)

"With our heads spinning in the world of coincidence and chaos, we nevertheless must make decisions and take steps into the minefield of our future. To avoid explosive missteps, we rely on data and statistical reasoning to inform our thinking." (Michael Starbird, "Coincidences, Chaos, and All That Math Jazz", 2005)

"The human mind delights in finding pattern - so much so that we often mistake coincidence or forced analogy for profound meaning. No other habit of thought lies so deeply within the soul of a small creature trying to make sense of a complex world not constructed for it." (Stephen J Gould, "The Flamingo's Smile: Reflections in Natural History", 2010)

"History is often the tale of small moments - chance encounters or casual decisions or sheer coincidence - that seem of little consequence at the time, but somehow fuse with other small moments to produce something momentous, the proverbial flapping of a butterfly's wings that triggers a hurricane." (Scott Anderson, "Lawrence in Arabia: War, Deceit, Imperial Folly and the Making of the Modern Middle East", 2013)

"In mathematics, two angles that are said to coincide fit together perfectly. The word 'coincidence' does not describe luck or mistakes. It describes that which fits together perfectly." (Wayne Dyer, "The Essential Wayne Dyer Collection", 2013)

"The happy coincidences between life’s requirements and nature’s choices of parameter-values might be just a series of flukes, but one could be forgiven for beginning to suspect that something deeper is at work. That suspicion is the first deep root of anthropic reasoning." (Frank Wilczek, "Multiversality", 2013) 

10 April 2021

On Generalization (1800-1849)

"An idea is always a generalization, and generalization is a property of thinking. To generalize means to think." (Georg W F Hegel, "The Philosophy of Right", 1820)

"To minds of a certain cast there is nothing so captivating as simplification and generalization." (Thomas R Malthus, "Principles of Political Economy", 1820)

"General assertions, like general truths, are not always applicable to individual cases; though Fortune's wheel is generally on the turn, sometimes when it gets into the mud, it sticks there." (Letitia E Landon, "Romance and Reality", 1831)

"It is not easy to anatomize the constitution and the operations of a mind which makes such an advance in knowledge. Yet we may observe that there must exist in it, in an eminent degree, the elements which compose the mathematical talent. It must possess distinctness of intuition, tenacity and facility in tracing logical connection, fertility of invention, and a strong tendency to generalization." (William Whewell, "History of the Inductive Sciences" Vol. 1, 1837)

"Every theorem in geometry is a law of external nature, and might have been ascertained by generalizing from observation and experiment, which in this case resolve themselves into comparisons and measurements. But it was found practicable, and being practicable was desirable, to deduce these truths by ratiocination from a small number of general laws of nature, the certainty and universality of which was obvious to the most careless observer, and which compose the first principles and ultimate premises of the science." (John S Mill, "System of Logic", 1843)

"The mere accumulation of unconnected observations of details, devoid of generalization of ideas, may doubtlessly have tended to create and foster the deeply rooted prejudice, that the study of the exact sciences must necessarily chill the feelings, and diminish the nobler enjoyments attendant upon a contemplation of nature." (Alexander von Humboldt, "Cosmos: A Sketch of a Physical Description of the Universe", 1845)

06 April 2021

On Axioms (1800-1899)

"Axioms in philosophy are not axioms until they are proved upon our pulses: we read fine things but never feel them to the full until we have gone the same steps as the author." (John Keats, [Letter to John Hamilton Reynolds] 1818)

"Scientific Ideas can often be adequately exhibited for all the purposes of reasoning, by means of Definitions and Axioms; all attempts to reason by means of Definitions from common Notions, lead to empty forms or entire confusion." (William Whewell, "History of the Inductive Sciences from the Earliest to the Present Time", 1837)

"These sciences, Geometry, Theoretical Arithmetic and Algebra, have no principles besides definitions and axioms, and no process of proof but deduction; this process, however, assuming a most remarkable character; and exhibiting a combination of simplicity and complexity, of rigour and generality, quite unparalleled in other subjects." (William Whewell, "The Philosophy of the Inductive Sciences", 1840)

"The reasoning of mathematicians is founded on certain and infallible principles. Every word they use conveys a determinate idea, and by accurate definitions they excite the same ideas in the mind of the reader that were in the mind of the writer. When they have defined the terms they intend to make use of, they premise a few axioms, or self-evident principles, that every one must assent to as soon as proposed. They then take for granted certain postulates, that no one can deny them, such as, that a right line may be drawn from any given point to another, and from these plain, simple principles they have raised most astonishing speculations, and proved the extent of the human mind to be more spacious and capacious than any other science." (John Adams,"Diary", 1850)

"A physical theory, like an abstract science, consists of definitions and axioms as first principles, and of propositions, their consequences; but with these differences:—first, That in an abstract science, a definition assigns a name to a class of notions derived originally from observation, but not necessarily corresponding to any existing objects of real phenomena, and an axiom states a mutual relation amongst such notions, or the names denoting them; while in a physical science, a definition states properties common to a class of existing objects, or real phenomena, and a physical axiom states a general law as to the relations of phenomena; and, secondly,—That in an abstract science, the propositions first discovered are the most simple; whilst in a physical theory, the propositions first discovered are in general numerous and complex, being formal laws, the immediate results of observation and experiment, from which the definitions and axioms are subsequently arrived at by a process of reasoning differing from that whereby one proposition is deduced from another in an abstract science, partly in being more complex and difficult, and partly in being to a certain extent tentative, that is to say, involving the trial of conjectural principles, and their acceptance or rejection according as their consequences are found to agree or disagree with the formal laws deduced immediately from observation and experiment." (William J M Rankine, "Outlines of the Science of Energetics", Proceedings of the Philosophical Society of Glasgow, 1855)

"An axiom is proposition more general than the propositions or the science in which it employed as an axiom; or, an axiom is a proposition which is true of more subjects than the subject or the science in which it is quoted as an axiom. Hence. Geometry ought to admit as axioms all Algebraic truths. The simple truths of this kind, which are commonly called axioms, ore corollaries from the definitions of such terms as equal, whole, part, sum, etc." (The Pennsylvania School Journal, 1856)

"The maxim is, that whatever can be affirmed (or denied) of a class, may be affirmed (or denied) of everything included in the class. This axiom, supposed to be the basis of the syllogistic theory, is termed by logicians the dictum de omni et nullo [the maxim of all and none]." (John S Mill, "A System of Logic, Ratiocinative and Inductive", 1858)

"Induction and analogy are the special characteristics of modern mathematics, in which theorems have given place to theories and no truth is regarded otherwise than as a link in an infinite chain. 'Omne exit in infinitum' is their favorite motto and accepted axiom." (James J Sylvester, "A Plea for the Mathematician", Nature Vol. 1, 1870)

"When we consider that the whole of geometry rests ultimately on axioms which derive their validity from the nature of our intuitive faculty, we seem well justified in questioning the sense of imaginary forms, since we attribute to them properties which not infrequently contradict all our intuitions." (Gottlob Frege, "On a Geometrical Representation of Imaginary forms in the Plane", 1873)

"The old and oft-repeated proposition ‘Totum est majus sua parte’ [the whole is larger than the part] may be applied without proof only in the case of entities that are based upon whole and part; then and only then is it an undeniable consequence of the concepts ‘totum’ and ‘pars’. Unfortunately, however, this ‘axiom’ is used innumerably often without any basis and in neglect of the necessary distinction between ‘reality’ and ‘quantity’, on the one hand, and ‘number’ and ‘set’, on the other, precisely in the sense in which it is generally false." (Georg Cantor, "Über unendliche, lineare Punktmannigfaltigkeiten", Mathematische Annalen 20, 1882)

"With our notion of the essence of intuition, an intuitive treatment of figurative representations will tend to yield a certain general guide on which mathematical laws apply and how their general proof may be structured. However, true proof will only be obtained if the given figures are replaced with figures generated by laws based on the axioms and these are then taken to carry through the general train of thought in an explicit case. Dealing with sensate objects gives the mathematician an impetus and an idea of the problems to be tackled, but it does not pre-empt the mathematical process itself. (Felix Klein, "Nicht-Euklidische Geometrie I: Vorlesung gehalten während des Wintersemesters 1889–90", 1892)

" […] the naive intuition is not exact, while the refined intuition is not properly intuition at all, but arises through the logical development from axioms considered as perfectly exact." (Felix Klein, [lectures] 1893)

"Geometry, like arithmetic, requires for its logical development only a small number of simple, fundamental principles. These fundamental principles are called the axioms of geometry." (David Hilbert, "The Foundations of Geometry", 1899)

21 February 2021

On Axioms (1900-1909)

"If geometry is to serve as a model for the treatment of physical axioms, we shall try first by a small number of axioms to include as large a class as possible of physical phenomena, and then by adjoining new axioms to arrive gradually at the more special theories. […] The mathematician will have also to take account not only of those theories coming near to reality, but also, as in geometry, of all logically possible theories. We must be always alert to obtain a complete survey of all conclusions derivable from the system of axioms assumed." (David Hilbert, 1900)

"When we are engaged in investigating the foundations of a science, we must set up a system of axioms which contains an exact and complete description of the relations subsisting between the elementary ideas of that science. The axioms so set up are at the same time the definitions of those elementary ideas; and no statement within the realm of the science... is held to be correct unless it can be derived from axioms by means of a finite number of logical steps. Upon closer consideration the question arises: Whether, in any way, certain statements of single axioms depend upon one another, and whether the axioms may not therefore contain certain parts in common, which must be isolated if one wishes to arrive at a system of axioms that shall be altogether independent of one another." (David Hilbert, "Mathematische Probleme", Gŏttinger Nachrichten, 1900)

"No theorem can be new unless a new axiom intervenes in its demonstration; reasoning can only give us immediately evident truths borrowed from direct intuition; it would only be an intermediary parasite." (Henri Poincaré, "Science and Hypothesis", 1901)

"Syllogistic reasoning remains incapable of adding anything to the data that are given it; the data are reduced to axioms, and that is all we should find in the conclusions." (Henri Poincaré, "Science and Hypothesis", 1901)

"Like almost every subject of human interest, this one [mathematics] is just as easy or as difficult as we choose to make it. A lifetime may be spent by a philosopher in discussing the truth of the simplest axiom. The simplest fact as to our existence may fill us with such wonder that our minds will remain overwhelmed with wonder all the time." (John Perry, "Teaching of Mathematics", 1902)

"No theorem can be new unless a new axiom intervenes in its demonstration; reasoning can only give us immediately evident truths borrowed from direct intuition; it would only be an intermediary parasite." (Henri Poincaré, "Science and Hypothesis", 1902)

"The requisites for the axioms are various. They should be simple, in the sense that each axiom should enumerate one and only one statement. The total number of axioms should be few. A set of axioms must be consistent, that is to say, it must not be possible to deduce the contradictory of any axiom from the other axioms. According to the logical 'Law of Contradiction,' a set of entities cannot satisfy inconsistent axioms. Thus the existence theorem for a set of axioms proves their consistency. Seemingly this is the only possible method of proof of consistency." (Alfred N Whitehead, "The axioms of projective geometry, 1906) 

"Every definition implies an axiom, since it asserts the existence of the object defined. The definition then will not be justified, from the purely logical point of view, until we have proved that it involves no contradiction either in its terms or with the truths previously admitted." (Henri Poincaré," Science and Method", 1908)

"It has been argued that mathematics is not or, at least, not exclusively an end in itself; after all it should also be applied to reality. But how can this be done if mathematics consisted of definitions and analytic theorems deduced from them and we did not know whether these are valid in reality or not. One can argue here that of course one first has to convince oneself whether the axioms of a theory are valid in the area of reality to which the theory should be applied. In any case, such a statement requires a procedure which is outside logic." (Ernst Zermelo, "Mathematische Logik - Vorlesungen gehalten von Prof. Dr. E. Zermelo zu Göttingen im S. S", 1908)

"It is by logic that we prove, but by intuition that we discover. [...] Every definition implies an axiom, since it asserts the existence of the object defined. The definition then will not be justified, from the purely logical point of view, until we have proved that it involves no contradiction either in its terms or with the truths previously admitted." (Henri Poincaré, "Science and Method", 1908)

"I do in no wise share this view [that the axioms are arbitrary propositions which we assume wholly at will, and that in like manner the fundamental conceptions are in the end only arbitrary symbols with which we operate] but consider it the death of all science: in my judgment the axioms of geometry are not arbitrary, but reasonable propositions which generally have the origin in space intuition and whose separate content and sequence is controlled by reasons of expediency." (Felix Klein, "Elementarmathematik vom hoheren Standpunkte aus", 1909)

28 January 2021

Peter B Medawar - Collected Quotes

"The formulation of a hypothesis carries with it an obligation to test it as rigorously as we can command skills to do so." (Peter Medawar, "Hypothesis and Imagination", 1963)

"Scientific discovery, or the formulation of scientific theory, starts in with the unvarnished and unembroidered evidence of the senses. It starts with simple observation - simple, unbiased, unprejudiced, naive, or innocent observation - and out of this sensory evidence, embodied in the form of simple propositions or declarations of fact, generalizations will grow up and take shape, almost as if some process of crystallization or condensation were taking place. Out of a disorderly array of facts, an orderly theory, an orderly general statement, will somehow emerge." (Sir Peter B Medawar, "Is the Scientific Paper Fraudulent?", The Saturday Review, 1964)

"Innocent, unbiased observation is a myth." (Sir Peter B Medawar, "Induction and Intuition in Scientific Thought", 1969)

"Every discovery, every enlargement of the understanding, begins as an imaginative preconception of what the truth might be. The imaginative preconception - a ‘hypothesis’ - arises by a process as easy or as difficult to understand as any other creative act of mind; it is a brainwave, an inspired guess, a product of a blaze of insight. It comes anyway from within and cannot be achieved by the exercise of any known calculus of discovery." (Sir Peter B Medawar, "Advice to a Young Scientist", 1979)

"I cannot give any scientist of any age better advice than this: the intensity of a conviction that a hypothesis is true has no bearing over whether it is true or not. The importance of the strength of our conviction is only to provide a proportionately strong incentive to find out if the hypothesis will stand up to critical evaluation." (Sir Peter B Medawar, "Advice to a Young Scientist", 1979)

"The intensity of a conviction that a hypothesis is true has no bearing on whether it is true or false." (Peter Medawar, "Advice to a Young Scientist", 1979)

"All advances of scientific understanding, at every level, begin with a speculative adventure, an imaginative preconception of what might be true - a preconception that always, and necessarily, goes a little way (sometimes a long way) beyond anything which we have logical or factual authority to believe in. It is the invention of a possible world, or of a tiny fraction of that world. The conjecture is then exposed to criticism to find out whether or not that imagined world is anything like the real one. Scientific reasoning is therefore at all levels an interaction between two episodes of thought - a dialogue between two voices, the one imaginative and the other critical; a dialogue, as I have put it, between the possible and the actual, between proposal and disposal, conjecture and criticism, between what might be true and what is in fact the case." (Sir Peter B Medawar, "Pluto’s Republic: Incorporating the Art of the Soluble and Induction Intuition in Scientific Thought", 1982)

"If the purpose of scientific methodology is to prescribe or expound a system of enquiry or even a code of practice for scientific behavior, then scientists seem able to get on very well without it." (Sir Peter B Medawar, "Pluto’s Republic: Incorporating the Art of the Soluble and Induction Intuition in Scientific Thought", 1982)

"In a modern professional vocabulary a hypothesis is an imaginative preconception of what might be true in the form of a declaration with verifiable deductive consequences. It no longer tows ‘gratuitous’, ‘mere’, or ‘wild’ behind it, and the pejorative usage (‘Evolution is a mere hypothesis’, ‘It is only a hypothesis that smoking causes lung cancer’) is one of the outward signs of little learning." (Sir Peter B Medawar, "Pluto’s Republic: Incorporating the Art of the Soluble and Induction Intuition in Scientific Thought", 1982)

"In all sensation we pick and choose, interpret, seek and impose order, and devise and test hypotheses about what we witness. Sense data are taken, not merely given: we learn to perceive. […] The teacher has forgotten, and the student himself will soon forget, that what he sees conveys no information until he knows beforehand the kind of thing he is expected to see."  (Sir Peter B Medawar, "Pluto’s Republic: Incorporating the Art of the Soluble and Induction Intuition in Scientific Thought", 1982)

"Intuition takes many different forms in science and mathematics, though all forms of it have certain properties in common: the suddenness of their origin, the wholeness of the conception they embody, and the absence of conscious premeditation." (Sir Peter B Medawar, "Pluto’s Republic: Incorporating the Art of the Soluble and Induction Intuition in Scientific Thought", 1982)

"Observation is the generative act in scientific discovery. For all its aberrations, the evidence of the senses is essentially to be relied upon - provided we observe nature as a child does, without prejudices and preconceptions, but with that clear and candid vision which adults lose and scientists must strive to regain." (Sir Peter B Medawar, "Pluto’s Republic: Incorporating the Art of the Soluble and Induction Intuition in Scientific Thought", 1982)

"Scientific theories (I have said) begin as imaginative constructions. The begin, if you like, as stories, and the purpose of the critical or rectifying episode in scientific reasoning is precisely to find out whether or not these stories are stories about real life. Literal or empiric truthfulness is not therefore the starting-point of scientific enquiry, but rather the direction in which scientific reasoning moves. If this is a fair statement, it follows that scientific and poetic or imaginative accounts of the world are not distinguishable in their origins. They start in parallel, but diverge from one another at some later stge. We all tell stories, but the stories differ in the purposes we expect them to fulfil and in the kinds of evaluations to which they are exposed." (Sir Peter B Medawar, "Pluto’s Republic: Incorporating the Art of the Soluble and Induction Intuition in Scientific Thought", 1982)

"Scientific discovery is a private event, and the delight that accompanies it, or the despair of finding it illusory, does not travel. One scientist may get great satisfaction from another’s work and admire it deeply; it may give him great intellectual pleasure; but it gives him no sense of participation in the discovery, it does not carry him away, and his appreciation of it does not depend on his being carried away. If it were otherwise the inspirational origin of scientific discovery would never have been in doubt." (Sir Peter B Medawar, "Pluto’s Republic: Incorporating the Art of the Soluble and Induction Intuition in Scientific Thought", 1982)

"Simultaneous discovery is utterly commonplace, and it was only the rarity of scientists, not the inherent improbability of the phenomenon, that made it remarkable in in the past." (Sir Peter B Medawar, "Pluto’s Republic: Incorporating the Art of the Soluble and Induction Intuition in Scientific Thought", 1982)

"The ballast of factual information, so far from being just about to sink us, is growing daily less. The factual burden of a science varies inversely with its degree of maturity. As a science advances, particular facts are comprehended within, and therefore in a sense annihilated by, general statements of steadily increasing explanatory power and compass - whereupon the facts need no longer be known explicitly, that is, spelled out and kept in mind. In all sciences we are being progressively relieved of the burden of singular instances, the tyranny of the particular. We need no longer record the fall of every apple." (Sir Peter B Medawar, "Pluto’s Republic: Incorporating the Art of the Soluble and Induction Intuition in Scientific Thought", 1982)

"The critical task of science is not complete and never will be, for it is the merest truism that we do not abandon mythologies and superstitions, but merely substitute new variants for old." (Sir Peter B Medawar, "Pluto’s Republic: Incorporating the Art of the Soluble and Induction Intuition in Scientific Thought", 1982)

"The formulation of a natural ‘law’ always begins as an imaginative exploit, and without imagination scientific thought is barren." (Sir Peter B Medawar, "Pluto’s Republic: Incorporating the Art of the Soluble and Induction Intuition in Scientific Thought", 1982)

"The purpose of scientific enquiry is not to compile an inventory of factual information, nor to build up a totalitarian world picture of Natural Laws in which every event that is not compulsory is forbidden. We should think of it rather as a logically articulated structure of justifiable beliefs about nature. It begins as a story about a Possible World - a story which we invent and criticize and modify as we go along, so that it winds by being, as nearly as we can make it, a story about real life." (Sir Peter B Medawar, "Pluto’s Republic: Incorporating the Art of the Soluble and Induction Intuition in Scientific Thought", 1982)

"The scientific method is a potentiation of common sense, exercised with a specially firm determination not to persist in error if any exertion of hand or mind can deliver us from it. Like other exploratory processes, it can be resolved into a dialogue between fact and fancy, the actual and the possible; between what could be true and what is in fact the case. The purpose of scientific enquiry is not to compile an inventory of factual information, nor to build up a totalitarian world picture of Natural Laws in which every event that is not compulsory is forbidden. We should think of it rather as a logically articulated structure of justifiable beliefs about nature. It begins as a story about a Possible World - a story which we invent and criticise and modify as we go along, so that it ends by being, as nearly as we can make it, a story about real life." (Sir Peter B Medawar, "Pluto’s Republic: Incorporating the Art of the Soluble and Induction Intuition in Scientific Thought", 1982)

"There is no such thing as a Scientific Mind. Scientists are people of very dissimilar temperaments doing different things in very different ways. Among scientists are collectors, classifiers and compulsive tidiers-up; many are detectives by temperament and many are explorers; some are artists and others artisans. There are poet-scientists and philosopher-scientists and even a few mystics. What sort of mind or temperament can all these people be supposed to have in common? Obligative scientists must be very rare, and most people who are in fact scientists could easily have been something else instead." (Sir Peter B Medawar, "Pluto’s Republic: Incorporating the Art of the Soluble and Induction Intuition in Scientific Thought", 1982)

"What shows a theory to be inadequate or mistaken is not, as a rule, the discovery of a mistake in the information that led us to propound it; more often it is the contradictory evidence of a new observation which we were led to make because we held that theory." (Sir Peter B Medawar, "Pluto’s Republic: Incorporating the Art of the Soluble and Induction Intuition in Scientific Thought", 1982)

"A scientist is no more a collector and classifier of facts than a historian is a man who complies and classifies a chronology of the dates of great battles and major discoveries." (Sir Peter B Medawar, "Aristotle to Zoos: A Philosophical Dictionary of Biology", 1983)

"The attempt to discover and promulgate the truth is nevertheless an obligation upon all scientists, one that must be persevered in no matter what the rebuffs - for otherwise what is the point in being a scientist?" (Sir Peter B Medawar, "Aristotle to Zoos: A Philosophical Dictionary of Biology", 1983)

19 December 2020

On Randomness IX (Probabilities)

"The most important application of the theory of probability is to what we may call 'chance-like' or 'random' events, or occurrences. These seem to be characterized by a peculiar kind of incalculability which makes one disposed to believe - after many unsuccessful attempts - that all known rational methods of prediction must fail in their case. We have, as it were, the feeling that not a scientist but only a prophet could predict them. And yet, it is just this incalculability that makes us conclude that the calculus of probability can be applied to these events." (Karl R Popper, "The Logic of Scientific Discovery", 1934)

"The classical theory of probability was devoted mainly to a study of the gamble's gain, which is again a random variable; in fact, every random variable can be interpreted as the gain of a real or imaginary gambler in a suitable game." (William Feller, "An Introduction To Probability Theory And Its Applications", 1950)

"To every event defined for the original random walk there corresponds an event of equal probability in the dual random walk, and in this way almost every probability relation has its dual." (William Feller, "An Introduction To Probability Theory And Its Applications", 1950)

“The epistemological value of probability theory is based on the fact that chance phenomena, considered collectively and on a grand scale, create non-random regularity.” (Andrey Kolmogorov, “Limit Distributions for Sums of Independent Random Variables”, 1954)

"The urn model is to be the expression of three postulates: (1) the constancy of a probability distribution, ensured by the solidity of the vessel, (2) the random-character of the choice, ensured by the narrowness of the mouth, which is to prevent visibility of the contents and any consciously selective choice, (3) the independence of successive choices, whenever the drawn balls are put back into the urn. Of course in abstract probability and statistics the word 'choice' can be avoided and all can be done without any reference to such a model. But as soon as the abstract theory is to be applied, random choice plays an essential role."(Hans Freudenthal, "The Concept and the Role of the Model in Mathematics and Natural and Social Sciences", 1961)

"Probability theory is an ideal tool for formalizing uncertainty in situations where class frequencies are known or where evidence is based on outcomes of a sufficiently long series of independent random experiments. Possibility theory, on the other hand, is ideal for formalizing incomplete information expressed in terms of fuzzy propositions." (George Klir, "Fuzzy sets and fuzzy logic", 1995)

"Often, we use the word random loosely to describe something that is disordered, irregular, patternless, or unpredictable. We link it with chance, probability, luck, and coincidence. However, when we examine what we mean by random in various contexts, ambiguities and uncertainties inevitably arise. Tackling the subtleties of randomness allows us to go to the root of what we can understand of the universe we inhabit and helps us to define the limits of what we can know with certainty." (Ivars Peterson, "The Jungles of Randomness: A Mathematical Safari", 1998)

"The subject of probability begins by assuming that some mechanism of uncertainty is at work giving rise to what is called randomness, but it is not necessary to distinguish between chance that occurs because of some hidden order that may exist and chance that is the result of blind lawlessness. This mechanism, figuratively speaking, churns out a succession of events, each individually unpredictable, or it conspires to produce an unforeseeable outcome each time a large ensemble of possibilities is sampled."  (Edward Beltrami, "What is Random?: Chaos and Order in Mathematics and Life", 1999)

"Chance is just as real as causation; both are modes of becoming.  The way to model a random process is to enrich the mathematical theory of probability with a model of a random mechanism. In the sciences, probabilities are never made up or 'elicited' by observing the choices people make, or the bets they are willing to place.  The reason is that, in science and technology, interpreted probability exactifies objective chance, not gut feeling or intuition. No randomness, no probability." (Mario Bunge, "Chasing Reality: Strife over Realism", 2006) 

"[...] according to the quantum theory, randomness is a basic trait of reality, whereas in classical physics it is a derivative property, though an equally objective one. Note, however, that this conclusion follows only under the realist interpretation of probability as the measure of possibility. If, by contrast, one adopts the subjectivist or Bayesian conception of probability as the measure of subjective uncertainty, then randomness is only in the eye of the beholder." (Mario Bunge, "Matter and Mind: A Philosophical Inquiry", 2010)

30 November 2020

Set Theory I

"[a set is] an embodiment of the idea or concept which we conceive when we regard the arrangement of its parts as a matter of indifference." (Bernard Bolzano, 1847)

"Since the examination of consistency is a task that cannot be avoided, it appears necessary to axiomatize logic itself and to prove that number theory and set theory are only parts of logic. This method was prepared long ago (not least by Frege’s profound investigations); it has been most successfully explained by the acute mathematician and logician Russell. One could regard the completion of this magnificent Russellian enterprise of the axiomatization of logic as the crowning achievement of the work of axiomatization as a whole." (David Hilbert, "Axiomatisches Denken" ["Axiomatic Thinking"], [address] 1917)

"It seems clear that [set theory] violates against the essence of the continuum, which, by its very nature, cannot at all be battered into a single set of elements. Not the relationship of an element to a set, but of a part to a whole ought to be taken as a basis for the analysis of a continuum." (Hermann Weyl, "Reimanns geometrische Ideen, ihre Auswirkungen und ihre Verknüpfung mit der Gruppentheorie", 1925)

"To say that mathematics in general has been reduced to logic hints at some new firming up of mathematics at its foundations. This is misleading. Set theory is less settled and more conjectural than the classical mathematical superstructure than can be founded upon it." (Willard van Orman Quine, "Elementary Logic", 1941)

"The emphasis on mathematical methods seems to be shifted more towards combinatorics and set theory - and away from the algorithm of differential equations which dominates mathematical physics." (John von Neumann & Oskar Morgenstern, "Theory of Games and Economic Behavior", 1944)

"But, despite their remoteness from sense experience, we do have something like a perception of the objects of set theory, as is seen from the fact that the axioms force themselves upon us as being true. I don't see any reason why we should have less confidence in this kind of perception, i.e., in mathematical intuition, than in sense perception, which induces us to build up physical theories and to expect that future sense perception will agree with them and, moreover, to believe that a question not decidable now has meaning and may be decided in future." (Kurt Gödel, "What is Cantor’s Continuum problem?", American Mathematical Monthly 54, 1947)

"Categorical algebra has developed in recent years as an effective method of organizing parts of mathematics. Typically, this sort of organization uses notions such as that of the category G of all groups. [...] This raises the problem of finding some axiomatization of set theory - or of some foundational discipline like set theory - which will be adequate and appropriate to realizing this intent. This problem may turn out to have revolutionary implications vis-`a-vis the accepted views of the role of set theory." (Saunders Mac Lane, "Categorical algebra and set-theoretic foundations", 1967)

"In set theory, perhaps more than in any other branch of mathematics, it is vital to set up a collection of symbolic abbreviations for various logical concepts. Because the basic assumptions of set theory are absolutely minimal, all but the most trivial assertions about sets tend to be logically complex, and a good system of abbreviations helps to make otherwise complex statements."  (Keith Devlin, "Sets, Functions, and Logic: An Introduction to Abstract Mathematics", 1979)

"Set theory is peculiarly important [...] because mathematics can be exhibited as involving nothing but set-theoretical propositions about set-theoretical entities." (David M Armstrong, "A Combinatorial Theory of Possibility", 1989)

"At the basis of the distance concept lies, for example, the concept of convergent point sequence and their defined limits, and one can, by choosing these ideas as those fundamental to point set theory, eliminate the notions of distance." (Felix Hausdorff)

13 November 2020

Exponential Growth I

"However, and conversely, our models fall far short of representing the world fully. That is why we make mistakes and why we are regularly surprised. In our heads, we can keep track of only a few variables at one time. We often draw illogical conclusions from accurate assumptions, or logical conclusions from inaccurate assumptions. Most of us, for instance, are surprised by the amount of growth an exponential process can generate. Few of us can intuit how to damp oscillations in a complex system." (Donella H Meadows, "Limits to Growth", 1972) 

"Mathematics says the sum value of a network increases as the square of the number of members. In other words, as the number of nodes in a network increases arithmetically, the value of the network increases exponentially. Adding a few more members can dramatically increase the value of the network." (Kevin Kelly, "Out of Control: The New Biology of Machines, Social Systems and the Economic World", 1995)

"It is in the nature of exponential growth that events develop extremely slowly for extremely long periods of time, but as one glides through the knee of the curve, events erupt at an increasingly furious pace. And that is what we will experience as we enter the twenty-first century." (Ray Kurzweil, "The Age of Spiritual Machines: When Computers Exceed Human Intelligence", 1999)

"The Law of Accelerating Returns: As order exponentially increases, time exponentially speeds up (that is, the time interval between salient events grows shorter as time passes)." (Ray Kurzweil, "The Age of Spiritual Machines: When Computers Exceed Human Intelligence", 1999)

"Limiting factors in population dynamics play the role in ecology that friction does in physics. They stop exponential growth, not unlike the way in which friction stops uniform motion. Whether or not ecology is more like physics in a viscous liquid, when the growth-rate-based traditional view is sufficient, is an open question. We argue that this limit is an oversimplification, that populations do exhibit inertial properties that are noticeable. Note that the inclusion of inertia is a generalization - it does not exclude the regular rate-based, first-order theories. They may still be widely applicable under a strong immediate density dependence, acting like friction in physics." (Lev Ginzburg & Mark Colyvan, "Ecological Orbits: How Planets Move and Populations Grow", 2004)

"Most long-range forecasts of what is technically feasible in future time periods dramatically underestimate the power of future developments because they are based on what I call the 'intuitive linear' view of history rather than the 'historical exponential'.” view'." (Ray Kurzweil, "The Singularity is Near", 2005)

"The first idea is that human progress is exponential (that is, it expands by repeatedly multiplying by a constant) rather than linear (that is, expanding by repeatedly adding a constant). Linear versus exponential: Linear growth is steady; exponential growth becomes explosive." (Ray Kurzweil, "The Singularity is Near", 2005)

"A quantity growing exponentially toward a limit reaches that limit in a surprisingly short time." (Donella Meadows, "Thinking in systems: A Primer", 2008)

"In physical, exponentially growing systems, there must be at least one reinforcing loop driving growth and at least one balancing feedback loop constraining growth, because no system can grow forever in a finite environment." (Donella H Meadows, “Thinking in Systems: A Primer”, 2008)

"Cyberneticists argue that positive feedback may be useful, but it is inherently unstable, capable of causing loss of control and runaway. A higher level of control must therefore be imposed upon any positive feedback mechanism: self-stabilising properties of a negative feedback loop constrain the explosive tendencies of positive feedback. This is the starting point of our journey to explore the role of cybernetics in the control of biological growth. That is the assumption that the evolution of self-limitation has been an absolute necessity for life forms with exponential growth." (Tony Stebbing, "A Cybernetic View of Biological Growth: The Maia Hypothesis", 2011)

05 November 2020

Mario Bunge - Collected Quotes

"In fact, it is empirically ascertainable that every event is actually produced by a number of factors, or is at least accompanied by numerous other events that are somehow connected with it, so that the singling out involved in the picture of the causal chain is an extreme abstraction. Just as ideal objects cannot be isolated from their proper context, material existents exhibit multiple interconnections; therefore the universe is not a heap of things but a system of interacting systems." (Mario Bunge, "Causality: The place of the casual principles in modern science", 1959)

"Statistical laws are indisputably noncausal, even though some of them may be shown to be partly derivable from laws having a causal component." (Mario Bunge, Causality: The place of the casual principles in modern science, 1959)

"The word 'causality' has, unfortunately enough, no fewer than three principal meanings - a clear symptom of the long and twisted history of the causal problem. The single word 'causality' is in fact used to designate: {a) a category (corresponding to the causal bond); (b) a principle (the general law of causation), and (c) a doctrine, namely, that which holds the universal validity of the causal principle, to the exclusion of other principles of determination." (Mario Bunge, "Causality: The place of the casual principles in modern science", 1959)

"Intuition is the collection of odds and ends where we place all the intellectual mechanisms which we do not know how to analyze or even name with precision, or which we are not interested in analyzing or naming." (Mario Bunge, "Intuition and Science", 1962)

"A theory has a physical meaning iff it contains interpretation assumptions that assign physical correlates to its basic concepts. These correlates (referents) need not be and in general are not perceptible. But they must be scrutable, i.e. they must show up as observable effects even if remotely, i. e. at the end of a long chain accounted for by other theories."(Mario Bunge, "Foundations of Physics", 1967)

"And the best modern physicist is the one who acknowledges that neither classical nor quantum physics are cut and dried, both being full of holes and in need of a vigorous overhauling not only to better cover their own domains but also to join smoothly so as to produce a coherent picture of the various levels of physical reality." (Mario Bunge, "Foundations of Physics", 1967)

"The higher we climb the ladder of epistemic abstraction the less we ourselves appear in our picture of the world and the better we are at explaining our own experiences. On the other hand, by remaining close to the senses we will not transcend superficial, anthropocentric world views. In short, although experience is a test of our theories it is not the stuff our theories are made of or even the referent of physical theories: human experience proper is the subject of nonphysical sciences like psychology. These platitudes had to be stated on account of the widespread belief that in physics only observational predicates matter - a belief inherited from philosophies at variance with science." (Mario Bunge, "Foundations of Physics", 1967)

"A physical theory is assigned a literal and objective interpretation by assigning every one of its referential primitive symbols a physical object - entity, property, relation, or event - rather than a mental picture or a human operation." (Mario Bunge, "Philosophy of Physics", 1973)

"A physical theory must accept some actual data as inputs and must be able to generate from them another set of possible data (the output) in such a way that both input and output match the assumptions of the theory - laws, constraints, etc. This concept of matching involves relevance: thus boundary conditions are relevant only to field-like theories such as hydrodynamics and quantum mechanics. But matching is more than relevance: it is also logical compatibility." (Mario Bunge, "Philosophy of Physics", 1973)

"If 'model' is taken to mean visual representation or analogy with familiar experience, then clearly not every theory involves a model. Thus field theories, whether classical or quantal, are hardly visualisable. And if 'model' is taken to mean mechanism - either in a narrow mechanical sense or in a wide sense including nonmechanical mechanisms such as the meson field mechanism of nuclear forces - then some theories do contain models of this kind while others do not. [...] On the other hand in a third sense every physical theory is a model, namely of the underlying mathematical formalism. Moreover a physical theory is twice a model in the model-theoretic sense: once because every one of its basic signs has a particular interpretation within mathematics, another time because the same sign may have a physical interpretation as well - as is the case with all the referential primitives." (Mario Bunge, "Philosophy of Physics", 1973)

"Whether or not a given conceptual model or representation of a physical system happens to be picturable, is irrelevant to the semantics of the theory to which it eventually becomes attached. Picturability is a fortunate psychological occurrence, not a scientific necessity. Few of the models that pass for visual representations are picturable anyhow. For one thing, the model may be and usually is constituted by imperceptible items such as unextended particles and invisible fields. True, a model can be given a graphic representation - but so can any idea as long as symbolic or conventional diagrams are allowed. Diagrams, whether representational or symbolic, are meaningless unless attached to some body of theory. On the other hand theories are in no need of diagrams save for psychological purposes. Let us then keep theoretical models apart from visual analogues."  (Mario Bunge, "Philosophy of Physics", 1973)

"This distinction is familiar in natural science, where one is not expected to mistake, say, the cardiovascular system for the circulation of the blood or the brain with mental processes. But it is unusual in social studies. [...] Mechanism is to system as motion is to body, combination (or dissociation) to chemical compound, and thinking to brain. [In the systemic view], agency is both constrained and motivated by structure, and in turn the latter is maintained or altered by individual action. In other words, social mechanisms reside neither in persons nor in their environment – they are part of the processes that unfold in or among social systems. […] All mechanisms are system-specific: there is no such thing as a universal or substrate-neutral mechanism." (Mario Bunge, "The Sociology-philosophy Connection", 1999)

"The understanding of a thing begins and ends with some conceptual model of it. The model is the better, the more accurate, and inclusive. But even rough models can be used to guide - or misguide - research." (Bunge A Mario, "Philosophy in Crisis: The Need for Reconstruction", 2001) 

"We all would like to know more and, at the same time, to receive less information. In fact, the problem of a worker in today's knowledge industry is not the scarcity of information but its excess. The same holds for professionals: just think of a physician or an executive, constantly bombarded by information that is at best irrelevant. In order to learn anything we need time. And to make time we must use information filters allowing us to ignore most of the information aimed at us. We must ignore much to learn a little." (Mario Bunge, "Philosophy in Crisis: The Need for Reconstruction", 2001)

"Notice that I use the expression 'systemic approach', not 'systems theory', There are two reasons for this. One is that there are nearly as many systems theories as systems theorists. The other is that the 'systems theory' that became popular in the 1970s (e.g., Laszlo, 1972) was another name for old holism and got discredited because it stressed stasis at the expense of change and claimed to solve all particular problems without empirical research or serious theorizing." (Mario Bunge, "How does it work?: The search for explanatory mechanisms", Philosophy of the Social Sciences Vol.34 (2), 2004)

"The twin concepts of system and mechanism are so central in modern science, whether natural, social, or biosocial, that their use has spawned a whole ontology, which I have called systemism. According to this view, everything in the universe is, was, or will be a system or a component of one." (Mario Bunge, "How does it work?: The search for explanatory mechanisms", Philosophy of the Social Sciences Vol. 34 (2), 2004)

"[...] a single thing may elicit several appearances, various conceptual models of it, or several plans of action for it, depending on the subject’s abilities and interests." (Mario Bunge, "Chasing Reality: Strife over Realism", 2006)

"Although fiction is not fact, paradoxically we need some fictions, particularly mathematical ideas and highly idealized models, to describe, explain, and predict facts.  This is not because the universe is mathematical, but because our brains invent or use refined and law-abiding fictions, not only for intellectual pleasure but also to construct conceptual models of reality." (Mario Bunge, "Chasing Reality: Strife over Realism", 2006)

"At all events, our world pictures may have components of all three kinds: perceptual, conceptual, and praxiological (action-theoretical).  This is because there are three gates to the outer world: perception, conception, and action. However, ordinarily only one or two of them need be opened: combinations of all three, as in building a house according to a blueprint, are the exception.  We may contemplate a landscape without forming either a conceptual model of it or a plan to act upon it.  And we may build a theoretical model of an imperceptible thing, such as an invisible extrasolar planet, on which we cannot act." (Mario Bunge, "Chasing Reality: Strife over Realism", 2006)

"Chance is just as real as causation; both are modes of becoming.  The way to model a random process is to enrich the mathematical theory of probability with a model of a random mechanism. In the sciences, probabilities are never made up or “elicited” by observing the choices people make, or the bets they are willing to place.  The reason is that, in science and technology, interpreted probability exactifies objective chance, not gut feeling or intuition. No randomness, no probability." (Mario Bunge, "Chasing Reality: Strife over Realism", 2006)

"[...] the scientific models of concrete things are symbolic rather than iconic: they are systems of propositions, not pictures. Besides, such models are seldom if ever completely accurate, if only because they involve more or less brutal simplifications, such as pretending that a metallic surface is smooth, a crystal has no impurities, a biopopulation has a single predator, or a market is in equilibrium.  These are all fictions. However, they are stylizations rather than wild fantasies. Hence, introducing and using them to account for real existents does not commit us to fictionism, just as defending the role of experience need not make us empiricists, nor is admitting the role of intuition enough to qualify as intuitionist." (Mario Bunge, "Chasing Reality: Strife over Realism", 2006)

"When in the sciences or techniques one states that a certain problem is unsolvable, a rigorous demonstration of such unsolvability is required. And when a scientist submits an article to publication, the least that its referees demand is that it be intelligible. Why? Because rational beings long for understanding and because only clear statements are susceptible to be put to examination to verify whether they are true or false. In the Humanities it is the same, or it should be, but it is not always so." (Mario Bunge, "Xenius, Platón y Manolito", La Nación, 2008)

"A computer program specifies a sequence of machine states. It is said to be a piece of software because it can be replaced with another program, and inserted into the same piece of hardware, to produce a different information-processing unit. Still, the hardware/software nomenclature is misleading, because software is just as 'hard' or material as hardware. True, unlike an ordinary piece of matter, a piece of software has a semantic content – or rather it elicits one. More precisely, a piece of software, when inserted into a computer, evokes meanings in its user’s brain. Hence, the' content' of a piece of software is very different from the content of a bottle: it can only be poured into a trained brain – and only metaphorically at that. That is, software belongs in the semiotic level of reality, along with bank bills, sentences, and diagrams, neither of which fulfils its function without a brain able to understand its meaning." (Mario Bunge, "Xenius, Platón y Manolito", La Nación, 2008)

"A worldview is a comprehensive conception of all there is, whereas a philosophy is a scholarly discipline divided into special fields, every one of which is usually cultivated independently of the others. [...] Every worldview includes views on values, action, the right, and politics." (Mario Bunge, "Matter and Mind: A Philosophical Inquiry", 2010)

"[...] according to the quantum theory, randomness is a basic trait of reality, whereas in classical physics it is a derivative property, though an equally objective one. Note, however, that this conclusion follows only under the realist interpretation of probability as the measure of possibility. If, by contrast, one adopts the subjectivist or Bayesian conception of probability as the measure of subjective uncertainty, then randomness is only in the eye of the beholder." (Mario Bunge, "Matter and Mind: A Philosophical Inquiry", 2010)

"Change can be defined as either event or process –in some concrete thing, of course. And a thing having a certain property, or being in a given state, or undergoing a certain change, is called a fact."  (Mario Bunge, "Matter and Mind: A Philosophical Inquiry", 2010)

"Cognition is the acquisition of knowledge, or knowledge in the making. This sounds obvious as long as we do not ask what cognition and knowledge are, for we should admit that we don’t know much about either." (Mario Bunge, "Matter and Mind: A Philosophical Inquiry", 2010)

"Entanglement (non-separability) has been interpreted in several non-physical ways, including recourse to telekinesis; it has also been claimed that it refutes realism and confirms holism. In my view, all entanglement does is to confirm the thesis Once a system, always a system. However, this is not an independent postulate, but a consequence of conservation laws." (Mario Bunge, "Matter and Mind: A Philosophical Inquiry", 2010)

"From a historical viewpoint, computationalism is a sophisticated version of behaviorism, for it only interpolates the computer program between stimulus and response, and does not regard novel programs as brain creations. [...] The root of computationalism is of course the actual similarity between brains and computers, and correspondingly between natural and artificial intelligence. The two are indeed similar because the artifacts in question have been designed to perform analogs of certain brain functions. And the computationalist program is an example of the strategy of treating similars as identicals." (Mario Bunge, "Matter and Mind: A Philosophical Inquiry", 2010)

"[...] information is just as material as energy, though far less ubiquitous because it involves coding, and codes are conventional as well as artificial. [...] In sum, the concept of information is derivative, nor primary; in particular, it depends upon that of matter. Indeed, all information is transmitted by some physical process, just as every bit of energy is the energy of some material entity, and every energy transfer is a physical process that connects two or more physical entities."  (Mario Bunge, "Matter and Mind: A Philosophical Inquiry", 2010)

"Language is a tool of social intercourse to such an extent that it is newly reinvented every time it is absent." (Mario Bunge, "Matter and Mind: A Philosophical Inquiry", 2010)

"Metaphysics, or ontology, is the study of the most basic and general problems about the universe and the mind."  (Mario Bunge, "Matter and Mind: A Philosophical Inquiry", 2010)

"It is hard to navigate across one’s environment without having some ideas, however coarse, about it. Indeed, to face any situation we must know whether it is real or imaginary, profane or sacred, sensitive or insensitive to our actions, and so on. This is why even lowly organisms develop, if not worldviews, at least rough sensory maps of their immediate environment – as noted by ethologists from the start. But it is generally assumed that only humans can build conceptual models of their environments. And, except for some philosophers, humans distinguish maps from the territories they represent." (Mario Bunge, "Matter and Mind: A Philosophical Inquiry", 2010)

"The traditional worldviews were spiritualist, in that they revolved around imaginary beings: They attempted to understand facts in terms of fictions, and the reputedly lower in terms of the allegedly higher. [...] By contrast, scientific thinking takes the real existence of the external world for granted: it is realist or objectivist. And the sociologies of science, technology and religion attempt to explain in social terms the emergence and fortunes of their subjects. Moreover, the science-oriented worldviews are free from disembodied souls, world spirits, and other fictions: they are also tacitly naturalist or materialist in some sense –without however necessarily denying the existence and power of the mental." (Mario Bunge, "Matter and Mind: A Philosophical Inquiry", 2010)

"[...] we also distinguish knowledge from information, because some pieces of information, such as questions, orders, and absurdities do not constitute knowledge. And also because computers process information but, since they lack minds, they cannot be said to know anything." (Mario Bunge, "Matter and Mind: A Philosophical Inquiry", 2010)

Related Posts Plugin for WordPress, Blogger...

On Leonhard Euler

"I have been able to solve a few problems of mathematical physics on which the greatest mathematicians since Euler have struggled in va...