Showing posts with label experience. Show all posts
Showing posts with label experience. Show all posts

08 July 2023

Experience - Trivia

"It is frequently analogy which guides the experienced to what are called good guesses." (Francis W Newman, "Lectures on Logic", 1838)

"An experiment is an observation that can be repeated, isolated and varied. The more frequently you can repeat an observation, the more likely are you to see clearly what is there and to describe accurately what you have seen. The more strictly you can isolate an observation, the easier does your task of observation become, and the less danger is there of your being led astray by irrelevant circumstances, or of placing emphasis on the wrong point. The more widely you can vary an observation, the more clearly will be the uniformity of experience stand out, and the better is your chance of discovering laws." (Edward B Titchener, "A Text-Book of Psychology", 1909)

"Our system of philosophy is itself on trial; it must stand or fall according as it is broad enough to find room for this experience as an element of life." (Sir Arthur S Eddington, "Science and the Unseen World", 1929)

"One has to recognize that science is not metaphysics, and certainly not mysticism; it can never bring us the illumination and the satisfaction experienced by one enraptured in ecstasy. Science is sobriety and clarity of conception, not intoxicated vision." (Ludwig Von Mises, "Epistemological Problems of Economics", 1933)

"The great extension of our experience in recent years has brought light to the insufficiency of our simple mechanical conceptions and, as a consequence, has shaken the foundation on which the customary interpretation of observation was based." (Niels Bohr, "Atomic Physics and the Description of Nature", 1934)

"[T]he sudden inventions characteristic of the sixth stage [of infant development] are in reality the product of a long evolution of schemata and not only of an internal maturation of perceptive structures. [..] This is revealed by the existence of a fifth stage, characterized by experimental groping. […] What does this mean if not that the practice of actual experience is necessary in order to acquire the practice of mental experience and that invention does not arise entirely preformed despite appearances? (Jean Piaget, "The origin of intelligence in children" 1936)

"We can scarcely imagine a problem absolutely new, unlike and unrelated to any formerly solved problem; but if such a problem could exist, it would be insoluble. In fact, when solving a problem, we should always profit from previously solved problems, using their result or their method, or the experience acquired in solving them." (George Polya, 1945)

"We have here no esoteric theory of the ultimate nature of concepts, nor a philosophical championing of the primacy of the 'operation'. We have merely a pragmatic matter, namely that we have observed after much experience that if we want to do certain kinds of things with our concepts, our concepts had better be constructed in certain ways. In fact one can see that the situation here is no different from what we always find when we push our analysis to the limit; operations are not ultimately sharp or irreducible any more than any other sort of creature. We always run into a haze eventually, and all our concepts are describable only in spiralling approximation." (Percy W Bridgman, "Reflections of a Physicist", 1950)

"Modern scientific principle has been drawn from the investigation of natural laws, technology has developed from the experience of doing, and the two have been combined by means of mathematical system to form what we call engineering." (George S Emmerson, "Engineering Education: A Social History", 1973)

"Models are not intended to either reflect or construct a single objective reality. Rather, their purpose is to simulate some aspect of a possible reality. In NLP, for instance, it is not important whether or not a model is 'true' , but rather that it is 'useful' . In fact, all models can be perceived as symbolic or metaphoric, as opposed to reflective of reality. Whether the description being used is metaphorical or literal, the usefulness of a model depends on the degree to which it allows us to move effectively to the next step in the sequence of transformations connecting deeper structures and surface structures. Instead of 'constructing' reality, models establish a set of functions that serve as a tool or a bridge between deep structures and surface structures. It is this bridge that forms our 'understanding' of reality and allows us to generate new experiences and expressions of reality." (Richard Bandler & John Grinder, "The Structure of Magic", 1975)

"It is often the scientist’s experience that he senses the nearness of truth when such connections are envisioned. A connection is a step toward simplification, unification. Simplicity is indeed often the sign of truth and a criterion of beauty." (Mahlon B Hoagland, "Toward the Habit of Truth", 1990)

"Systems theory pursues the scientific exploration and understanding of systems that exist in the various realms of experience, in order to arrive at a general theory of systems: an organized expressing of sets of interrelated concepts and principles that apply to all systems." (Béla H Bánáthy, "Systems Design of Education", 1991)

"It is in the nature of exponential growth that events develop extremely slowly for extremely long periods of time, but as one glides through the knee of the curve, events erupt at an increasingly furious pace. And that is what we will experience as we enter the twenty-first century." (Ray Kurzweil, "The Age of Spiritual Machines: When Computers Exceed Human Intelligence", 1999)

"Cultural archetypes are the unconscious models that help us make sense of the world: they are the myths, narratives, images, symbols, and files into which we organize the data of our life experience" (Clotaire Rapaille, "Cultural Imprints", Executive Excellence Vol. 16 (10), 1999)

"Learning is a process of modifying or completely changing our mental models based on new experiences or evidence." (Edward D Hess, "Learn or Die: Using Science to Build a Leading-Edge Learning Organization", 2014)

"What is consciousness? Our brain simulates reality. So, our everyday experiences are a form of dreaming, which is to say, they are mental models, simulations, not the things they appear to be." (Stephen LaBerge, "Losi in Lucidity", 2014)

29 June 2023

Mathematical Experience V: Physics

"The supreme task of the physicist is to arrive at those universal elementary laws from which the cosmos can be built up by pure deduction. There is no logical path to these laws; only intuition, resting on sympathetic understanding of experience, can reach them."(Albert Einstein, "Principles of Research", 1918)

"The scene of action of reality is not a three-dimensional Euclidean space but rather a four-dimensional world, in which space and time are linked together indissolubly. However deep the chasm may be that separates the intuitive nature of space from that of time in our experience, nothing of this qualitative difference enters into the objective world which physics endeavors to crystallize out of direct experience. It is a four-dimensional continuum, which is neither 'time' nor 'space'. Only the consciousness that passes on in one portion of this world experiences the detached piece which comes to meet it and passes behind it as history, that is, as a process that is going forward in time and takes place in space." (Hermann Weyl, "Space, Time, Matter", 1922)

"It is not surprising that our language should be incapable of describing the processes occurring within the atoms, for, as has been remarked, it was invented to describe the experiences of daily life, and these consist only of processes involving exceedingly large numbers of atoms. Furthermore, it is very difficult to modify our language so that it will be able to describe these atomic processes, for words can only describe things of which we can form mental pictures, and this ability, too, is a result of daily experience. Fortunately, mathematics is not subject to this limitation, and it has been possible to invent a mathematical scheme - the quantum theory - which seems entirely adequate for the treatment of atomic processes; for visualisation, however, we must content ourselves with two incomplete analogies - the wave picture and the corpuscular picture." (Werner Heisenberg, "On Quantum Physics", 1930)

"But, despite their remoteness from sense experience, we do have something like a perception of the objects of set theory, as is seen from the fact that the axioms force themselves upon us as being true. I don't see any reason why we should have less confidence in this kind of perception, i.e., in mathematical intuition, than in sense perception, which induces us to build up physical theories and to expect that future sense perception will agree with them and, moreover, to believe that a question not decidable now has meaning and may be decided in future." (Kurt Gödel, "What is Cantor’s Continuum problem?", American Mathematical Monthly 54, 1947)

"Physics too deals with mathematical concepts; however, these concepts attain physical content only by the clear determination of their relation to the objects of experience." (Albert Einstein, "Out of My Later Years", 1950)

"We have thus assigned to pure reason and experience their places in a theoretical system of physics. The structure of the system is the work of reason: the empirical contents and their mutual relations must find their representation in the conclusions of the theory. In the possibility of such a representation lie the sole value and justification of the whole system, and especially of the concepts and fundamental principles which underlie it. Apart from that, these latter are free inventions of human intellect, which cannot be justified either by the nature of that intellect or in any other fashion a priori." (Albert Einstein, "Ideas and Opinions", 1954)

"The hardest problems we have to face do not come from philosophical questions about whether brains are machines or not. There is not the slightest reason to doubt that brains are anything other than machines with enormous numbers of parts that work in perfect accord with physical laws. As far as anyone can tell, our minds are merely complex processes. The serious problems come from our having had so little experience with machines of such complexity that we are not yet prepared to think effectively about them." (Marvin Minsky, 1986)

"What appear to be the most valuable aspects of the theoretical physics we have are the mathematical descriptions which enable us to predict events. These equations are, we would argue, the only realities we can be certain of in physics; any other ways we have of thinking about the situation are visual aids or mnemonics which make it easier for beings with our sort of macroscopic experience to use and remember the equations." (Celia Green, "The Lost Cause", 2003)

08 June 2023

Mental Models LXIII (Limitations VIII)

"Beliefs are generalizations about the past projected onto the present and future to shape it in the image of the past. [...] When we generalize from incomplete or unrepresentative experience, we form mental models that make the wrong predictions, but because beliefs act as self-fulfilling prophecies it is hard to find out, because we are less open to counter examples." (Joseph O’Connor, "Leading With NLP: Essential Leadership Skills for Influencing and Managing People", 1998)

"People’s mental models are apt to be deficient in a number of ways, perhaps including contradictory, erroneous, and unnecessary concepts. As designers, it is our duty to develop systems and instructional materials that aid users to develop more coherent, useable mental models. As teachers, it is our duty to develop conceptual models that will aid the learner to develop adequate and appropriate mental models. And as scientists who are interested in studying people’s mental models, we must develop appropriate experimental methods and discard our hopes of finding neat, elegant mental models, but instead learn to understand the messy, sloppy, incomplete, and indistinct structures that people actually have." (Donald A Norman, "Some Observations on Mental Models" [in "Mental Models", Ed(s). Dedre Gentner & Albert L Stevens], 1983)

"To begin with, we must understand that any mindset consists of mental models, or concepts, that influence our interpretation of situations and predispose us to certain responses. These models, which are replete with beliefs and assumptions, thus strongly determine the way we understand the world and act in it. The irony is, they become so ingrained in us, as tendencies and predispositions, that we seldom pay attention to them." (Stephen G Haines, "The Manager's Pocket Guide to Strategic and Business Planning", 1998)

"Short-term memory can hold 7 ± 2 chunks of information at once. This puts a rather sharp limit on the effective size and complexity of a causal map. Presenting a complex causal map all at once makes it hard to see the loops, understand which are important, or understand how they generate the dynamics. Resist the temptation to put all the loops you and your clients have identified into a single comprehensive diagram." (John D Sterman, "Business Dynamics Systems Thinking and Modeling for a Complex World", 2000)

"Our mental maps are often not terribly accurate, based as they are on our own selective experience, our knowledge and ignorance, and the information and misinformation we gain from others; nevertheless, these are the maps we depend on every day." (Peter Turchi, "Maps of the Imagination: The writer as cartographer", 2004)

"The most serious problem in applied ethics, or at least in business ethics, is not that we frame experiences; it is not that these mental models are incomplete, sometimes biased, and surely parochial. The larger problem is that most of us either individually or as managers do not realize that we are framing, disregarding data, ignoring counterevidence, or not taking into account other points of view." (Patricia H Werhane "A Place for Philosophers in Applied Ethics and the Role of Moral Reasoning in Moral Imagination", Business Ethics Quarterly 16 (3), 2007)

"Although good ethical decision-making requires us carefully to take into account as much relevant information as is available to us, we have good reason to think that we commonly fall well short of this standard – either by overlooking relevant facts completely or by underestimating their significance. The mental models we employ can contribute to this problem. As we have explained, mental models frame our experiences in ways that both aid and hinder our perceptions. They enable us to focus selectively on ethically relevant matters. By their very nature, they provide incomplete perspectives, resulting in bounded awareness and bounded ethicality. Insofar as our mental modeling practices result in unwarranted partiality, or even ethical blindness, the desired reflective process is distorted. This distortion is aggravated by the fact that our mental models can have this distorting effect without our consciously realizing it. Thus, although we cannot do without mental models, they leave us all vulnerable to blindness and, insofar as we are unaware of this, self-deception." (Patricia H Werhane et al, "Obstacles to Ethical: Decision-Making Mental Models, Milgram and the Problem of Obedience", 2013)

"Mental models serve to conceptualize, focus and shape our experiences, but in so doing, they sometimes cause us to ignore data and occlude critical reflection that might be relevant or, indeed, necessary to practical decision-making. [...] distorting mental models are the foundation
or underpinning of many of the impediments to effective ethical decision-making." (Patricia H Werhane et al, "Obstacles to Ethical: Decision-Making Mental Models, Milgram and the Problem of Obedience",  2013)

"We identify and analyze distorting mental models that constitute experience in a manner that occludes the moral dimension of situations from view, thereby thwarting the first step of ethical decision-making. Examples include an unexamined moral self-image, viewing oneself as merely a bystander, and an exaggerated conception of self-sufficiency. These mental models, we argue, generate blind spots to ethics, in the sense that they limit our ability to see facts that are right before our eyes – sometimes quite literally, as in the many examples of managers and employees who see unethical behavior take place in front of them, but do not recognize it as such." (Patricia H Werhane et al, "Obstacles to Ethical: Decision-Making Mental Models, Milgram and the Problem of Obedience",  2013)

30 December 2022

Scientific Experience VII: Discovery

"In that pure enjoyment experienced on approaching to the ideal, in that eagerness to draw aside the veil from the hidden truth, and even in that discord which exists between the various workers, we ought to see the surest pledges of further scientific success. Science thus advances, discovering new truths, and at the same time obtaining practical results." (Dmitry I Mendeleev, "The Principles of Chemistry" Vol. 1, 1891)

"Experience teaches that one will be led to new discoveries almost exclusively by means of special mechanical models." (Ludwig Boltzmann, "Lectures on Gas Theory", 1896)

"Theoretical philosophy aimed to discover the unity of experience, namely, in the form of some universal explanation. It strived to yield a world picture, one which is harmoniously integral and completely understandable." (Alexander Bogdanov, "Tektology: The Universal Organizational Science" Vol. I, 1913)

"For tektology the unity of experience is not 'discovered', but actively created by organizational means: ‘philosophers wanted to explain the world, but the main point is it change it’ said the greater precursor of organizational science, Karl Marx. The explanation of organizational forms and methods by tektology is directed not to a contemplation of their unity, but to a practical mastery over them." (Alexander Bogdanov, "Tektology: The Universal Organizational Science", 1922)

"A great discovery solves a great problem but there is a grain of discovery in the solution of any problem. Your problem may be modest; but if it challenges your curiosity and brings into play your inventive faculties, and if you solve it by your own means, you may experience the tension and enjoy the triumph of discovery." (George Polya, "How to solve it", 1944)

"A discovery in science, or a new theory, even when it appears most unitary and most all-embracing, deals with some immediate element of novelty or paradox within the framework of far vaster, unanalysed, unarticulated reserves of knowledge, experience, faith, and presupposition. Our progress is narrow; it takes a vast world unchallenged and for granted. This is one reason why, however great the novelty or scope of new discovery, we neither can, nor need, rebuild the house of the mind very rapidly. This is one reason why science, for all its revolutions, is conservative. This is why we will have to accept the fact that no one of us really will ever know very much. This is why we shall have to find comfort in the fact that, taken together, we know more and more." (J. Robert Oppenheimer, Science and the Common Understanding, 1954)

"A change in science, whether novelty or discovery, when properly understood, when the linguistic problem is adequately solved, will even then provide only a hunch, a starting point for looking at an area of experience other than the science in which it was nourished and born." (J Robert Oppenheimer, "The Growth of Science and the Structure of Culture", Daedalus, 1958)

"Typically, scientific discovery is a two-part process. The first thing that happens is that a scientist experiences a sudden insight. Then, if he is lucky he finds that the insight has logical consequences that will clear up an outstanding scientific problem, or explain baffling experimental results." (Richard Morris)

Scientific Experience VI: Knowledge

"Without experience nothing can be sufficiently known. For there are two modes of acquiring knowledge, namely, by reasoning and by experience. Reasoning draws a conclusion and makes us grant the conclusion, but does not make the conclusion certain [...] unless the mind discovers it by the method of experience." (Roger Bacon, "Opus Majus", 1267)

"It is experience which has given us our first real knowledge of Nature and her laws. It is experience, in the shape of observation and experiment, which has given us the raw material out of which hypothesis and inference have slowly elaborated that richer conception of the material world which constitutes perhaps the chief, and certainly the most characteristic, glory of the modern mind." (Arthur J Balfour, "The Foundations of Belief", 1912)

"It seems that the human mind has first to construct forms independently, before we can find them in things. Kepler’s marvelous achievement is a particularly fine example of the truth that knowledge cannot spring from experience alone, but only from the comparison of the inventions of the intellect with observed fact." (Albert Einstein, 1930)

"There is no field of experience which cannot, in principle, be brought under some form of scientific law, and no type of speculative knowledge about the world which it is, in principle, beyond the power of science to give." (Alfred J Ayer, "Language, Truth and Logic", 1936)

"A discovery in science, or a new theory, even when it appears most unitary and most all-embracing, deals with some immediate element of novelty or paradox within the framework of far vaster, unanalysed, unarticulated reserves of knowledge, experience, faith, and presupposition. Our progress is narrow; it takes a vast world unchallenged and for granted. This is one reason why, however great the novelty or scope of new discovery, we neither can, nor need, rebuild the house of the mind very rapidly. This is one reason why science, for all its revolutions, is conservative. This is why we will have to accept the fact that no one of us really will ever know very much. This is why we shall have to find comfort in the fact that, taken together, we know more and more." (J. Robert Oppenheimer, Science and the Common Understanding, 1954)

"Science, then, is the attentive consideration of common experience; it is common knowledge extended and refined. Its validity is of the same order as that of ordinary perception; memory, and understanding. Its test is found, like theirs, in actual intuition, which sometimes consists in perception and sometimes in intent." (George Santayana, "The Life of Reason, or the Phases of Human Progress", 1954)

"Models constitute a framework or a skeleton and the flesh and blood will have to be added by a lot of common sense and knowledge of details."(Jan Tinbergen, "The Use of Models: Experience," 1969)

"Concepts form the basis for any science. These are ideas, usually somewhat vague (especially when first encountered), which often defy really adequate definition. The meaning of a new concept can seldom be grasped from reading a one-paragraph discussion. There must be time to become accustomed to the concept, to investigate it with prior knowledge, and to associate it with personal experience. Inability to work with details of a new subject can often be traced to inadequate understanding of its basic concepts." (William C Reynolds & Harry C Perkins, "Engineering Thermodynamics", 1977)

"The evolutionary vision is agnostic in regard to systems in the universe of greater complexity than those of which human beings have clear knowledge. It recognizes aesthetic, moral, and religious ideas and experiences as a species, in this case of mental structures or of images, which clearly interacts with other species in the world's great' ecosystem." (Kenneth Boulding," Ecodynamics: A New Theory of Societal Evolution", 1978)

"Also known as worldview, mental model, or mind-set, our perspective of the world is based on the sum total of our knowledge and experiences. It defines us, shaping our thoughts and actions because it represents the way we see ourselves and situations, how we judge the relative importance of things, and how we establish a meaningful relationship with everything around us." (Navi Radjou, Prasad Kaipa, "From Smart to Wise: Acting and Leading with Wisdom", 2013)

On Experience (From Fiction to Science Fiction)

"Experience is the child of Thought, and Thought is the child of Action. We cannot learn men from books." (Benjamin Disraeli, "Vivian Grey", 1826)

"Human existence is girt round with mystery: the narrow region of our experience is a small island in the midst of a boundless sea." (John S Mill, "Nature, the Utility of Religion, and Theism", 1874)

"Experience is never limited and it is never complete; it is an immense sensibility, a kind of huge spider-web, of the finest silken threads, suspended in the chamber of consciousness and catching every air-borne particle in its tissue." (Henry James, "The Art of Fiction", 1884)

"Experience was of no ethical value. It was merely the name men gave to their mistakes." (Oscar Wilde, "The Picture of Dorian Gray", 1891)

 "All experience is an arch, to build upon." (Henry B Adams, "The Education of Henry Adams", 1907)

"Knowledge is the distilled essence of our intuitions, corroborated by experience." (Elbert Hubbard, "A Thousand & One Epigrams, 1911)

"A course of instruction will be the more successful the more its individual phases assume the character of experience." (Hugo von Hofmannsthal, "Buch der Freunde" ["Book of Friends"], 1922) 

"The subtlest and most pervasive of all influences are those which create and maintain the repertory of stereotypes. We are told about the world before we see it. We imagine most things before we experience them." (Walter Lippmann, "Public Opinion", 1922)

"Human language is naturally wanting in words that are adequate for the delineation of events and sensations beyond the normal scope of human experience." (Clark A Smith, "The City of the Singing Flame", 1931)

"We live in reference to past experience and not to future events, however inevitable." (Herbert G Wells, "Mind at the End of Its Tether", 1946)

"A piece of scientific fiction is a narrative of an imaginary invention or discovery in the natural sciences and consequent adventures and experiences." (James O Bailey, "Pilgrims through Space and Time", 1947)

"Art is the imposing of a pattern on experience, and our aesthetic enjoyment is recognition of the pattern." (Alfred N Whitehead, "Dialogues", 1954)

"It’s the highest goal of man - the need to grow and advance [...] to find new things [...] to expand. To spread out, reach areas, experiences, comprehend and live in an evolving fashion. To push aside routine and repetition, to break out of mindless monotony and thrust forward. To keep moving on [...]" (Philip K Dick, "Solar Lottery", 1955)

"Life is just a process of picking up scars and experience." (Michael Swanwick, "Ginungagap", 1980)

"Human beings, who are almost unique in having the ability to learn from the experience of others, are also remarkable for their apparent disinclination to do so." (Douglas Adams, "Last Chance to See", 1990)

"The law is the last result of human wisdom acting upon human experience for the benefit of the public." (Samuel Johnson)

23 December 2022

Artistic Experience I

"Music is a science which should have definite rules; these rules should be drawn from an evident principle; and this principle cannot really be known to us without the aid of mathematics. Notwithstanding all the experience I may have acquired in music from being associated with it for so long, I must confess that only with the aid of mathematics did my ideas become clear and did light replace a certain obscurity of which I was unaware before." (Jean-Philippe Rameau, "Treatise on Harmony reduced to its natural principles", 1722)

"Music is like geometric figures and numbers, which are the universal forms of all possible objects of experience." (Friedrich Nietzsche, "Birth of Tragedy", 1872)

"A scientist worthy of the name, above all a mathematician, experiences in his work the same impression as an artist; his pleasure is as great and of the same nature. [...] we work not only to obtain the positive results which, according to the profane, constitute our one and only affection, as to experience this esthetic emotion and to convey it to others who are capable of experiencing it." (Henri Poincaré, "Notice sur Halphen", Journal de l'École Polytechnique, 1890)

"Art is a human activity consisting in this, that one consciously, by means of certain external symbols, conveys to others the feelings one has experienced, whereby people so infected by these feelings, also experience them." (Leo Tolstoy, "What is Art?", 1897)

"True artistic experience is never passive, for the spectator is obliged to participate, as it were, in the continuous or discontinuous variations of proportions, positions, lines and planes. Moreover, he must see clearly how this play of repeated or non-repeated changes may give rise to a new harmony of relations which will constitute the unity of the work. Every part becomes organized into a whole with the other parts. All the parts contribute to the unity of the composition, none of them assuming a dominant place in the whole." (Theo van Doesburg, 'Grundbegriffe der neuen Gestaltenden Kunst', 1921-23)

"Just as music comes alive in the performance of it, the same is true of mathematics. The symbols on the page have no more to do with mathematics than the notes on a page of music. They simply represent the experience." (Keith Devlin, "Mathematics: The Science of Patterns", 1994)

"Music is the pleasure the human soul experiences from counting without being aware it is counting." (Gottfried W Leibniz)


Scientific Experience V: World

"The methods of tektology, as is seen, combine the abstract symbolism of mathematics and the experimental character Of the natural sciences. Furthermore, the very formulation of its problems, the very treatment of organizedness by tektology, as has been elucidated, should stick to the social historical viewpoint. And whatever the subject matter, or the content, of tektology , it embraces the whole world of experience. So tektology is really a universal science by its methods and its content."  (Alexander Bogdanov, "Tektology: The Universal Organizational Science" Vol. I, 1913)

"Theoretical philosophy aimed to discover the unity of experience, namely, in the form of some universal explanation. It strived to yield a world picture, one which is harmoniously integral and completely understandable." (Alexander Bogdanov, "Tektology: The Universal Organizational Science" Vol. I, 1913)

"For tektology the unity of experience is not 'discovered', but actively created by organizational means: ‘philosophers wanted to explain the world, but the main point is it change it’ said the greater precursor of organizational science, Karl Marx. The explanation of organizational forms and methods by tektology is directed not to a contemplation of their unity, but to a practical mastery over them." (Alexander Bogdanov, "Tektology: The Universal Organizational Science", 1922)

"There is no field of experience which cannot, in principle, be brought under some form of scientific law, and no type of speculative knowledge about the world which it is, in principle, beyond the power of science to give." (Alfred J Ayer, "Language, Truth and Logic", 1936)

"[…] in the world of immediate experience, the world of things is there. Trees grow, day follows night, and death supervenes upon life. One may not say that relations here are external or even internal. They are not relations at all. They are lost in the indiscreptibility of things and events, which are what they are. The world which is the test of all observations and all scientific hypothetical reconstruction has in itself no system that can be isolated as a structure of laws, or uniformities, though all laws and formulations of uniformities must be brought to its court for its imprimatur." (George H Mead, "The Philosophy of the Act", 1938)

"[…] the scientific picture of the real world around me is very deficient. It gives a lot of factual information, puts all our experience in a magnificently consistent order, but it is ghastly silent about all and sundry that is really near to our heart, that really matters to us. It cannot tell us a word about red and blue, bitter and sweet, physical pain and physical delight; it knows nothing of beautiful and ugly, good or bad, God and eternity. Science sometimes pretends to answer questions in these domains, but the answers are very often so silly that we are not inclined to take them seriously." (Erwin Schrödinger, "Nature and the Greeks", 1954)

"Your experience in the world of physical matter flows outward from the center of your psyche. Then you perceive this experience. exterior events, circumstances and conditions are meant as a kind of living feedback. Altering the state of the psyche automatically alters the physical circumstances. There is no other valid way of changing physical events. It might help if you imagine an inner living dimension within yourself in which you create, in miniature psychic form, all the exterior conditions that you know. Simply put, you do exactly this. Your thoughts, feelings and mental pictures can be called incipient exterior events, for in one way or another, each of these is materialized into physical reality." (Jane Roberts, "The Nature of Personal Reality", 1974)

"[…] there is an irreducible difference between the world and our experience of it. We as human beings do not operate directly on the world. Each of us creates a representation of the world in which we live - that is, we create a map or model which we use to generate our behavior. Our representation of the world determines to a large degree what our experience of the world will be, how we will perceive the world, what choices we will see available to us as we live in the world." (Richard Bandler & John Grinder, "The Structure of Magic", 1975)

"Science, at its core, is simply a method of practical logic that tests hypotheses against experience. Scientism, by contrast, is the worldview and value system that insists that the questions the scientific method can answer are the most important questions human beings can ask, and that the picture of the world yielded by science is a better approximation to reality than any other." (John M Greer, "After Progress: Reason and Religion at the End of the Industrial Age", 2015)

Scientific Experience IV: Models

"Experience teaches that one will be led to new discoveries almost exclusively by means of special mechanical models." (Ludwig Boltzmann, "Lectures on Gas Theory", 1896)

"Tektology must discover what modes of organization are observed in nature and human activities; then generalize and systemize these modes; further it should explain them, that is, elaborate abstract schemes of their tendencies and regularities; finally, based on these schemes it must determine the directions of organizational modes development and elucidate their role in the economy of world processes. This general plan is similar to the plan of any other science but the object studied differs essentially. Tektology deals with the organizational experience not of some particular branch but with that of all of them in the aggregate; to put it in other words, tektology embraces the material of all the other sciences, as well as of all the vital practices from which those sciences arose, but considers this material only in respect of methods, i.e. everywhere it takes an interest in the mode of the organization of this material."  (Alexander Bogdanov, "Tektology: The Universal Organizational Science" Vol. I, 1913)

"Models constitute a framework or a skeleton and the flesh and blood will have to be added by a lot of common sense and knowledge of details."(Jan Tinbergen, "The Use of Models: Experience," 1969)

"The advantages of models are, on one hand, that they force us to present a 'complete' theory by which I mean a theory taking into account all relevant phenomena and relations and, on the other hand, the confrontation with observation, that is, reality." (Jan Tinbergen, "The Use of Models: Experience," 1969)

"Everything we think we know about the world is a model. Every word and every language is a model. All maps and statistics, books and databases, equations and computer programs are models. So are the ways I picture the world in my head - my mental models. None of these is or ever will be the real world. […] Our models usually have a strong congruence with the world. That is why we are such a successful species in the biosphere. Especially complex and sophisticated are the mental models we develop from direct, intimate experience of nature, people, and organizations immediately around us." (Donella Meadows, "Limits to Growth", 1972)

"[...] the scientific models of concrete things are symbolic rather than iconic: they are systems of propositions, not pictures. Besides, such models are seldom if ever completely accurate, if only because they involve more or less brutal simplifications, such as pretending that a metallic surface is smooth, a crystal has no impurities, a biopopulation has a single predator, or a market is in equilibrium.  These are all fictions. However, they are stylizations rather than wild fantasies. Hence, introducing and using them to account for real existents does not commit us to fictionism, just as defending the role of experience need not make us empiricists, nor is admitting the role of intuition enough to qualify as intuitionist." (Mario Bunge, "Chasing Reality: Strife over Realism", 2006)

Scientific Experience III: Nature

"The phenomena of nature are most often enveloped by so many strange circumstances, and so great a number of disturbing causes mix their influence, that it is very difficult to recognize them. We may arrive at them only by multiplying the observations or the experiences, so that the strange effects finally destroy reciprocally each other." (Pierre-Simon Laplace, "A Philosophical Essays on Probabilities", 1814)

"The Laws of Nature are merely truths or generalized facts, in regard to matter, derived by induction from experience, observation, arid experiment. The laws of mathematical science are generalized truths derived from the consideration of Number and Space." (Charles Davies, "The Logic and Utility of Mathematics", 1850)

"The laws of nature are drawn from experience, but to express them one needs a special language: for, ordinary language is too poor and too vague to express relations so subtle, so rich, so precise. Here then is the first reason why a physicist cannot dispense with mathematics: it provides him with the one language he can speak […]. Who has taught us the true analogies, the profound analogies which the eyes do not see, but which reason can divine? It is the mathematical mind, which scorns content and clings to pure form." (Henri Poincaré, "The Value of Science", 1905)

"The scientific worker has elected primarily to know, not do. He does not directly seek, like the practical man, to realize the ideal of exploiting nature and controlling life – though he makes this more possible; he seeks rather to idealize – to conceptualize – the real, or at least those aspects of reality that are available in his experience. He thinks more of lucidity and formulae than of loaves and fishes. He is more concerned with knowing Nature than with enjoying her. His main intention is to describe the sequences in Nature in the simplest possible formulae, to make a working thought-model of the known world. He would make the world translucent, not that emotion may catch the glimmer of the indefinable light that shines through, but for other reasons – because of his inborn inquisitiveness, because of his dislike of obscurities, because of his craving for a system – an intellectual system in which phenomena are at least provisionally unified." (Sir John A Thomson," Introduction to Science", 1911)

"It is experience which has given us our first real knowledge of Nature and her laws. It is experience, in the shape of observation and experiment, which has given us the raw material out of which hypothesis and inference have slowly elaborated that richer conception of the material world which constitutes perhaps the chief, and certainly the most characteristic, glory of the modern mind." (Arthur J Balfour, "The Foundations of Belief", 1912)

"Everything we think we know about the world is a model. Every word and every language is a model. All maps and statistics, books and databases, equations and computer programs are models. So are the ways I picture the world in my head - my mental models. None of these is or ever will be the real world. […] Our models usually have a strong congruence with the world. That is why we are such a successful species in the biosphere. Especially complex and sophisticated are the mental models we develop from direct, intimate experience of nature, people, and organizations immediately around us." (Donella Meadows, "Limits to Growth", 1972)

Scientific Experience II: Theory

"The world can doubtless never be well known by theory: practice is absolutely necessary; but surely it is of great use to a young man, before he sets out for that country, full of mazes, windings, and turnings, to have at least a general map of it, made by some experienced traveler." (Philip Stanhope, "Letters Written by the Earl of Chesterfield to His Son", 1827)

"Theories are always very thin and unsubstantial; experience only is tangible." (Hosea Ballou, "Universalist Expositor", 1831)

"Observation is so wide awake, and facts are being so rapidly added to the sum of human experience, that it appears as if the theorizer would always be in arrears, and were doomed forever to arrive at imperfect conclusion; but the power to perceive a law is equally rare in all ages of the world, and depends but little on the number of facts observed." (Henry D Thoreau, "A Week on the Concord and Merrimack Rivers", 1862)

"Some think to avoid the influence of metaphysical errors, by paying no attention to metaphysics; but experience shows that these men beyond all others are held in an iron vice of metaphysical theory, because by theories that they have never called in question." (Charles S Peirce, 1867)

"It [a theory] ought to furnish a compass which, if followed, will lead the observer further and further into previously unexplored regions. Whether these regions will be barren or fertile experience alone will decide; but, at any rate, one who is guided in this way will travel onward in a definite direction, and will not wander aimlessly to and fro." (Sir Joseph J Thomson, "The Corpuscular Theory of Matter", 1907)

"Often a liberal antidote of experience supplies a sovereign cure for a paralyzing abstraction built upon a theory." (Benjamin N Cardozo, "Paradoxes of Legal Science", 1928)

"It can scarcely be denied that the supreme goal of all theory is to make the irreducible basic elements as simple and as few as possible without having to surrender the adequate representation of a single datum of experience." (Albert Einstein, [lecture] 1933)

"A scientist, whether theorist or experimenter, puts forward statements, or systems of statements, and tests them step by step. In the field of the empirical sciences, more particularly, he constructs hypotheses, or systems of theories, and tests them against experience by observation and experiment." (Karl Popper, "The Logic of Scientific Discovery", 1934)

"A discovery in science, or a new theory, even when it appears most unitary and most all-embracing, deals with some immediate element of novelty or paradox within the framework of far vaster, unanalysed, unarticulated reserves of knowledge, experience, faith, and presupposition. Our progress is narrow; it takes a vast world unchallenged and for granted. This is one reason why, however great the novelty or scope of new discovery, we neither can, nor need, rebuild the house of the mind very rapidly. This is one reason why science, for all its revolutions, is conservative. This is why we will have to accept the fact that no one of us really will ever know very much. This is why we shall have to find comfort in the fact that, taken together, we know more and more." (J. Robert Oppenheimer, Science and the Common Understanding, 1954)

"The advantages of models are, on one hand, that they force us to present a 'complete' theory by which I mean a theory taking into account all relevant phenomena and relations and, on the other hand, the confrontation with observation, that is, reality." (Jan Tinbergen, "The Use of Models: Experience," 1969)

"A hypothesis is empirical or scientific only if it can be tested by experience. […] A hypothesis or theory which cannot be, at least in principle, falsified by empirical observations and experiments does not belong to the realm of science." (Francisco J Ayala, "Biological Evolution: Natural Selection or Random Walk", American Scientist, 1974)

"Experience without theory teaches nothing." (William E Deming, "Out of the Crisis", 1986)

Scientific Experience I

"Science is the systematic classification of experience." (George H Lewes, "The Physical Basis of Mind", 1877)

"In that pure enjoyment experienced on approaching to the ideal, in that eagerness to draw aside the veil from the hidden truth, and even in that discord which exists between the various workers, we ought to see the surest pledges of further scientific success. Science thus advances, discovering new truths, and at the same time obtaining practical results." (Dmitry I Mendeleev, "The Principles of Chemistry" Vol. 1, 1891)

„The scientific value of truth is not, however, ultimate or absolute. It rests partly on practical, partly on aesthetic interests. As our ideas are gradually brought into conformity with the facts by the painful process of selection, - for intuition runs equally into truth and into error, and can settle nothing if not controlled by experience, - we gain vastly in our command over our environment. This is the fundamental value of natural science" (George Santayana, "The Sense of Beauty: Being the Outlines of Aesthetic Theory", 1896)

"The man of science deals with questions which commonly lie outside of the range of ordinary experience, which often have no immediately discernible relation to the affairs of everyday life, and which concentrate the mind upon apparent abstractions to an extraordinary degree." (Frank W Clarke, "The Man of Science in Practical Affairs", Appletons' Popular Science Monthly Vol. XLV, 1900)

"Chemistry and physics are experimental sciences; and those who are engaged in attempting to enlarge the boundaries of science by experiment are generally unwilling to publish speculations; for they have learned, by long experience, that it is unsafe to anticipate events. It is true, they must make certain theories and hypotheses. They must form some kind of mental picture of the relations between the phenomena which they are trying to investigate, else their experiments would be made at random, and without connection." (William Ramsay, "Radium and Its Products", Harper’s Magazine, 1904)

"The mysteries of religion are of a different order from those of science; they are parts of an arbitrary system of man’s own creation; they contradict our reason and our experience, while the mysteries of science are revealed by our reason, and transcend our experience." (John Burroughs, "Scientific Faith", The Atlantic Monthly, 1915)

"Science aims at constructing a world which shall be symbolic of the world of commonplace experience." (Sir Arthur S Eddington, "The Nature of the Physical World", 1928)

"Science is a system of statements based on direct experience, and controlled by experimental verification. Verification in science is not, however, of single statements but of the entire system or a sub-system of such statements." (Rudolf Carnap, "The Unity of Science", 1934)

"Science is the attempt to make the chaotic diversity of our sense experience correspond to a logically uniform system of thought." (Albert Einstein, "Considerations Concerning the Fundaments of Theoretical Physics", Science Vol. 91 (2369), 1940)

"A discovery in science, or a new theory, even when it appears most unitary and most all-embracing, deals with some immediate element of novelty or paradox within the framework of far vaster, unanalysed, unarticulated reserves of knowledge, experience, faith, and presupposition. Our progress is narrow; it takes a vast world unchallenged and for granted. This is one reason why, however great the novelty or scope of new discovery, we neither can, nor need, rebuild the house of the mind very rapidly. This is one reason why science, for all its revolutions, is conservative. This is why we will have to accept the fact that no one of us really will ever know very much. This is why we shall have to find comfort in the fact that, taken together, we know more and more." (J. Robert Oppenheimer, Science and the Common Understanding, 1954)

"Science, then, is the attentive consideration of common experience; it is common knowledge extended and refined. Its validity is of the same order as that of ordinary perception; memory, and understanding. Its test is found, like theirs, in actual intuition, which sometimes consists in perception and sometimes in intent." (George Santayana, "The Life of Reason, or the Phases of Human Progress", 1954)

"A change in science, whether novelty or discovery, when properly understood, when the linguistic problem is adequately solved, will even then provide only a hunch, a starting point for looking at an area of experience other than the science in which it was nourished and born." (J Robert Oppenheimer, "The Growth of Science and the Structure of Culture", Daedalus, 1958)

"Science begins with the world we have to live in, accepting its data and trying to explain its laws. From there, it moves toward the imagination: it becomes a mental construct, a model of a possible way of interpreting experience." (Northrop Frye, "The Educated Imagination", 1964)

"One of the chief motivations behind the attempt to defend a distinction between theoretical and observational terms has been the desire to explain how a theory can be tested against the data of experience, and how one theory can be said to ‘account for the facts’ better than another; that is, to give a precise characterization of the idea, almost universally accepted in modern times, that the sciences are ‘based on experience’, that they are ‘empirical’." (Dudley Shapere, "Philosophical Problems of Natural Science", 1965)

"Science does not need mysticism and mysticism does not need science, but man needs both. Mystical experience is necessary to understand the deepest nature of things, and science is essential for modern life. What we need, therefore, is not a synthesis, but a dynamic interplay between mystical intuition and scientific analysis." (Fritjof Capra, "The Tao of Physics: An Exploration of the Parallels Between Modern Physics and Eastern Mysticism", 1975)

"Concepts form the basis for any science. These are ideas, usually somewhat vague (especially when first encountered), which often defy really adequate definition. The meaning of a new concept can seldom be grasped from reading a one-paragraph discussion. There must be time to become accustomed to the concept, to investigate it with prior knowledge, and to associate it with personal experience. Inability to work with details of a new subject can often be traced to inadequate understanding of its basic concepts." (William C Reynolds & Harry C Perkins, "Engineering Thermodynamics", 1977)

"Science is human experience systematically extended (by intent, methodology and instrumentation) for the purpose of learning more about the natural world and for the critical empirical testing and possible falsification of all ideas about the natural world. Scientific hypotheses may incorporate only elements of the natural empirical world, and thus may contain no element of the supernatural." (Robert E Kofahl, Correctly Redefining Distorted Science: A Most Essential Task", Creation Research Society Quarterly Vol. 23, 1986)

"Science begins with the world we have to live in, accepting its data and trying to explain its laws. From there, it moves toward the imagination: it becomes a mental construct, a model of a possible way of interpreting experience. The further it goes in this direction, the more it tends to speak the language of mathematics, which is really one of the languages of the imagination, along with literature and music." (Northrop Frye, "The Educated Imagination", 2002)

"It is ironic but true: the one reality science cannot reduce is the only reality we will ever know. This is why we need art. By expressing our actual experience, the artist reminds us that our science is incomplete, that no map of matter will ever explain the immateriality of our consciousness." (Jonah Lehrer, "Proust Was a Neuroscientist", 2011)

"Experience is the mother of science." (Henry G Bohn)

Mathematical Experience III: Probabilities & Statistics

"Probability is likeliness to be true, the very notation of the word signifying such a proposition, for which there be arguments or proofs to make it pass, or be received for true. […] The grounds of probability are two: conformity with our own experience, or the testimony of others' experience. Probability then, being to supply the defect of our knowledge and to guide us where that fails, is always conversant about propositions whereof we have no certainty, but only some inducements to receive them for true."  (John Locke, "An Essay Concerning Human Understanding", 1689)

"The rule is derived inductively from experience, therefore does not have any inner necessity, is always valid only for special cases and can anytime be refuted by opposite facts. On the contrary, the law is a logical relation between conceptual constructions; it is therefore deductible from upper laws and enables the derivation of lower laws; it has as such a logical necessity in concordance with its upper premises; it is not a mere statement of probability, but has a compelling, apodictic logical value once its premises are accepted."(Ludwig von Bertalanffy, "Kritische Theorie der Formbildung", 1928)

"[Statistics] is both a science and an art. It is a science in that its methods are basically systematic and have general application; and an art in that their successful application depends to a considerable degree on the skill and special experience of the statistician, and on his knowledge of the field of application, e.g. economics." (Leonard H C Tippett, "Statistics", 1943)

"Historically, the original purpose of the theory of probability was to describe the exceedingly narrow domain of experience connected with games of chance, and the main effort was directed to the calculation of certain probabilities." (William Feller, "An Introduction To Probability Theory And Its Applications", 1950)

"The painful experience of many gamblers has taught us the lesson that no system of betting is successful in improving the gambler's chances. If the theory of probability is true to life, this experience must correspond to a provable statement." (William Feller, "An Introduction To Probability Theory And Its Applications", 1950)

"In a sense, of course, probability theory in the form of the simple laws of chance is the key to the analysis of warfare; […] My own experience of actual operational research work, has however, shown that its is generally possible to avoid using anything more sophisticated. […] In fact the wise operational research worker attempts to concentrate his efforts in finding results which are so obvious as not to need elaborate statistical methods to demonstrate their truth. In this sense advanced probability theory is something one has to know about in order to avoid having to use it." (Patrick M S Blackett, "Operations Research", Physics Today, 1951)

"Statistics is the name for that science and art which deals with uncertain inferences - which uses numbers to find out something about nature and experience." (Warren Weaver, 1952)

"We can never achieve absolute truth but we can live hopefully by a system of calculated probabilities. The law of probability gives to natural and human sciences - to human experience as a whole - the unity of life we seek." (Agnes E Meyer, "Education for a New Morality", 1957)

"[...] in probability theory we are faced with situations in which our intuition or some physical experiments we have carried out suggest certain results. Intuition and experience lead us to an assignment of probabilities to events. As far as the mathematics is concerned, any assignment of probabilities will do, subject to the rules of mathematical consistency." (Robert Ash, "Basic probability theory", 1970)

Mathematical Experience II: Mathematicians

"A scientist worthy of the name, above all a mathematician, experiences in his work the same impression as an artist; his pleasure is as great and of the same nature. [...] we work not only to obtain the positive results which, according to the profane, constitute our one and only affection, as to experience this esthetic emotion and to convey it to others who are capable of experiencing it." (Henri Poincaré, "Notice sur Halphen", Journal de l'École Polytechnique, 1890)

"It is a melancholic experience for a professional mathematician to find himself writing about mathematics. The function of a mathematician is to do something, to prove new theorems, to add to mathematics, and not to talk about what he or other mathematicians have done [...] there is no scorn more profound, or on the whole more justifiable, than that of the men who make for the men who explain. Exposition, criticism, appreciation, is work for second-rate minds."  (Godfrey H Hardy, "A Mathematician's Apology", 1940)

"Nothing in our experience suggests the introduction of [complex numbers]. Indeed, if a mathematician is asked to justify his interest in complex numbers, he will point, with some indignation, to the many beautiful theorems in the theory of equations, of power series, and of analytic functions in general, which owe their origin to the introduction of complex numbers. The mathematician is not willing to give up his interest in these most beautiful accomplishments of his genius." (Eugene P Wigner, "The Unreasonable Effectiveness of Mathematics in the Natural Sciences", Communications in Pure and Applied Mathematics 13 (1), 1960)

"Any applied mathematicians - any engineer using mathematics - works sometimes more and sometimes less mathematically. When he is most mathematical he makes least appeal to experience." (Chandler Davis, "Materialist Mathematics", 1974)

"Every mathematician worthy of the name has experienced the state of lucid exaltation in which one thought succeeds another as if miraculously. This feeling may last for hours at a time, even for days. Once you have experienced it, you are eager to repeat it but unable to do it at will, unless perhaps by dogged work." (André Weil, "The Apprenticeship of a Mathematician", 1992)

"To be an engineer, and build a marvelous machine, and to see the beauty of its operation is as valid an experience of beauty as a mathematician's absorption in a wondrous theorem. One is not ‘more’ beautiful than the other. To see a space shuttle standing on the launch pad, the vented gases escaping, and witness the thunderous blast-off as it climbs heavenward on a pillar of flame - this is beauty. Yet it is a prime example of applied mathematics." (Calvin C Clawson, "Mathematical Mysteries", 1996)

"Mathematics is not a matter of ‘anything goes,’ and every mathematician is guided by explicit or unspoken assumptions as to what counts as legitimate – whether we choose to view these assumptions as the product of birth, experience, indoctrination, tradition, or philosophy. At the same time, mathematicians are primarily problem solvers and theory builders, and answer first and foremost to the internal exigencies of their subject." (Jeremy Avigad, "Methodology and Metaphysics in the Development of Dedekind’s Theory of Ideals", 2006)

"Popular accounts of mathematics often stress the discipline’s obsession with certainty, with proof. And mathematicians often tell jokes poking fun at their own insistence on precision. However, the quest for precision is far more than an end in itself. Precision allows one to reason sensibly about objects outside of ordinary experience. It is a tool for exploring possibility: about what might be, as well as what is." (Donal O’Shea, "The Poincaré Conjecture", 2007)

"To get a true understanding of the work of mathematicians, and the need for proof, it is important for you to experiment with your own intuitions, to see where they lead, and then to experience the same failures and sense of accomplishment that mathematicians experienced when they obtained the correct results. Through this, it should become clear that, when doing any level of mathematics, the roads to correct solutions are rarely straight, can be quite different, and take patience and persistence to explore." (Alan Sultan & Alice F Artzt, "The Mathematics that every Secondary School Math Teacher Needs to Know", 2011)

"I think the thing which makes mathematics a pleasant occupation are those few minutes when suddenly something falls into place and you understand. Now a great mathematician may have such moments very often. Gauss, as his diaries show, had days when he had two or three important insights in the same day. Ordinary mortals have it very seldom. Some people experience it only once or twice in their lifetime. But the quality of this experience - those who have known it - is really joy comparable to no other joy." (Lipman Bers)

Mathematical Experience IV: Logic and Truth

"It falls into this difficulty without any fault of its own. It begins with principles, which cannot be dispensed with in the field of experience, and the truth and sufficiency of which are, at the same time, insured by experience. With these principles it rises, in obedience to the laws of its own nature, to ever higher and more remote conditions. But it quickly discovers that, in this way, its labours must remain ever incomplete, because new questions never cease to present themselves; and thus it finds itself compelled to have recourse to principles which transcend the region of experience, while they are regarded by common sense without distrust. It thus falls into confusion and contradictions, from which it conjectures the presence of latent errors, which, however, it is unable to discover, because the principles it employs, transcending the limits of experience, cannot be tested by that criterion. The arena of these endless contests is called Metaphysic." (Immanuel Kant, "The Critique of Pure Reason", 1781)

"Logic does not pretend to teach the surgeon what are the symptoms which indicate a violent death. This he must learn from his own experience and observation, or from that of others, his predecessors in his peculiar science. But logic sits in judgment on the sufficiency of that observation and experience to justify his rules, and on the sufficiency of his rules to justify his conduct. It does not give him proofs, but teaches him what makes them proofs, and how he is to judge of them." (John Stuart Mill, "A System of Logic, Ratiocinative and Inductive: Being a Connected View of the Principles of Evidence, and the Methods of Scientific Investigation", 1843)

"But I shall certainly admit a system as empirical or scientific only if it is capable of being tested by experience. These considerations suggest that not the verifiability but the falsifiability of a system is to be taken as a criterion of demarcation. In other words: I shall not require of a scientific system that it shall be capable of being singled out, once and for all, in a positive sense; but I shall require that its logical form shall be such that it can be singled out, by means of empirical tests, in a negative sense: it must be possible for an empirical scientific system to be refuted by experience." (Karl R Popper, "The Logic of Scientific Discovery", 1934)

"The ultimate origin of the difficulty lies in the fact (or philosophical principle) that we are compelled to use the words of common language when we wish to describe a phenomenon, not by logical or mathematical analysis, but by a picture appealing to the imagination. Common language has grown by everyday experience and can never surpass these limits. Classical physics has restricted itself to the use of concepts of this kind; by analysing visible motions it has developed two ways of representing them by elementary processes; moving particles and waves. There is no other way of giving a pictorial description of motions - we have to apply it even in the region of atomic processes, where classical physics breaks down." (Max Born, "Atomic Physics", 1957)

"There is a logic of language and a logic of mathematics. The former is supple and lifelike, it follows our experience. The latter is abstract and rigid, more ideal. The latter is perfectly necessary, perfectly reliable: the former is only sometimes reliable and hardly ever systematic. But the logic of mathematics achieves necessity at the expense of living truth, it is less real than the other, although more certain. It achieves certainty by a flight from the concrete into abstraction." (Thomas Merton, "The Secular Journal of Thomas Merton", 1959)

"We who are heirs to three recent centuries of scientific development can hardly imagine a state of mind in which many mathematical objects were regarded as symbols of spiritual truths or episodes in sacred history. Yet, unless we make this effort of imagination, a fraction of the history of mathematics is incomprehensible." (Philip J Davis & Rueben Hersh, "The Mathematical Experience", 1985)

"What does a rigorous proof consist of? The word ‘proof’ has a different meaning in different intellectual pursuits. A ‘proof’ in biology might consist of experimental data confirming a certain hypothesis; a ‘proof’ in sociology or psychology might consist of the results of a survey. What is common to all forms of proof is that they are arguments that convince experienced practitioners of the given field. So too for mathematical proofs. Such proofs are, ultimately, convincing arguments that show that the desired conclusions follow logically from the given hypotheses." (Ethan Bloch, "Proofs and Fundamentals", 2000)

"Science, at its core, is simply a method of practical logic that tests hypotheses against experience. Scientism, by contrast, is the worldview and value system that insists that the questions the scientific method can answer are the most important questions human beings can ask, and that the picture of the world yielded by science is a better approximation to reality than any other." (John M Greer, "After Progress: Reason and Religion at the End of the Industrial Age", 2015)

Mathematical Experience I

"The study of mathematics - from ordinary reckoning up to the higher processes - must be connected with knowledge of nature, and at the same time with experience, that it may enter the pupil’s circle of thought." (Johann F Herbart, "Letters and Lectures on Education", 1908)

"The ordinary mathematical treatment of any applied science substitutes exact axioms for the approximate results of experience, and deduces from these axioms the rigid mathematical conclusions. In applying this method it must not be forgotten that the mathematical developments transcending the limits of exactness of the science are of no practical value. It follows that a large portion of abstract mathematics remains without finding any practical application, the amount of mathematics that can be usefully employed in any science being in proportion to the degree of accuracy attained in the science. Thus, while the astronomer can put to use a wide range of mathematical theory, the chemist is only just beginning to apply the first derivative, i. e. the rate of change at which certain processes are going on; for second derivatives he does not seem to have found any use as yet." (Felix Klein, "Lectures on Mathematics", 1911)

"The mathematical laws presuppose a very complex elaboration. They are not known exclusively either a priori or a posteriori, but are a creation of the mind; and this creation is not an arbitrary one, but, owing to the mind’s resources, takes place with reference to experience and in view of it. Sometimes the mind starts with intuitions which it freely creates; sometimes, by a process of elimination, it gathers up the axioms it regards as most suitable for producing a harmonious development, one that is both simple and fertile. The mathematics is a voluntary and intelligent adaptation of thought to things, it represents the forms that will allow of qualitative diversity being surmounted, the moulds into which reality must enter in order to become as intelligible as possible." (Émile Boutroux, "Natural Law in Science and Philosophy", 1914)

"In this respect mathematics fails to reproduce with complete fidelity the obvious fact that experience is not composed of static bits, but is a string of activity, or the fact that the use of language is an activity, and the total meanings of terms are determined by the matrix in which they are embedded." (Percy W Bridgman, "In the Nature of Physical Theory", 1931)

"Mathematics, springing from the soil of basic human experience with numbers and data and space and motion, builds up a far-flung architectural structure composed of theorems which reveal insights into the reasons behind appearances and of concepts which relate totally disparate concrete ideas." (Saunders MacLane, "Of Course and Courses"The American Mathematical Monthly, Vol 61, No 3, 1954)

"The theory of relativity is a fine example of the fundamental character of the modern development of theoretical science. The initial hypotheses become steadily more abstract and remote from experience. On the other hand, it gets nearer to the grand aim of all science, which is to cover the greatest possible number of empirical facts by logical deduction from the smallest possible number of hypotheses or axioms." (Albert Einstein, 1954)

"Is it possible to breach this wall, to present mathematics in such a way that the spectator may enjoy it? Cannot the enjoyment of mathematics be extended beyond the small circle of those who are ‘mathematically gifted’? Indeed, only a few are mathematically gifted in the sense that they are endowed with the talent to discover new mathematical facts. But by the same token, only very few are musically gifted in that they are able to compose music. Nevertheless, there are many who can understand and perhaps reproduce music, or who at least enjoy it. We believe that the number of people who can understand simple mathematical ideas is not relatively smaller than the number of those who are commonly called musical, and that their interest will be stimulated if only we can eliminate the aversion toward mathematics that so many have acquired from childhood experiences." (Hans Rademacher & Otto Toeplitz, "The Enjoyment of Mathematics", 1957)

"Mathematics has, of course, given the solution of the difficulties in terms of the abstract concept of converging infinite series. In a certain metaphysical sense this notion of convergence does not answer Zeno’s argument, in that it does not tell how one is to picture an infinite number of magnitudes as together making up only a finite magnitude; that is, it does not give an intuitively clear and satisfying picture, in terms of sense experience, of the relation subsisting between the infinite series and the limit of this series." (Carl B Boyer, "The History of the Calculus and Its Conceptual Development", 1959)

"Mathematics is a model of exact reasoning, an absorbing challenge to the mind, an esthetic experience for creators and some students, a nightmarish experience to other students, and an outlet for the egotistic display of mental power." (Morris Kline, "Mathematics and the Physical World", 1959)

"The question ‘What is mathematics?’ cannot be answered meaningfully by philosophical generalities, semantic definitions or journalistic circumlocutions. Such characterizations also fail to do justice to music or painting. No one can form an appreciation of these arts without some experience with rhythm, harmony and structure, or with form, color and composition. For the appreciation of mathematics actual contact with its substance is even more necessary." (Richard Courant, "Mathematics in the Modern World", Scientific American Vol. 211 (3), 1964)

"Mathematics associates new mental images with […] physical abstractions; these images are almost tangible to the trained mind but are far removed from those that are given directly by life and physical experience." (Yuri I Manin, "Mathematics and Physics", 1981)

"The assumptions and definitions of mathematics and science come from our intuition, which is based ultimately on experience. They then get shaped by further experience in using them and are occasionally revised. They are not fixed for all eternity." (Richard Hamming, "Methods of Mathematics Applied to Calculus, Probability, and Statistics", 1985)

"To experience the joy of mathematics is to realize mathematics is not some isolated subject that has little relationship to the things around us other than to frustrate us with unbalanced check books and complicated computations. Few grasp the true nature of mathematics - so entwined in our environment and in our lives." (Theoni Pappas, "The Joy of Mathematics" Discovering Mathematics All Around You", 1986)

"Mathematics is also seen by many as an analogy. But it is implicitly assumed to be the analogy that never breaks down. Our experience of the world has failed to reveal any physical phenomenon that cannot be described mathematically. That is not to say that there are not things for which such a description is wholly inappropriate or pointless. Rather, there has yet to be found any system in Nature so unusual that it cannot be fitted into one of the strait-jackets that mathematics provides." (John Barrow," Pi in the Sky: Counting, Thinking, and Being", 1992)

"The relationship of math to the real world has been a conundrum for philosophers for centuries, but it is also an inspiration for poets. The patterns of mathematics inhabit a liminal space - they were initially derived from the natural world and yet seem to exist in a separate, self-contained system standing apart from that world. This makes them a source of potential metaphor: mapping back and forth between the world of personal experience and the world of mathematical patterns opens the door to novel connections." (Alice Major, "Mapping from e to Metaphor", 2018)

"Mathematics originates in the mind of an individual, as it doubtless originated historically in the collective life of mankind, with the recognition of certain recurrent abstract features in common experience, and the development of processes of counting, measuring, and calculating, by which order can be brought into the manipulations of these features. It originated in this manner, indeed; but already at a very early stage it begins to transcend the practical sphere and its character undergoes a corresponding change. Intellectual curiosity progressively takes charge, despite the fact that practical considerations may for long continue to be the main source of interest and may indeed never cease to stimulate the creation of new concepts and new methods. As mathematics breaks from its early dependence on practical utility, its ‘immediate’ significance is at the same time lost and the goal is to discover what it is that makes 'emancipated' mathematics valid. (Geoffrey T Kneebone)

17 June 2021

On Knowledge (-1699)

"In all disciplines in which there is systematic knowledge of things with principles, causes, or elements, it arises from a grasp of those: we think we have knowledge of a thing when we have found its primary causes and principles, and followed it back to its elements." (Aristotle, "Physics", cca. 350 BC)

"Thinking is different from perceiving and is held to be in part imagination, in part judgement: we must therefore first mark off the sphere of imagination and then speak of judgement. If then imagination is that in virtue of which an image arises for us, excluding metaphorical uses of the term, is it a single faculty or disposition relative to images, in virtue of which we discriminate and are either in error or not? The faculties in virtue of which we do this are sense, opinion, knowledge, thought." (Aristotle, "De Anima", cca. 350 BC)

"Knowledge, then, is a state of capacity to demonstrate, and has the other limiting characteristics which we specify in the Analytics; for it is when one believes in a certain way and the principles are known to him that he has knowledge, since if they are not better known to him than the conclusion, he will have his knowledge only on the basis of some concomitant." (Aristotle," Nicomachean Ethics", cca. 340 BC)

"What we know is not capable of being otherwise; of things capable of being otherwise we do not know, when they have passed outsideour observation, whether they exist or not. Therefore the object of knowledge is of necessity. Therefore it is eternal; for things that are of necessity in the unqualified sense are all eternal; and things that are eternal are ungenerated and imperishable. " (Aristotle, "Nicomachean Ethics", cca. 340 BC)

"We can get some idea of a whole from a part, but never knowledge or exact opinion. Special histories therefore contribute very little to the knowledge of the whole and conviction of its truth. It is only indeed by study of the interconnexion of all the particulars, their resemblances and differences, that we are enabled at least to make a general survey, and thus derive both benefit and pleasure from history." (Polybius, "The Histories", cca. 150 BC)

"The mathematician speculates the causes of a certain sensible effect, without considering its actual existence; for the contemplation of universals excludes the knowledge of particulars; and he whose intellectual eye is fixed on that which is general and comprehensive, will think but little of that which is sensible and singular." (Proclus Lycaeus, cca 5th century)

"All knowledge or cognition possessed by creatures is limited. Infinite knowledge belongs solely to God, because of His infinite nature." (John of Salisbury, "Metalogicon", 1159)

"All things have a way of adding up together, so that one will become more proficient in any proposed branch of learning to the extent that he has mastered neighboring and related departments of knowledge." (John of Salisbury, "Metalogicon", 1159)

"In our acquisition of [scientific] knowledge, investigation is the first step, and comes before comprehension, analysis, and retention. Innate ability, although it proceeds from nature, is fostered by study and exercise. What is difficult when we first try it, becomes easier after assiduous practice, and once the rules for doing it are mastered, very easy, unless languor creeps in, through lapse of use or carelessness, and impedes our efficiency. This, in short, is how all the arts have originated: Nature, the first fundamental, begets the habit and practice of study, which proceeds to provide an art, and the latter, in turn, finally furnishes the faculty whereof we speak. Natural ability is accordingly effective. So, too, is exercise. And memory likewise, is effective, when employed by the two aforesaid. With the help of the foregoing, reason waxes strong, and produces the arts, which are proportionate to [man’s] natural talents." (John of Salisbury, "Metalogicon", 1159)

"There are four great sciences, without which the other sciences cannot be known nor a knowledge of things secured […] Of these sciences the gate and key is mathematics […] He who is ignorant of this [mathematics] cannot know the other sciences nor the affairs of this world." (Roger Bacon, "Opus Majus", 1267)

"There are two modes of acquiring knowledge, namely, by reasoning and experience. Reasoning draws a conclusion and makes us grant the conclusion, but does not make the conclusion certain, nor does it remove doubt so that the mind may rest on the intuition of truth unless the mind discovers it by the path of experience." (Roger Bacon, "Opus Majus", 1267)

"That faculty which perceives and recognizes the noble proportions in what is given to the senses, and in other things situated outside itself, must be ascribed to the soul. It lies very close to the faculty which supplies formal schemata to the senses, or deeper still, and thus adjacent to the purely vital power of the soul, which does not think discursively […] Now it might be asked how this faculty of the soul, which does not engage in conceptual thinking, and can therefore have no proper knowledge of harmonic relations, should be capable of recognizing what is given in the outside world. For to recognize is to compare the sense perception outside with the original pictures inside, and to judge that it conforms to them." (Johannes Kepler, "Harmonices Mundi" ["Harmony of the World"] , 1619)

"Knowledge being to be had only of visible and certain truth, error is not a fault of our knowledge, but a mistake of our judgment, giving assent to that which is not true." (John Locke, "An Essay Concerning Human Understanding", 1689)

"[…] the highest probability amounts not to certainty, without which there can be no true knowledge." (John Locke, "An Essay Concerning Human Understanding", 1689)

On Knowledge (2000-2009)

"Storytelling is the art of unfolding knowledge in a way that makes each piece contribute to a larger truth." (Philip Gerard, "Writing a Book That Makes a Difference", 2000)

"There is a strong tendency today to narrow specialization. Because of the exponential growth of information, we can afford (in terms of both economics and time) preparation of specialists in extremely narrow fields, the various branches of science and engineering having their own particular realms. As the knowledge in these fields grows deeper and broader, the individual's field of expertise has necessarily become narrower. One result is that handling information has become more difficult and even ineffective." (Semyon D Savransky, "Engineering of Creativity", 2000)

"All human knowledge - including statistics - is created  through people's actions; everything we know is shaped by our language, culture, and society. Sociologists call this the social construction of knowledge. Saying that knowledge is socially constructed does not mean that all we know is somehow fanciful, arbitrary, flawed, or wrong. For example, scientific knowledge can be remarkably accurate, so accurate that we may forget the people and social processes that produced it." (Joel Best, "Damned Lies and Statistics: Untangling Numbers from the Media, Politicians, and Activists", 2001)

"Defined from a societal standpoint, information may be seen as an entity which reduces maladjustment between system and environment. In order to survive as a thermodynamic entity, all social systems are dependent upon an information flow. This explanation is derived from the parallel between entropy and information where the latter is regarded as negative entropy (negentropy). In more common terms information is a form of processed data or facts about objects, events or persons, which are meaningful for the receiver, inasmuch as an increase in knowledge reduces uncertainty." (Lars Skyttner, "General Systems Theory: Ideas and Applications", 2001)

"Knowledge is factual when evidence supports it and we have great confidence in its accuracy. What we call 'hard fact' is information supported by  strong, convincing evidence; this means evidence that, so far as we know, we cannot deny, however we examine or test it. Facts always can be questioned, but they hold up under questioning. How did people come by this information? How did they interpret it? Are other interpretations possible? The more satisfactory the answers to such questions, the 'harder' the facts."(Joel Best, Damned Lies and Statistics: Untangling Numbers from the Media, Politicians, and Activists, 2001)

"Knowledge maps are node-link representations in which ideas are located in nodes and connected to other related ideas through a series of labeled links. They differ from other similar representations such as mind maps, concept maps, and graphic organizers in the deliberate use of a common set of labeled links that connect ideas. Some links are domain specific (e.g., function is very useful for some topic domains...) whereas other links (e.g., part) are more broadly used. Links have arrowheads to indicate the direction of the relationship between ideas." (Angela M. O’Donnell et al, "Knowledge Maps as Scaffolds for Cognitive Processing", Educational Psychology Review Vol. 14 (1), 2002) 

"Knowledge is encoded in models. Models are synthetic sets of rules, and pictures, and algorithms providing us with useful representations of the world of our perceptions and of their patterns." (Didier Sornette, "Why Stock Markets Crash - Critical Events in Complex Systems", 2003)

"The networked world continuously refines, reinvents, and reinterprets knowledge, often in an autonomic manner." (Donald M Morris et al, "A revolution in knowledge sharing", 2003) 

"A mental model is conceived […] as a knowledge structure possessing slots that can be filled not only with empirically gained information but also with ‘default assumptions’ resulting from prior experience. These default assumptions can be substituted by updated information so that inferences based on the model can be corrected without abandoning the model as a whole. Information is assimilated to the slots of a mental model in the form of ‘frames’ which are understood here as ‘chunks’ of knowledge with a well-defined meaning anchored in a given body of shared knowledge." (Jürgen Renn, "Before the Riemann Tensor: The Emergence of Einstein’s Double Strategy", 2005)

"Evolution moves towards greater complexity, greater elegance, greater knowledge, greater intelligence, greater beauty, greater creativity, and greater levels of subtle attributes such as love. […] Of course, even the accelerating growth of evolution never achieves an infinite level, but as it explodes exponentially it certainly moves rapidly in that direction." (Ray Kurzweil, "The Singularity is Near", 2005)

“It makes no sense to seek a single best way to represent knowledge - because each particular form of expression also brings its particular limitations. For example, logic-based systems are very precise, but they make it hard to do reasoning with analogies. Similarly, statistical systems are useful for making predictions, but do not serve well to represent the reasons why those predictions are sometimes correct.” (Marvin Minsky, "The Emotion Machine: Commonsense Thinking, Artificial Intelligence, and the Future of the Human Mind", 2006)

"Information is just bits of data. Knowledge is putting them together. Wisdom is transcending them." (Ram Dass, "One-Liners: A Mini-Manual for a Spiritual Life (ed. Harmony", 2007)

"Science is not only the enterprise of harnessing nature to serve the practical needs of humankind. It is also part of man’s unending search for knowledge about the universe and his place within it." (Henry P Stapp, "Mindful Universe: Quantum Mechanics and the Participating Observer", 2007)

"Critical thinking is essentially a questioning, challenging approach to knowledge and perceived wisdom. It involves ideas and information from an objective position and then questioning this information in the light of our own values, attitudes and personal philosophy." Brenda Judge et al, "Critical Thinking Skills for Education Students", 2009)

"Equations seem like treasures, spotted in the rough by some discerning individual, plucked and examined, placed in the grand storehouse of knowledge, passed on from generation to generation. This is so convenient a way to present scientific discovery, and so useful for textbooks, that it can be called the treasure-hunt picture of knowledge." (Robert P Crease, "The Great Equations", 2009)

"Traditional statistics is strong in devising ways of describing data and inferring distributional parameters from sample. Causal inference requires two additional ingredients: a science-friendly language for articulating causal knowledge, and a mathematical machinery for processing that knowledge, combining it with data and drawing new causal conclusions about a phenomenon."(Judea Pearl, "Causal inference in statistics: An overview", Statistics Surveys 3, 2009)

16 June 2021

On Knowledge (1970-1979)

"Inductive inference is the only process known to us by which essential new knowledge comes into the world." (Sir Ronald A Fisher, "The Design of Experiments", 1971)

"A discovery must be, by definition, at variance with existing knowledge." (Albert Szent-Gyorgyi, "Dionysians and Apollonians", Science 176, 1972)

"Nature is a network of happenings that do not unroll like a red carpet into time, but are intertwined between every part of the world; and we are among those parts. In this nexus, we cannot reach certainty because it is not there to be reached; it goes with the wrong model, and the certain answers ironically are the wrong answers. Certainty is a demand that is made by philosophers who contemplate the world from outside; and scientific knowledge is knowledge for action, not contemplation. There is no God’s eye view of nature, in relativity, or in any science: only a man’s eye view." (Jacob Bronowski, "The Identity of Man", 1972)

"The human condition can almost be summed up in the observation that, whereas all experiences are of the past, all decisions are about the future. It is the great task of human knowledge to bridge this gap and to find those patterns in the past which can be projected into the future as realistic images." (Kenneth E Boulding, [foreword] 1972)

"Human knowledge is personal and responsible, an unending adventure at the edge of uncertainty." (Jacob Bronowski, "The Ascent of Man", 1973)

"In moving from conjecture to experimental data, (D), experiments must be designed which make best use of the experimenter's current state of knowledge and which best illuminate his conjecture. In moving from data to modified conjecture, (A), data must be analyzed so as to accurately present information in a manner which is readily understood by the experimenter." (George E P Box & George C Tjao, "Bayesian Inference in Statistical Analysis", 1973)

"Discoveries are made by pursuing possibilities suggested by existing knowledge." (Michael Polanyi, "Meaning", 1975)

"Knowledge is not a series of self-consistent theories that converges toward an ideal view; it is rather an ever increasing ocean of mutually incompatible (and perhaps even incommensurable) alternatives, each single theory, each fairy tale, each myth that is part of the collection forcing the others into greater articulation and all of them contributing, via this process of competition, to the development of our consciousness." (Paul K Feyerabend, "Against Method: Outline of an Anarchistic Theory of Knowledge", 1975)

"Every judgment teeters on the brink of error. To claim absolute knowledge is to become monstrous. Knowledge is an unending adventure at the edge of uncertainty." (Frank Herbert, "Children of Dune", 1976)

"Owing to his lack of knowledge, the ordinary man cannot attempt to resolve conflicting theories of conflicting advice into a single organized structure. He is likely to assume the information available to him is on the order of what we might think of as a few pieces of an enormous jigsaw puzzle. If a given piece fails to fit, it is not because it is fraudulent; more likely the contradictions and inconsistencies within his information are due to his lack of understanding and to the fact that he possesses only a few pieces of the puzzle. Differing statements about the nature of things […] are to be collected eagerly and be made a part of the individual's collection of puzzle pieces. Ultimately, after many lifetimes, the pieces will fit together and the individual will attain clear and certain knowledge." (Alan R Beals, "Strategies of Resort to Curers in South India" [contributed in Charles M. Leslie (ed.), "Asian Medical Systems: A Comparative Study", 1976]) 

"Concepts form the basis for any science. These are ideas, usually somewhat vague (especially when first encountered), which often defy really adequate definition. The meaning of a new concept can seldom be grasped from reading a one-paragraph discussion. There must be time to become accustomed to the concept, to investigate it with prior knowledge, and to associate it with personal experience. Inability to work with details of a new subject can often be traced to inadequate understanding of its basic concepts." (William C Reynolds & Harry C Perkins, "Engineering Thermodynamics", 1977)

"Because of mathematical indeterminancy and the uncertainty principle, it may be a law of nature that no nervous system is capable of acquiring enough knowledge to significantly predict the future of any other intelligent system in detail. Nor can intelligent minds gain enough self-knowledge to know their own future, capture fate, and in this sense eliminate free will." (Edward O Wilson, "On Human Nature", 1978) 

"Certainty, simplicity, vividness originate in popular knowledge. That is where the expert obtains his faith in this triad as the ideal of knowledge. Therein lies the general epistemological significance of popular science." (Ludwik Fleck, "Genesis and Development of a Scientific Fact", 1979)

"It is hard for us today to assimilate all the new ideas that are being suggested in response to the new information we have. We must remember that our picture of the universe is based not only on our scientific knowledge but also on our culture and our philosophy. What new discoveries lie ahead no one can say. There may well be civilizations in other parts of our galaxy or in other galaxies that have already accomplished much of what lies ahead for mankind. Others may just be beginning. The universe clearly presents an unending challenge." (Necia H Apfel & J Allen Hynek, "Architecture of the Universe", 1979)

30 May 2021

On Conjecture (1800-1899)

"In order to supply the defects of experience, we will have recourse to the probable conjectures of analogy, conclusions which we will bequeath to our posterity to be ascertained by new observations, which, if we augur rightly, will serve to establish our theory and to carry it gradually nearer to absolute certainty." (Johann H Lambert, "The System of the World", 1800)

"In all speculations on the origin, or agents that have produced the changes on this globe, it is probable that we ought to keep within the boundaries of the probable effects resulting from the regular operations of the great laws of nature which our experience and observation have brought within the sphere of our knowledge. When we overleap those limits, and suppose a total change in nature's laws, we embark on the sea of uncertainty, where one conjecture is perhaps as probable as another; for none of them can have any support, or derive any authority from the practical facts wherewith our experience has brought us acquainted." (William Maclure, "Observations on the Geology of the United States of America", 1817)

"The science of the mathematics performs more than it promises, but the science of metaphysics promises more than it performs. The study of the mathematics, like the Nile, begins in minuteness but ends in magnificence; but the study of metaphysics begins with a torrent of tropes, and a copious current of words, yet loses itself at last in obscurity and conjecture, like the Niger in his barren deserts of sand." (Charles C Colton, "Lacon", 1820)

"We know the effects of many things, but the causes of few; experience, therefore, is a surer guide than imagination, and inquiry than conjecture." (Charles C Colton, "Lacon", 1820)

"Let me be permitted to recall that the object of mathematics is not to investigate the causes that one can assign to natural phenomena. This science would lose both its character and credit if, renouncing the support of general well-confirmed facts, it sought within the realm of nebulous conjectures, a realm which has always been a fertile source of error for ways of satisfying the thirst fo rexplanation." (Sophie Germain, "Examen des principes qui peuvent conduire a la connaissance des lois de requilibre et du mouvement des solides elastiques", Annales de Chimie 38, 1828)

"Life is not the object of Science: we see a little, very little; And what is beyond we can only conjecture." (Samuel Johnson, "Causes Which Produce Diversity of Opinion", 1840)

"The entire annals of Observation probably do not elsewhere exhibit so extraordinary a verification of any theoretical conjecture adventured on by the human spirit!" (John P Nichol, "The Planet Neptune: An Exposition and History", 1848)

"The philosophical study of nature rises above the requirements of mere delineation, and does not consist in the sterile accumulation of isolated facts. The active and inquiring spirit of man may therefore be occasionally permitted to escape from the present into the domain of the past, to conjecture that which cannot yet be clearly determined, and thus to revel amid the ancient and ever-recurring myths of geology." (Alexander von Humboldt, "Views of Nature: Or Contemplation of the Sublime Phenomena of Creation", 1850)

"The rules of scientific investigation always require us, when we enter the domains of conjecture, to adopt that hypothesis by which the greatest number of known facts and phenomena may be reconciled." (Matthew F Maury, "The Physical Geography of the Sea", 1855)

"There is something fascinating about science. One gets such wholesale returns of conjecture out of such a trifling investment of fact." (Samuel L Clemens [Mark Twain], "Life on the Mississippi", 1883)

"I have been able to solve a few problems of mathematical physics on which the greatest mathematicians since Euler have struggled in vain. [...] But the pride I might have held in my conclusions was perceptibly lessened by the fact that I knew that the solution of these problems had almost always come to me as the gradual generalization of favorable examples, by a series of fortunate conjectures, after many errors." (Hermann von Helmholtz, 1891)

Related Posts Plugin for WordPress, Blogger...

On Leonhard Euler

"I have been able to solve a few problems of mathematical physics on which the greatest mathematicians since Euler have struggled in va...