Showing posts with label arithmetic. Show all posts
Showing posts with label arithmetic. Show all posts

29 September 2024

On Arithmetic (Unsourced)

"Arithmetic, then, means dealing logically with certain facts that we know, about numbers, with a view to arriving at knowledge which as yet we do not possess." (Philosophy & Fun of Algebra)

"As arithmetic and algebra are sciences of great clearness, certainty, and extent, which are immediately conversant about signs, upon the skillful use whereof they entirely depend, so a little attention to them may possibly help us to judge of the progress of the mind in other sciences, which, though differing in nature, design, and object, may yet agree in the general methods of proof and inquiry." (George Berkeley)

"I compare arithmetic with a tree that unfolds upwards in a multitude of techniques and theorems while the root drives into the depths." (F L Gottlob Frege)

"Music is the arithmetic of sounds as optics is the geometry of light." (Claude Debussy)

"Music is the hidden arithmetical exercise of a soul unconscious that it is calculating." (Gottfried W Leibniz)

"The human mind has never invented a labor-saving machine equal to algebra." (J Willard Gibbs)

"The mathematical phenomenon always develops out of simple arithmetic, so useful in everyday life, out of numbers, those weapons of the gods; the gods are there, behind the wall, at play with numbers." (Le Corbusier)

"The pleasure we obtain from music comes from counting, but counting unconsciously. Music is nothing but unconscious arithmetic." (Gottfried W Leibniz)

"You cannot ask us to take sides against arithmetic." (Winston S Churchill)

On Arithmetic (1976 - 1999)

"Mathematics then becomes the ladder by which we all may climb into the heaven of perfect insight and eternal satisfaction, and the solution of arithmetic and algebraic problems is connected with the salvation of our souls." (Scott Buchanan, "Poetry and Mathematics", 1975)

"Dividing by zero is the closest thing there is to arithmetic blasphemy." (William Dunham, "The Mathematical Universe: An Alphabetical Journey Through the Great Proofs, Problems, and Personalities", 1978)

"[...] an intellectual is a highly educated man who can’t do arithmetic with his shoes on, and is proud of his lack." (Robert A Heinlein, "The Cat Who Walks Through Walls: A comedy of manners", 1985)

"Mathematics is not arithmetic. Though mathematics may have arisen from the practices of counting and measuring it really deals with logical reasoning in which theorems - general and specific statements - can be deduced from the starting assumptions. It is, perhaps, the purest and most rigorous of intellectual activities, and is often thought of as queen of the sciences." (Sir Erik C Zeeman, "Private Games", 1988)

"The letter ‘i’ originally was meant to suggest the imaginary nature of this number, but with the greater abstraction of mathematics, it came to be realized that it was no more imaginary than many other mathematical constructs. True, it is not suitable for measuring quantities, but it obeys the same laws of arithmetic as do the real numbers, and, surprisingly enough, it makes the statement of various physical laws very natural." (John A Paulos, "Beyond Numeracy", 1991)

"He who refuses to do arithmetic is doomed to talk nonsense." (John McCarthy, "Progress and its Substanability", 1995)

On Arithmetic (1950 - 1074)

"Arithmetic is where numbers fly like pigeons in and out of your head." (Carl Sandburg, "Arithmetic" [in "Complete Poems"], 1950)

"Arithmetic is numbers you squeeze from your head to your hand to your pencil to your paper till you get the answer." (Carl Sandburg, "Arithmetic" [in "Complete Poems"], 1950)

"Any one who considers arithmetical methods of producing random digits is, of course, in a state of sin. For, as has been pointed out several times, there is no such thing as a random number - there are only methods to produce random numbers, and a strict arithmetic procedure of course is not such a method." (John von Neumann, "Various techniques used in connection with random digits", 1951)

"[…] arithmetic is a calculus which starts only from certain conventions but floats as freely as the solar system and rests on nothing." (Friedrich Waismann, "Introduction to Mathematical Thinking", 1951)

"Historically, Statistics is no more than State Arithmetic, a system of computation by which differences between individuals are eliminated by the taking of an average. It has been used - indeed, still is used - to enable rulers to know just how far they may safely go in picking the pockets of their subjects." (Michael J Moroney, "Facts from Figures", 1951)

"The first acquaintance which most people have with mathematics is through arithmetic. [...] Arithmetic, therefore, will be a good subject to consider in order to discover, if possible, the most obvious characteristic of the science. Now, the first noticeable fact about arithmetic is that it applies to everything, to tastes and to sounds, to apples and to angels, to the ideas of the mind and to the bones of the body." (Alfred N Whitehead, "An Introduction to Mathematics", 1958)

"The territory of arithmetic ends where the two ideas of 'variables' and of 'algebraic form' commence their sway." (Alfred N Whitehead,  "An Introduction to Mathematics", 1958)

"The statistician has no use for information that cannot be expressed numerically, nor generally speaking, is he interested in isolated events or examples. The term ' data ' is itself plural and the statistician is concerned with the analysis of aggregates." (Alfred R Ilersic, "Statistics", 1959)

"The statistics themselves prove nothing; nor are they at any time a substitute for logical thinking. There are […] many simple but not always obvious snags in the data to contend with. Variations in even the simplest of figures may conceal a compound of influences which have to be taken into account before any conclusions are drawn from the data." (Alfred R Ilersic, "Statistics", 1959)

"There are good statistics and bad statistics; it may be doubted if there are many perfect data which are of any practical value. It is the statistician's function to discriminate between good and bad data; to decide when an informed estimate is justified and when it is not; to extract the maximum reliable information from limited and possibly biased data." (Alfred R Ilersic, "Statistics", 1959)

"While it is true to assert that much statistical work involves arithmetic and mathematics, it would be quite untrue to suggest that the main source of errors in statistics and their use is due to inaccurate calculations." (Alfred R Ilersic, "Statistics", 1959)

"Science will never be able to reduce the value of a sunset to arithmetic. Nor can it reduce friendship or statesmanship to a formula. Laughter and love, pain and loneliness, the challenge of accomplishment in living, and the depth of insight into beauty and truth; these will always surpass the scientific mastery of nature." (Louis Orr, [Commencement Address] 1960)

"Poor arithmetic will make the bridge fall down just as surely as poor physics, poor metallurgy, or poor logic will." ( Thomas T Woodson, "Introduction to Engineering Design", 1966)

"The history of arithmetic and algebra illustrates one of the striking and curious features of the history of mathematics. Ideas that seem remarkably simple once explained were thousands of years in the making." (Morris Kline, "Mathematics for the Nonmathematician", 1967)

"[...] there is an essential element in science that is cold, objective, and nonhuman…the laws of nature are as impersonal and free of human values as the rules of arithmetic.[...] Nowhere do we see human value or human meaning. (Steven Weinberg, "Reflections of a Working Scientist", Daedalus Vol. 103, 1974)

On Arithmetic (1925 - 1949)

"[…] extensions beyond the complex number domain are possible only at the expense of the principle of permanence. The complex number domain is the last frontier of this principle. Beyond this either the commutativity of the operations or the rôle which zero plays in arithmetic must be sacrificed." (Tobias Dantzig, "Number: The Language of Science", 1930)

"For it is true, generally speaking, that mathematics is not a popular subject, even though its importance may be generally conceded. The reason for this is to be found in the common superstition that mathematics is but a continuation, a further development, of the fine art of arithmetic, of juggling with numbers." (David Hilbert, "Anschauliche Geometrie", 1932)

"Will anyone seriously assert that the existence of negative numbers is guaranteed by the fact that there exist in the world hot assets and cold, and debts? Shall we refer to these things in the structure of arithmetic? Who does not see that thereby an entirely foreign element enters into arithmetic, which endangers the pureness and clarity of its concepts?" (Friedrich Waismann, "Introduction to Mathematical Thinking: The Formation of Concepts in Modern Mathematics", 1936)

"If you find my arithmetic correct, then no amount of vapouring about my psychological condition can be anything but a waste of time. If you find my arithmetic wrong, then it may be relevant to explain psychologically how I came to be so bad at my arithmetic, and the doctrine of the concealed wish will become relevant - but only after you have yourself done the sum and discovered me to be wrong on purely arithmetical grounds. It is the same with all thinking and all systems of thought. If you try to find out which are tainted by speculating about the wishes of the thinkers, you are merely making a fool of yourself. You must first find out on purely logical grounds which of them do, in fact, break down as arguments. Afterwards, if you like, go on and discover the psychological causes of the error." (Clive S Lewis, "Bulverism", 1941)

"In other words, without a theory, a plan, the mere mechanical manipulation of the numbers in a problem does not necessarily make sense just because you are using Arithmetic!" (Lillian R Lieber, "The Education of T.C. MITS", 1944)

"If scientific reasoning were limited to the logical processes of arithmetic, we should not get very far in our understanding of the physical world. One might as well attempt to grasp the game of poker entirely by the use of the mathematics of probability." (Vannevar Bush, "As We May Think", Atlantic Monthly, 1945)

"With a literature much vaster than those of algebra and arithmetic combined, and as least as extensive as that of analysis, geometry is a richer treasure house of more interesting and half-forgotten things, which a hurried generation has no leisure to enjoy, than any other division of mathematics." (Eric T Bell, "The Development of Mathematics", 1945)

On Arithmetic (1875 - 1899)

 "I regard the whole of arithmetic as a necessary, or at least natural, consequence of the simplest arithmetical act, that of counting, and counting itself as nothing else than the successive creation of the infinite series of positive integers in which each individual is defined by the one immediately preceding […]" (Richard Dedekind, "On Continuity and Irrational Numbers", 1872)

"The most distinct and beautiful statement of any truth [in science] must take at last the mathematical form. We might so simplify the rules of moral philosophy, as well as of arithmetic, that one formula would express them both." (Henry Thoreau, "A Week on the Concord and Merrimack Rivers", 1873)

"Thought is symbolical of Sensation as Algebra is of Arithmetic, and because it is symbolical, is very unlike what it symbolises. For one thing, sensations are always positive; in this resembling arithmetical quantities. A negative sensation is no more possible than a negative number. But ideas, like algebraic quantities, may be either positive or negative. However paradoxical the square of a negative quantity, the square root of an unknown quantity, nay, even in imaginary quantity, the student of Algebra finds these paradoxes to be valid operations. And the student of Philosophy finds analogous paradoxes in operations impossible in the sphere of Sense. Thus although it is impossible to feel non-existence, it is possible to think it; although it is impossible to frame an image of Infinity, we can, and do, form the idea, and reason on it with precision." (George H Lewes "Problems of Life and Mind", 1873)

"Thus numbers may be said to rule the whole world of quantity, and the four rules of arithmetic may be regarded as the complete equipment of the mathematician." James C Maxwell, "Electricity and Magnetism", 1873)

"The rules of Arithmetic operate in Algebra; the logical operations supposed to be peculiar to Ideation operate in Sensation, There is but one Calculus, but one Logic; though for convenience we divide the one into Arithmetic the calculus of values, and Algebra the calculus of relations; the other into the Logic of Feeling and the Logic of Signs." (George H Lewes "Problems of Life and Mind", 1873)

"Algebra is but written geometry and geometry is but figured algebra." (Sophie Germain, "Mémoire sur la surfaces élastiques", 1880)

"I hope I may claim in the present work to have made it probable that the laws of arithmetic are analytic judgments and consequently a priori. Arithmetic thus becomes simply a development of logic, and every proposition of arithmetic a law of logic, albeit a derivative one. To apply arithmetic in the physical sciences is to bring logic to bear on observed facts; calculation becomes deduction." (Gottlob Frege, "The Foundations of Arithmetic", 1884)

"In science nothing capable of proof ought to be accepted without proof. Though this demand seems so reasonable yet I cannot regard it as having been met even in […] that part of logic which deals with the theory of numbers. In speaking of arithmetic (algebra, analysis) as a part of logic I mean to imply that I consider the number concept entirely independent of the notions of intuition of space and time, that I consider it an immediate result from the laws of thought." (Richard Dedekind, "Was sind und was sollen die Zahlen?", 1888)

"Strictly speaking, the theory of numbers has nothing to do with negative, or fractional, or irrational quantities, as such. No theorem which cannot be expressed without reference to these notions is purely arithmetical: and no proof of an arithmetical theorem, can be considered finally satisfactory if it intrinsically depends upon extraneous analytical theories." (George B Mathews, "Theory of Numbers", 1892)

"I compare arithmetic with a tree that unfolds upwards in a multitude of techniques and theorems while the root drives into the depths." (Gottlob Frege, "Grundgesetze der Arithmetik", 1893) 

"Considering the remarkable elegance, generality, and simplicity of the method [Homer’s Method of finding the numerical values of the roots of an equation], it is not a little surprising that it has not taken a more prominent place in current mathematical textbooks. [...] As a matter of fact, its spirit is purely arithmetical; and its beauty, which can only be appreciated after one has used it in particular cases, is of that indescribably simple kind, which distinguishes the use of position in the decimal notation and the arrangement of the simple rules of arithmetic. It is, in short, one of those things whose invention was the creation of a commonplace." (George Chrystal, "Algebra", 1893)

"The object of all arithmetical operations is to save direct enumeration, by utilizing the results of our old operations of counting. Our endeavor is, having done a sum once, to preserve the answer for future use [...]. Such, too, is the purpose of algebra, which, substituting relations for values, symbolizes and definitely fixes all numerical operations which follow the same rule." (Ernst Mach, "The Science of Mechanics", 1893)

"The science of arithmetic may be called the science of exact limitation of matter and things in space, force, and time." (Francis W Parker, "Talks on Pedagogics", 1894),

"The best review of arithmetic consists in the study of algebra." (Florian Cajori, "Teaching and History of Mathematics in U. S.", 1896)

"Anyone who understands algebraic notation, reads at a glance in an equation results reached arithmetically only with great labour and pains." (A Augustin Cournot, "Researches Into the Mathematical Principles of the Theory of Wealth", 1897)

"In order to comprehend and fully control arithmetical concepts and methods of proof, a high degree of abstraction is necessary, and this condition has at times been charged against arithmetic as a fault. I am of the opinion that all other fields of knowledge require at least an equally high degree of abstraction as mathematics, - provided, that in these fields the foundations are also everywhere examined with the rigour and completeness which is actually necessary." (David Hilbert, "Die Theorie der algebraischen Zahlkorper", 1897)

"Mathematics in its pure form, as arithmetic, algebra, geometry, and the applications of the analytic method, as well as mathematics applied to matter and force, or statics and dynamics, furnishes the peculiar study that gives to us, whether as children or as men, the command of nature in this its quantitative aspect; mathematics furnishes the instrument, the tool of thought, which we wield in this realm." (William T  Harris, "Psychologic Foundations of Education", 1898)

"The laws of algebra, though suggested by arithmetic, do not depend on it. They depend entirely on the conventions by which it is stated that certain modes of grouping the symbols are to be considered as identical. This assigns certain properties to the marks which form the symbols of algebra. The laws regulating the manipulation of algebraic symbols are identical with those of arithmetic. It follows that no algebraic theorem can ever contradict any result which could be arrived at by arithmetic; for the reasoning in both cases merely applies the same general laws to different classes of things. If an algebraic theorem can be interpreted in arithmetic, the corresponding arithmetical theorem is therefore true." (Alfred N Whitehead, "Universal Algebra", 1898)

"The method of arithmetical teaching is perhaps the best understood of any of the methods concerned with elementary studies." (Alexander Bain, "Education as a Science",  1898)

On Arithmetic (1800 - 1849)

 "Number theory is revealed in its entire simplicity and natural beauty when the field of arithmetic is extended to the imaginary numbers" (Carl F Gauss, "Disquisitiones arithmeticae" ["Arithmetical Researches"], 1801)

"The problem of distinguishing prime numbers from composite numbers and of resolving the latter into their prime factors is known to be one of the most important and useful in arithmetic. […] The dignity of the science itself seems to require that every possible means be explored for the solution of a problem so elegant and so celebrated." (Carl F Gauss, "Disquisitiones Arithmeticae" ["Arithmetical Researches"], 1801)

"I am convinced more and more that the necessary truth of our geometry cannot be demonstrated, at least not by the human intellect to the human understanding. Perhaps in another world we may gain other insights into the nature of space which at present are unattainable to us. Until then we must consider geometry as of equal rank not with arithmetic, which is purely a priori, but with mechanics." (Carl F Gauss, [Letter to Olbers] 1817)

"It is characteristic of higher arithmetic that many of its most beautiful theorems can be discovered by induction with the greatest of ease but have proofs that lie anywhere but near at hand and are often found only after many fruitless investigations with the aid of deep analysis and lucky combinations." (Carl F Gauss, 1817)

"Our general arithmetic, so far surpassing in extent the geometry of the ancients, is entirely the creation of modern times. Starting originally from the notion of absolute integers, it has gradually enlarged its domain. To integers have been added fractions, to rational quantities the irrational, to positive the negative .and to the real the imaginary. This advance, however, has always been made at first with timorous and hesitating step. The early algebraists called the negative roots of equations false roots, and these are indeed so when the problem to which they relate has been stated in such a form that the character of the quantity sought allows of no opposite. But just as in general arithmetic no one would hesitate to admit fractions, although there are so many countable things where a fraction has no meaning, so we ought not to deny to, negative numbers the rights accorded to positive simply because innumerable things allow no opposite. The reality of negative numbers is sufficiently justified since in innumerable other cases they find an adequate substratum. This has long been admitted, but the imaginary quantities - formerly and occasionally now, though improperly, called impossible-as opposed to real quantities are still rather tolerated than fully naturalized, and appear more like an empty play upon symbols to which a thinkable substratum is denied unhesitatingly by those who would not depreciate the rich contribution which this play upon symbols has made to the treasure of the relations of real quantities." (Carl F Gauss, "Theoria residuorum biquadraticorum, Commentatio secunda", Göttingische gelehrte Anzeigen, 1831)

"What would life be like without arithmetic, but a scene of horrors?" (Sydney Smith, "Letter 692]  [in "The Letters of Sydney Smith" Vol.2] 1835)

"The science of algebra, independently of any of its uses, has all the advantages which belong to mathematics in general as an object of study, and which it is not necessary to enumerate. Viewed either as a science of quantity, or as a language of symbols, it may be made of the greatest service to those who are sufficiently acquainted with arithmetic, and who have sufficient power of comprehension to enter fairly upon its difficulties." (Augustus de Morgan, "Elements of Algebra", 1837)

"These sciences, Geometry, Theoretical Arithmetic and Algebra, have no principles besides definitions and axioms, and no process of proof but deduction; this process, however, assuming a most remarkable character; and exhibiting a combination of simplicity and complexity, of rigour and generality, quite unparalleled in other subjects." (William Whewell, "The Philosophy of the Inductive Sciences", 1840)

"Arithmetic has for its object the properties of number in the abstract. In algebra, viewed as a science of operations, order is the predominating idea. The business of geometry is with the evolution of the properties of space, or of bodies viewed as existing in space." (James J Sylvester, "A Probationary Lecture on Geometry", 1844)

"The Higher Arithmetic presents us with an inexhaustible storehouse of interesting truths - of truths, too, which are not isolated but stand in the closest relation to one another, and between which, with each successive advance of the science, we continually discover new and sometimes wholly unexpected points of contact. A great part of the theories of Arithmetic derive an additional charm from the peculiarity that we easily arrive by induction at important propositions which have the stamp of simplicity upon them but the demonstration of which lies so deep as not to be discovered until after many fruitless efforts; and even then it is obtained by some tedious and artificial process while the simpler methods of proof long remain hidden from us." (Carl F Gauss, [introduction to Gotthold Eisenstein’s "Mathematische Abhandlungen"] 1847)

"Geometrical reasoning, and arithmetical process, have each its own office: to mix the two in elementary instruction, is injurious to the proper acquisition of both." (Augustus De Morgan, "Trigonometry and Double Algebra", 1849)

On Arithmetic (1300 - 1799)

"Music submits itself to principles which it derives from arithmetic." (St. Thomas d'Aquin," Summa theologica", 1485)

"[...] if the worth of the arts were measured by the matter with which they deal, this art - which some call astronomy, others astrology, and many of the ancients the consummation of mathematics - would be by far the most outstanding. This art which is as it were the head of all the liberal arts and the one most worthy of a free man leans upon nearly all the other branches of mathematics. Arithmetic, geometry, optics, geodesy, mechanics, and whatever others, all offer themselves in its service." (Nicolaus Copernicus, "On the Revolutions of the Heavenly Spheres", 1543)

"Mathematic is either Pure or Mixed: To Pure Mathematic belong those sciences which handle Quantity entirely severed from matter and from axioms of natural philosophy. These are two, Geometry and Arithmetic; the one handling quantity continued, the other dissevered. [...] Mixed Mathematic has for its subject some axioms and parts of natural philosophy, and considers quantity in so far as it assists to explain, demonstrate and actuate these." (Francis Bacon, "De Augmentis", 1623)

"Music is a hidden arithmetic exercise of the soul, which does not know that it is counting."
["Musica est exercitium arithmeticae occultum nescientis se numerare animi."] (Gottfried Leibniz, [Letter to Christian Goldbach], 1712)

"As arithmetic and algebra are sciences of great clearness, certainty, and extent, which are immediately conversant about signs, upon the skillful use whereof they entirely depend, so a little attention to them may possibly help us to judge of the progress of the mind in other sciences, which, though differing in nature, design, and object, may yet agree in the general methods of proof and inquiry." (George Berkeley, "Alciphorn: or, the Minute Philosopher", 1732)

"Now as to what pertains to these Surd numbers (which, as it were by way of reproach and calumny, having no merit of their own are also styled Irrational, Irregular, and Inexplicable) they are by many denied to be numbers properly speaking, and are wont to be banished from arithmetic to another Science, (which yet is no science) viz. algebra." (Isaac Barrow, "Mathematical Lectures", 1734)

"Arithmetic and geometry, those wings on which the astronomer soars as high as heaven." (Robert Boyle, "Usefulness of Mathematics to Natural Philosophy", 1744)

"[...] the ideas which these sciences [Geometry, Theoretical Arithmetic and Algebra] involve extend to all objects and changes which we observe in the external world; and hence the consideration of mathematical relations forms a large portion of many of the sciences which treat of the phenomena and laws of external nature, as Astronomy, Optics, and Mechanics. Such sciences are hence often termed Mixed Mathematics, the relations of space and number being, in these branches of knowledge, combined with principles collected from special observation; while Geometry, Algebra, and the like subjects, which involve no result of experience, are called Pure Mathematics." (William Whewell, "The Philosophy of the Inductive Sciences Founded Upon Their History" Vol. 1, 1747)

"Algebra is a general Method of Computation by certain Signs and Symbols which have been contrived for this Purpose, and found convenient. It is called an Universal Arithmetic, and proceeds by Operations and Rules similar to those in Common Arithmetic, founded upon the same Principles." (Colin Maclaurin, "A Treatise on Algebra", 1748)

"The operations of symbolic arithmetick seem to me to afford men one of the clearest exercises of reason that I ever yet met with, nothing being there to be performed without strict and watchful ratiocination, and the whole method and progress of that appearing at once upon the paper, when the operation is finished, and affording the analyst a lasting and, as it were, visible ratiocination." (Robert Boyle, "The Works of the Honourable Robert Boyle" Vol. III, 1772)

"The scientific part of Arithmetic and Geometry would be of more use for regulating the thoughts and opinions of men than all the great advantage which Society receives from the general application of them: and this use cannot be spread through the Society by the practice; for the Practitioners, however dextrous, have no more knowledge of the Science than the very instruments with which they work. They have taken up the Rules as they found them delivered down to them by scientific men, without the least inquiry after the Principles from which they are derived: and the more accurate the Rules, the less occasion there is for inquiring after the Principles, and consequently, the more difficult it is to make them turn their attention to the First Principles; and, therefore, a Nation ought to have both Scientific and Practical Mathematicians." (James Williamson, "Elements of Euclid with Dissertations", 1781)

"[…] direction is not a subject for algebra except in so far as it can be changed by algebraic operations. But since these cannot change direction (at least, as commonly explained) except to its opposite, that is, from positive to negative, or vice versa, these are the only directions it should be possible to designate. […] It is not an unreasonable demand that operations used in geometry be taken in a wider meaning than that given to them in arithmetic. " (Casper Wessel, „On the Analytical Representation of Direction", 1787)

"An ancient writer said that arithmetic and geometry are the wings of mathematics; I believe one can say without speaking metaphorically that these two sciences are the foundation and essence of all the sciences which deal with quantity. Not only are they the foundation, they are also, as it were, the capstones; for, whenever a result has been arrived at, in order to use that result, it is necessary to translate it into numbers or into lines; to translate it into numbers requires the aid of arithmetic, to translate it into lines necessitates the use of geometry." (Joseph-Louis de Lagrange, "Leçons élémentaires sur les mathématiques", 1795)

"So long as algebra and geometry proceeded separately their progress was slow and their application limited, but when these two sciences were united, they mutually strengthened each other, and marched together at a rapid pace toward perfection." (Joseph-Louis de Lagrange, "Leçons élémentaires sur les mathématiques", 1795)

On Arithmetic (-1299)

 "[Arithmetic] has a very great and elevating effect, compelling the soul to reason about abstract numbers, and rebelling against the introduction of visible or tangible objects into the argument." (Plato, "The Republic", cca. 375 BC)

"[...] arithmetic is a kind of knowledge in which the best natures should be trained, and which must not be given up." (Plato, "The Republic", cca. 375 BC)

"[...] the art of calculation (logistika) and arithmetic are both concerned with number; those who have a natural gift for calculating have, generally speaking, a talent for learning of all kinds, and even those who are slow are, by practice in it, made smarter. But the art of calculation is only preparatory to the true science; those who are to govern the city are to get a grasp of logistilca, not in the popular sense with a view to use in trade, but only for the purpose of knowledge, until they are able to con- template the nature of number in itself by thought alone." (Plato, "The Republic", cca. 375 BC)

"[...] those who have a natural talent for calculation are generally quick at every other kind of knowledge; and even the dull, if they have had an arithmetical training, although they may derive no other advantage from it, always become much quicker than they would otherwise have been [...]" (Plato, "The Republic", cca. 375 BC)

"Can we deny that a warrior should have a knowledge of arithmetic?" (Plato, "The Republic", cca. 375 BC)

"No single instrument of youthful education has such mighty power, both as regards domestic economy and politics, and in the arts, as the study of arithmetic. Above all, arithmetic stirs up him who is by nature sleepy and dull, and makes him quick to learn, retentive, shrewd, and aided by art divine he makes progress quite beyond his natural powers." (Plato, "Laws", cca. 360 BC)

"[...] if arithmetic, mensuration, and weighing be taken away from any art, that which remains will not be much." (Plato, "Philebus", cca. 360 - 347 BC)

"The Pythagoreans considered all mathematical science to be divided into four parts: one half they marked off as concerned with quantity, the other half with magnitude; and each of these they posited as twofold. A quantity can be considered in regard to its character by itself or in relation to another quantity, magnitudes as either stationary or in motion. Arithmetic, then, studies quantity as such, music the relations between quantities, geometry magnitude at rest, spherics magnitude inherently moving." (Diadochus Proclus)

"Mathematical science […] has these divisions: arithmetic, music, geometry, astronomy. Arithmetic is the discipline of absolute numerable quantity. Music is the discipline which treats of numbers in their relation to those things which are found in sound." (Cassiodorus, cca. 6th century)

On Arithmetic (1900 - 1924)

"All knowledge must be recognition, on pain of being mere delusion; Arithmetic must be discovered in just the same sense in which Columbus discovered the West Indies, and we no more create numbers than he created the Indians…. Whatever can be thought of has being and its [arithmetic] being is a precondition, not a result, of its being thought of." (Bertrand A W Russell, "Is Position in Space and Time Absolute or Relative", Mind Vol. X, 1901)

"Great numbers are not counted correctly to a unit, they are estimated; and we might perhaps point to this as a division between arithmetic and statistics, that whereas arithmetic attains exactness, statistics deals with estimates, sometimes very accurate, and very often sufficiently so for their purpose, but never mathematically exact." (Arthur L Bowley, "Elements of Statistics", 1901)

"I regard the whole of arithmetic as a necessary, or at least natural, consequence of the simplest arithmetical act, that of counting, and counting itself as nothing else than the successive creation of the infinite series of positive integers in which each individual is defined by the one immediately preceding [...] (Richard Dedekind, "Essays on the Theory of Numbers", 1901)

"Symbolism is useful because it makes things difficult. Now in the beginning everything is self-evident, and it is hard to see whether one self-evident proposition follows from another or not. Obviousness is always the enemy to correctness. Hence we must invent a new and difficult symbolism in which nothing is obvious. [...] Thus the whole of Arithmetic and Algebra has been shown to require three indefinable notions and five indemonstrable propositions." Bertrand Russell, International Monthly, 1901)

"Arithmetical symbols are written diagrams and geometrical figures are graphic formulas." (David Hilbert, Bulletin of the American Mathematical Society Mathematical Problems Vol. 8, 1902)

"Arithmetic must be discovered in just the same sense in which Columbus discovered the West Indies, and we no more create numbers than he created the Indians." (Bertrand Russell, "The Principles of Mathematics", 1903)

"For we do not listen with the best regard to the verses of a man who is only a poet, nor to his problems if he is only an algebraist; but if a man is at once acquainted with the geometric foundations of things and with their festal splendor, his poetry is exact and his arithmetic musical." (Ralph Waldo Emerson, "Works and Days" [in "Society and solitude: Twelve chapters", 1903])

"We believe that in our reasonings we no longer appeal to intuition; the philosophers will tell us this is an illusion. Pure logic could never lead us to anything but tautologies; it could create nothing new; not from it alone can any science issue. In one sense these philosophers are right; to make arithmetic, as to make geometry, or to make any science, something else than pure logic is necessary. To designate this something else we have no word other than intuition. But how many different ideas are hidden under thi4s same word?" (Henri Poincaré , "Intuition and Logic in Mathematics", 1905)

"Arithmetic does not present to us that feeling of continuity which is such a precious guide; each whole number is separate from the next of its kind and has in a sense individuality; each in a manner is an exception and that is why general theorems are rare in the theory of numbers; and that is why those theorems which may exist are more hidden and longer escape those who are searching for them." (Henri Poincaré, "Annual Report of the Board of Regents of the Smithsonian Institution", 1909)

"The science of arithmetic may be called the science of exact limitation of matter and things in space, force, and time." (Francis W Parker, "Talks on Pedagogics: An outline of the theory of concentration", 1909)

"The student of arithmetic who has mastered the first four rules of his art, and successfully striven with money sums and fractions, finds himself confronted by an unbroken expanse of questions known as problems." (Stephen Leacock, "Literary Lapses", 1911)

"Geometry formerly was the chief borrower from arithmetic and algebra, but it has since repaid its obligation with abundant usury; and if I were asked to name, in one word, the pole-star round which the mathematical firmament revolves, the central idea which pervades as a hidden spirit the whole corpus of mathematical doctrine, I should point to Continuity as contained in our notions of space, and say, it is this, it is this!" (James J. Sylvester, Presidential Address to the British Association, [The Collected Mathematical Papers of James Joseph Sylvester Vol. 2, cca. 1904–1912])

"Time was when all the parts of the subject were dissevered, when algebra, geometry, and arithmetic either lived apart or kept up cold relations of acquaintance confined to occasional calls upon one another; but that is now at an end; they are drawn together and are constantly becoming more and more intimately related and connected by a thousand fresh ties, and we may confidently look forward to a time when they shall form but one body with one soul." (James J. Sylvester, Presidential Address to the British Association, [The Collected Mathematical Papers of James Joseph Sylvester Vol. 2, cca. 1904–1912])

"Arithmetic is the science of the Evaluation of Functions, Algebra is the science of the Transformation of Functions." (George H Howison, Journal of Speculative Philosophy Vol. 5, 1914)

"The way to enable a student to apprehend the instrumental value of arithmetic is not to lecture him on the benefit it will be to him in some remote and uncertain future, but to let him discover that success in something he is interested in doing depends on ability to use numbers." (John Dewey, "Democracy and Education: An Introduction to the Philosophy of Education", 1916)

01 November 2021

Misquoted: Gauss on the Queen of Mathematics

The following two quotes from Carl Friedrich Gauss are frequently met in books on Mathematics and Science (sometimes with slight differences in formulation as they were translated from German):

"Mathematics is the Queen of the Sciences, and Arithmetic the Queen of Mathematics." 
"Mathematics is the Queen of the Sciences, and Number Theory the Queen of Mathematics."

The earliest occurrence of the quotes I met first in Eric T Bell's "Mathematics: Queen & Servant of Science" (1951), which is probably one of the most quoted sources for the quotes:

"Mathematics is Queen of the Sciences and Arithmetic the Queen of Mathematics. She often condescends to render service to astronomy and other natural sciences, but under all  circumstances the first place is her due."

However, doing a little research I found an earlier reference in John T Merz' "European Thought in the Nineteenth Century" Vol II (1903), who cites Sartorius von Waltershausen's "Gauss zum Gedächtniss" (1856) as source:

"Mathematics is the Queen of the Sciences, and arithmetic the Queen of Mathematics. She frequently condescends to do service for astronomy and other natural sciences, but to her belongs, under all circumstances, the foremost place."

Arithmetic, at least the way introduced in schools, is the study of numbers and their properties in report with the basic operations (addition, subtraction, multiplication, division, exponentiation and extraction of roots). In exchange, Number Theory appeared while studying the intrinsic properties of integers and integer-valued functions, what is known also as Higher Arithmetic. Even if the earliest discoveries date from early antiquity, the basis were put by Fermat, Euler, Gauss and others mathematicians, incorporating over time domains like Complex Analysis, Group theory or Galois theory.

According to Merriam-Webster, "Number Theory" was used for the first time around 1864 and it took some time until it was incorporated in mathematical texts. Arithmetic and Number Theory become synonymous in the 20th century (which might be strange for some). Thus, in some occurrence of the quote "Arithmetic" was replaced by "Number Theory" to reflect nowadays’ interpretation of Gauss' words. The two quotes seem to mean the same thing, though they probably need to be interpreted upon case through the historical context.  

'Queen' is used here metaphorically as an analogy between the meanings associated with a queen (ruler, fertility, authority), respectively the roles taken by Mathematics and Arithmetic in science. Therefore, a science considered as a queen could be seen as having a high fecundity of ideas and authority in another field. As "Queen of Science" were considered also Metaphysics (Immanuel Kant), Philosophy and even Theology. Also Physics and Chemistry have a statute of royalty.

The importance of Higher Arithmetic in respect to Mathematics, is stressed by Gauss in a letter to Dirichlet from 1838: 

"I place this part of Mathematics above all others (and have always done so)."

The idea is reiterated by David Hilbert half of century later:

"We thus see how arithmetic, the queen of mathematical science, has conquered large domains and has assumed the leadership. That this was not done earlier and more completely, seems to me to depend on the fact that the theory of numbers has only in quite recent times arrived at maturity." (David Hilbert, "Theorie der Algebraischen Zahlkörper", Bericht der Mathematiker-Vereinigung,' vol. IV, 1897)

Paraphrasing Godfrey H Hardy, even if Number Theory began as an experimental science, its role in the further development of Mathematics is important, worthily of the status of a 'queen'.

Previous Post <<||>> Next Post

15 June 2021

On Real Numbers I

"Because all conceivable numbers are either greater than zero or less than 0 or equal to 0, then it is clear that the square roots of negative numbers cannot be included among the possible numbers [real numbers]. Consequently we must say that these are impossible numbers. And this circumstance leads us to the concept of such numbers, which by their nature are impossible, and ordinarily are called imaginary or fancied numbers, because they exist only in the imagination." (Leonhard Euler, "Vollständige Anleitung zur Algebra", 1768-69)

"[…] with few exceptions all the operations and concepts that occur in the case of real numbers can indeed be carried over unchanged to complex ones. However, the concept of being greater cannot very well be applied to complex numbers. In the case of integration, too, there appear differences which rest on the multplicity of possible paths of integration when we are dealing with complex variables. Nevertheless, the large extent to which imaginary forms conform to the same laws as real ones justifies the introduction of imaginary forms into geometry." (Gottlob Frege, "On a Geometrical Representation of Imaginary forms in the Plane", 1873)

"Mathematics is a study which, when we start from its most familiar portions, may be pursued in either of two opposite directions. The more familiar direction is constructive, towards gradually increasing complexity: from integers to fractions, real numbers, complex numbers; from addition and multiplication to differentiation and integration, and on to higher mathematics. The other direction, which is less familiar, proceeds, by analyzing, to greater and greater abstractness and logical simplicity." (Bertrand Russell, "Introduction to Mathematical Philosophy", 1919)

"There is more to the calculation of π to a large number of decimal places than just the challenge involved. One reason for doing it is to secure statistical information concerning the 'normalcy' of π. A real number is said to be simply normal if in its decimal expansion all digits occur with equal frequency, and it is said to be normal if all blocks of digits of the same length occur with equal frequency. It is not known if π (or even √2, for that matter) is normal or even simply normal." (Howard Eves, "Mathematical Circles Revisited", 1971)

"Surreal numbers are an astonishing feat of legerdemain. An empty hat rests on a table made of a few axioms of standard set theory. Conway waves two simple rules in the air, then reaches into almost nothing and pulls out an infinitely rich tapestry of numbers that form a real and closed field. Every real number is surrounded by a host of new numbers that lie closer to it than any other 'real' value does. The system is truly 'surreal.'" (Martin Gardner, "Mathematical Magic Show", 1977)

"If explaining minds seems harder than explaining songs, we should remember that sometimes enlarging problems makes them simpler! The theory of the roots of equations seemed hard for centuries within its little world of real numbers, but it suddenly seemed simple once Gauss exposed the larger world of so-called complex numbers. Similarly, music should make more sense once seen through listeners' minds." (Marvin Minsky, "Music, Mind, and Meaning", 1981)

“The letter ‘i’ originally was meant to suggest the imaginary nature of this number, but with the greater abstraction of mathematics, it came to be realized that it was no more imaginary than many other mathematical constructs. True, it is not suitable for measuring quantities, but it obeys the same laws of arithmetic as do the real numbers, and, surprisingly enough, it makes the statement of various physical laws very natural.” (John A Paulos, “Beyond Numeracy”, 1991)

"A real number that satisfies (is a solution of) a polynomial equation with integer coefficients is called algebraic. […] A real number that is not algebraic is called transcendental. There is nothing mystic about this word; it merely indicates that these numbers transcend (go beyond) the realm of algebraic numbers."  (Eli Maor, "e: The Story of a Number", 1994)

"The real numbers are one of the most audacious idealizations made by the human mind, but they were used happily for centuries before anybody worried about the logic behind them. Paradoxically, people worried a great deal about the next enlargement of the number system, even though it was entirely harmless. That was the introduction of square roots for negative numbers, and it led to the 'imaginary' and 'complex' numbers. A professional mathematican should never leave home without them […]" (Ian Stewart, "Nature's Numbers: The unreal reality of mathematics", 1995)

11 May 2021

Mathematics through Students' Eyes II

"[…] mathematical verities flow from a small number of self-evident propositions by a chain of impeccable reasonings; they impose themselves not only on us, but on nature itself. They fetter, so to speak, the Creator and only permit him to choose between some relatively few solutions. A few experiments then will suffice to let us know what choice he has made. From each experiment a number of consequences will follow by a series of mathematical deductions, and in this way each of them will reveal to us a corner of the universe. This, to the minds of most people, and to students who are getting their first ideas of physics, is the origin of certainty in science." (Henri Poincaré, "The Foundations of Science", 1913)

"The way to enable a student to apprehend the instrumental value of arithmetic is not to lecture him on the benefit it will be to him in some remote and uncertain future, but to let him discover that success in something he is interested in doing depends on ability to use numbers." (John Dewey, "Democracy and Education: An Introduction to the Philosophy of Education", 1916)

"It seems to be the impression among students that mathematical physics consists in deriving a large number of partial differential equations and then solving them, individually, by an assortment of special mutually unrelated devices. It has not been made clear that there is any underlying unity of method and one has often been left entirely in the dark as to what first suggested a particular device to the mind of its inventor." (Arthur G Webster, "Partial Differential Equations of Mathematical Physics", 1927)

"[…] there are terms which cannot be defined, such as number and quantity. Any attempt at a definition would only throw difficulty in the student’s way, which is already done in geometry by the attempts at an explanation of the terms point, straight line, and others, which are to be found in treatise on that subject." (Augustus de Morgan, "On the Study and Difficulties of Mathematics", 1943)

"To some people, statistics is ‘quartered pies, cute little battleships and tapering rows of sturdy soldiers in diversified uniforms’. To others, it is columns and columns of numerical facts. Many regard it as a branch of economics. The beginning student of the subject considers it to be largely mathematics." (The Editors, "Statistics, The Physical Sciences and Engineering", The American Statistician, Vol. 2, No. 4, 1948)

"Unfortunately, the mechanical way in which calculus sometimes is taught fails to present the subject as the outcome of a dramatic intellectual struggle which has lasted for twenty-five hundred years or more, which is deeply rooted in many phases of human endeavors and which will continue as long as man strives to understand himself as well as nature. Teachers, students, and scholars who really want to comprehend the forces and appearances of science must have some understanding of the present aspect of knowledge as a result of historical evolution." (Richard Curand [forward to Carl B Boyer’s "The History of the Calculus and Its Conceptual Development", 1949])

06 April 2021

On Axioms (1800-1899)

"Axioms in philosophy are not axioms until they are proved upon our pulses: we read fine things but never feel them to the full until we have gone the same steps as the author." (John Keats, [Letter to John Hamilton Reynolds] 1818)

"Scientific Ideas can often be adequately exhibited for all the purposes of reasoning, by means of Definitions and Axioms; all attempts to reason by means of Definitions from common Notions, lead to empty forms or entire confusion." (William Whewell, "History of the Inductive Sciences from the Earliest to the Present Time", 1837)

"These sciences, Geometry, Theoretical Arithmetic and Algebra, have no principles besides definitions and axioms, and no process of proof but deduction; this process, however, assuming a most remarkable character; and exhibiting a combination of simplicity and complexity, of rigour and generality, quite unparalleled in other subjects." (William Whewell, "The Philosophy of the Inductive Sciences", 1840)

"The reasoning of mathematicians is founded on certain and infallible principles. Every word they use conveys a determinate idea, and by accurate definitions they excite the same ideas in the mind of the reader that were in the mind of the writer. When they have defined the terms they intend to make use of, they premise a few axioms, or self-evident principles, that every one must assent to as soon as proposed. They then take for granted certain postulates, that no one can deny them, such as, that a right line may be drawn from any given point to another, and from these plain, simple principles they have raised most astonishing speculations, and proved the extent of the human mind to be more spacious and capacious than any other science." (John Adams,"Diary", 1850)

"A physical theory, like an abstract science, consists of definitions and axioms as first principles, and of propositions, their consequences; but with these differences:—first, That in an abstract science, a definition assigns a name to a class of notions derived originally from observation, but not necessarily corresponding to any existing objects of real phenomena, and an axiom states a mutual relation amongst such notions, or the names denoting them; while in a physical science, a definition states properties common to a class of existing objects, or real phenomena, and a physical axiom states a general law as to the relations of phenomena; and, secondly,—That in an abstract science, the propositions first discovered are the most simple; whilst in a physical theory, the propositions first discovered are in general numerous and complex, being formal laws, the immediate results of observation and experiment, from which the definitions and axioms are subsequently arrived at by a process of reasoning differing from that whereby one proposition is deduced from another in an abstract science, partly in being more complex and difficult, and partly in being to a certain extent tentative, that is to say, involving the trial of conjectural principles, and their acceptance or rejection according as their consequences are found to agree or disagree with the formal laws deduced immediately from observation and experiment." (William J M Rankine, "Outlines of the Science of Energetics", Proceedings of the Philosophical Society of Glasgow, 1855)

"An axiom is proposition more general than the propositions or the science in which it employed as an axiom; or, an axiom is a proposition which is true of more subjects than the subject or the science in which it is quoted as an axiom. Hence. Geometry ought to admit as axioms all Algebraic truths. The simple truths of this kind, which are commonly called axioms, ore corollaries from the definitions of such terms as equal, whole, part, sum, etc." (The Pennsylvania School Journal, 1856)

"The maxim is, that whatever can be affirmed (or denied) of a class, may be affirmed (or denied) of everything included in the class. This axiom, supposed to be the basis of the syllogistic theory, is termed by logicians the dictum de omni et nullo [the maxim of all and none]." (John S Mill, "A System of Logic, Ratiocinative and Inductive", 1858)

"Induction and analogy are the special characteristics of modern mathematics, in which theorems have given place to theories and no truth is regarded otherwise than as a link in an infinite chain. 'Omne exit in infinitum' is their favorite motto and accepted axiom." (James J Sylvester, "A Plea for the Mathematician", Nature Vol. 1, 1870)

"When we consider that the whole of geometry rests ultimately on axioms which derive their validity from the nature of our intuitive faculty, we seem well justified in questioning the sense of imaginary forms, since we attribute to them properties which not infrequently contradict all our intuitions." (Gottlob Frege, "On a Geometrical Representation of Imaginary forms in the Plane", 1873)

"The old and oft-repeated proposition ‘Totum est majus sua parte’ [the whole is larger than the part] may be applied without proof only in the case of entities that are based upon whole and part; then and only then is it an undeniable consequence of the concepts ‘totum’ and ‘pars’. Unfortunately, however, this ‘axiom’ is used innumerably often without any basis and in neglect of the necessary distinction between ‘reality’ and ‘quantity’, on the one hand, and ‘number’ and ‘set’, on the other, precisely in the sense in which it is generally false." (Georg Cantor, "Über unendliche, lineare Punktmannigfaltigkeiten", Mathematische Annalen 20, 1882)

"With our notion of the essence of intuition, an intuitive treatment of figurative representations will tend to yield a certain general guide on which mathematical laws apply and how their general proof may be structured. However, true proof will only be obtained if the given figures are replaced with figures generated by laws based on the axioms and these are then taken to carry through the general train of thought in an explicit case. Dealing with sensate objects gives the mathematician an impetus and an idea of the problems to be tackled, but it does not pre-empt the mathematical process itself. (Felix Klein, "Nicht-Euklidische Geometrie I: Vorlesung gehalten während des Wintersemesters 1889–90", 1892)

" […] the naive intuition is not exact, while the refined intuition is not properly intuition at all, but arises through the logical development from axioms considered as perfectly exact." (Felix Klein, [lectures] 1893)

"Geometry, like arithmetic, requires for its logical development only a small number of simple, fundamental principles. These fundamental principles are called the axioms of geometry." (David Hilbert, "The Foundations of Geometry", 1899)

10 February 2021

On Complex Numbers XVI

"When the formulas admit of intelligible interpretation, they are accessions to knowledge; but independently of their interpretation they are invaluable as symbolical expressions of thought. But the most noted instance is the symbol called the impossible or imaginary, known also as the square root of minus one, and which, from a shadow of meaning attached to it, may be more definitely distinguished as the symbol of semi-inversion. This symbol is restricted to a precise signification as the representative of perpendicularity in quaternions, and this wonderful algebra of space is intimately dependent upon the special use of the symbol for its symmetry, elegance, and power."  (Benjamin Peirce, "On the Uses and Transformations of Linear Algebra", 1875)

 "√-1 is take for granted today. No serious mathematician would deny that it is a number. Yet it took centuries for √-1 to be officially admitted to the pantheon of numbers. For almost three centuries, it was controversial; mathematicians didn't know what to make of it; many of them worked with it successfully without admitting its existence. […] Primarily for cognitive reasons. Mathematicians simply could not make it fit their idea of what a number was supposed to be. A number was supposed to be a magnitude. √-1 is not a magnitude comparable to the magnitudes of real numbers. No tree can be √-1 units high. You cannot owe someone √-1 dollars. Numbers were supposed to be linearly ordered. √-1 is not linearly ordered with respect to other numbers." (George Lakoff & Rafael E Nuñez, "Where Mathematics Come From: How the Embodied Mind Brings Mathematics into Being, 2000)

"From a formal perspective, much about complex numbers and arithmetic seems arbitrary. From a purely algebraic point of view, i arises as a solution to the equation x^2+1=0. There is nothing geometric about this - no complex plane at all. Yet in the complex plane, the i-axis is 90° from the x-axis. Why? Complex numbers in the complex plane add like vectors. Why? Complex numbers have a weird rule of multiplication […]" (George Lakoff & Rafael E Nuñez, "Where Mathematics Come From: How the Embodied Mind Brings Mathematics into Being, 2000)

"[…] i is not a real number-not ordered anywhere relative to the real numbers! In other words, it does not even have the central property of ‘numbers’, indicating a magnitude that can be linearly compared to all other magnitudes. You can see why i has been called imaginary. It has almost none of the properties of the small natural numbers-not subitizability, not groupability, and not even relative magnitude. If i is to be a number, it is a number only by virtue of closure and the laws of arithmetic." (George Lakoff & Rafael E Nuñez, "Where Mathematics Come From: How the Embodied Mind Brings Mathematics into Being, 2000)

"The complex plane is just the 90° rotation plane-the rotation plane with the structure imposed by the 90° Rotation metaphor added to it. Multiplication by i is 'just' rotation by 90°. This is not arbitrary; it makes sense. Multiplication by-1 is rotation by 180°. A rotation of 180° is the result of two 90° rotations. Since i times i is -1, it makes sense that multiplication by i should be a rotation by 90°, since two of them yield a rotation by 180°, which is multiplication by -1." (George Lakoff & Rafael E Nuñez, "Where Mathematics Come From: How the Embodied Mind Brings Mathematics into Being, 2000)

"Negative numbers posed some of the same quandaries that the imaginary numbers did to Renaissance mathematicians - they didn’t seem to correspond to quantities associated with physical objects or geometrical figures. But they proved less conceptually challenging than the imaginaries. For instance, negative numbers can be thought of as monetary debts, providing a readily grasped way to make sense of them." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"Raising e to an imaginary-number power can be pictured as a rotation operation in the complex plane. Applying this interpretation to e raised to the 'i times π' power means that Euler’s formula can be pictured in geometric terms as modeling a half-circle rotation." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"The association of multiplication with vector rotation was one of the geometric interpretation's most important elements because it decisively connected the imaginaries with rotary motion. As we'll see, that was a big deal." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"The fact that multiplying positive 4i times positive 4i yields negative 16 seems like saying that the friend of my friend is my enemy. Which in turn suggests that bad things would happen if i and its offspring were granted citizenship in the number world. Unlike real numbers, which always feel friendly toward the friends of their friends, the i-things would plainly be subject to insane fits of jealousy, causing them to treat numbers that cozy up to their friends as threats. That might cause a general breakdown of numerical civility." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"Basis real and imaginary numbers have eternal and necessary reality. Complex numbers do not. They are temporal and contingent in the sense that for complex numbers to exist, we first have to carry out an operation: adding basis real and imaginary numbers together. Complex numbers therefore do not exist in their own right. They are constructed. They are derived. Symmetry breaking is exactly where constructed numbers come into existence. The very act of adding a sine wave to a cosine wave is the sufficient condition to create a broken symmetry: a complex number. The 'Big Bang', mathematically, is simply where a perfect array of basis sine and cosine waves start entering into linear combinations, creating a chain reaction, an 'explosion', of complex numbers - which corresponds to the 'physical' universe." (Thomas Stark, "God Is Mathematics: The Proofs of the Eternal Existence of Mathematics", 2018)

13 December 2020

Complexity vs Mathematics II

"[Mathematics] guides our minds in an orderly way, and furnishes us simple and rational principles by means of which ambiguities are clarified, disorder is converted into order, and complexities are analyzed into their component parts." (Johann B Mencken, "The Charlatanry of the Learned", 1715)

"These sciences, Geometry, Theoretical Arithmetic and Algebra, have no principles besides definitions and axioms, and no process of proof but deduction; this process, however, assuming a most remarkable character; and exhibiting a combination of simplicity and complexity, of rigour and generality, quite unparalleled in other subjects." (William Whewell, "The Philosophy of the Inductive Sciences", 1840)

"The value of mathematical instruction as a preparation for those more difficult investigations, consists in the applicability not of its doctrines but of its methods. Mathematics will ever remain the past perfect type of the deductive method in general; and the applications of mathematics to the simpler branches of physics furnish the only school in which philosophers can effectually learn the most difficult and important of their art, the employment of the laws of simpler phenomena for explaining and predicting those of the more complex." (John S Mill, "System of Logic", 1843)

"It is certainly true that all physical phenomena are subject to strictly mathematical conditions, and mathematical processes are unassailable in themselves. The trouble arises from the data employed. Most phenomena are so highly complex that one can never be quite sure that he is dealing with all the factors until the experiment proves it. So that experiment is rather the criterion of mathematical conclusions and must lead the way." (Amos E Dolbear, "Matter, Ether, Motion", 1894)

"Mathematics, the science of the ideal, becomes the means of investigating, understanding and making known the world of the real. The complex is expressed in terms of the simple. From one point of view mathematics may be defined as the science of successive substitutions of simpler concepts for more complex [...]" (William F White, "A Scrap-book of Elementary Mathematics", 1908)

"A great department of thought must have its own inner life, however transcendent may be the importance of its relations to the outside. No department of science, least of all one requiring so high a degree of mental concentration as Mathematics, can be developed entirely, or even mainly, with a view to applications outside its own range. The increased complexity and specialisation of all branches of knowledge makes it true in the present, however it may have been in former times, that important advances in such a department as Mathematics can be expected only from men who are interested in the subject for its own sake, and who, whilst keeping an open mind for suggestions from outside, allow their thought to range freely in those lines of advance which are indicated by the present state of their subject, untrammelled by any preoccupation as to  applications to other departments of science." (Ernst W Hobson, Nature Vol. 84, [address] 1910)

"Elegance may produce the feeling of the unforeseen by the unexpected meeting of objects we are not accustomed to bring together; there again it is fruitful, since it thus unveils for us kinships before unrecognized. It is fruitful even when it results only from the contrast between the simplicity of the means and the complexity of the problem set; it makes us then think of the reason for this contrast and very often makes us see that chance is not the reason; that it is to be found in some unexpected law. In a word, the feeling of  mathematical elegance is only the satisfaction due to any adaptation of the solution to the needs of our mind, and it is because of this very adaptation that this solution can be for us an instrument. Consequently this esthetic satisfaction is bound up with the economy of thought." (Jules Henri Poincaré, "The Future of Mathematics", Monist Vol. 20, 1910)

"The mathematical laws presuppose a very complex elaboration. They are not known exclusively either a priori or a posteriori, but are a creation of the mind; and this creation is not an arbitrary one, but, owing to the mind’s resources, takes place with reference to experience and in view of it. Sometimes the mind starts with intuitions which it freely creates; sometimes, by a process of elimination, it gathers up the axioms it regards as most suitable for producing a harmonious development, one that is both simple and fertile. The mathematics is a voluntary and intelligent adaptation of thought to things, it represents the forms that will allow of qualitative diversity being surmounted, the moulds into which reality must enter in order to become as intelligible as possible." (Émile Boutroux, "Natural Law in Science and Philosophy", 1914)

"No equation, however impressive and complex, can arrive at the truth if the initial assumptions are incorrect." (Arthur C Clarke, "Profiles of the Future: An Inquiry into the Limits of the Possible", 1973)

"Economists are all too often preoccupied with petty mathematical problems of interest only to themselves. This obsession with mathematics is an easy way of acquiring the appearance of scientificity without having to answer the far more complex questions posed by the world we live in." (Thomas Piketty, Capital in the Twenty-First Century, 2013)

01 December 2020

On Symbols (1900-1909)

"Arithmetical symbols are written diagrams and geometrical figures are graphic formulas." (David Hilbert, Bulletin of the American Mathematical Society, Mathematical Problems Vol. 8, 1902)

"[,,,] the mind has the faculty of creating symbols, and it is thus that it has constructed the mathematical continuum, which is only a particular system of symbols. The only limit to its power is the necessity of avoiding all contradiction; but the mind only makes use of it when experiment gives a reason for it." (Henri Poincaré, "Science and Hypothesis", 1902)

"The fact that all Mathematics is Symbolic Logic is one of the greatest discoveries of our age; and when this fact has been established, the remainder of the principles of mathematics consists in the analysis of Symbolic Logic itself." (Bertrand Russell, "Principles of Mathematics", 1903)

"The chief end of mathematical instruction is to develop certain powers of the mind, and among these the intuition is not the least precious. By it the mathematical world comes in contact with the real world, and even if pure mathematics could do without it, it would always be necessary to turn to it to bridge the gulf between symbol and reality. The practician will always need it, and for one mathematician there are a hundred practicians. However, for the mathematician himself the power is necessary, for while we demonstrate by logic, we create by intuition; and we have more to do than to criticize others’ theorems, we must invent new ones, this art, intuition teaches us." (Henri Poincaré, "The Value of Science", 1905)

"A symbolical representation of a method of calculation has the same significance for a mathematician as a model or a visualisable working hypothesis has for a physicist. The symbol, the model, the hypothesis runs parallel with the thing to be represented. But the parallelism may extend farther, or be extended farther, than was originally intended on the adoption of the symbol. Since the thing represented and the device representing are after all different, what would be concealed in the one is apparent in the other." (Ernst Mach, "Space and Geometry: In the Light of physiological, phycological and physical inquiry", 1906) 

"Nature talks in symbols; he who lacks imagination cannot understand her." (Abraham Miller, "Unmoral Maxims", 1906)

"Now, a symbol is not, properly speaking, either true or false; it is, rather, something more or less well selected to stand for the reality it represents, and pictures that reality in a more or less precise, or a more or less detailed manner." (Pierre-Maurice-Marie Duhem, "The Aim and Structure of Physical Theory", 1906) 

"The training which mathematics gives in working with symbols is an excellent preparation for other sciences; […] the world's work requires constant mastery of symbols." (Jacob W A Young, "The Teaching of Mathematics", 1907)

"But, once again, what the physical states as the result of an experiment is not the recital of observed facts, but the interpretation and the transposing of these facts into the ideal, abstract, symbolic world created by the theories he regards as established." (Pierre-Maurice-Marie Duhem, "The Aim and Structure of Physical Theory", 1908)

"Symbolic Logic is Mathematics, Mathematics is Symbolic Logic, the twain are one." (Cassius J Keyser, "Lectures on Science, Philosophy and Art", 1908)

"The laws of physics are therefore provisional in that the symbols they relate too simple to represent reality completely." (Pierre-Maurice-Marie Duhem, “The Aim and Structure of Physical Theory”, 1908)

"To facilitate eyeless observation of his sense-transcending world, the mathematician invokes the aid of physical diagrams and physical symbols in endless variety and combination [...]" (Cassius J Keyser, "Lectures on Science, Philosophy and Art", 1907-1908, 1908)

"I do in no wise share this view [that the axioms are arbitrary propositions which we assume wholly at will, and that in like manner the fundamental conceptions are in the end only arbitrary symbols with which we operate] but consider it the death of all science: in my judgment the axioms of geometry are not arbitrary, but reasonable propositions which generally have the origin in space intuition and whose separate content and sequence is controlled by reasons of expediency." (Felix Klein, "Elementarmathematik vom hoheren Standpunkte aus", 1909)

26 May 2020

Hermann G Grassmann - Collected Quotes

"Geometry can in no way be viewed […] as a branch of mathematics; instead, geometry relates to something already given in nature, namely, space. I… realized that there must be a branch of mathematics which yields in a purely abstract way laws similar to geometry." (Hermann G Grassmann, "Ausdehnungslehre", 1844)

"I define as a unit any magnitude that can serve for the numerical derivation of a series of magnitudes, and in particular I call such a unit an original unit if it is not derivable from another unit. The unit of numbers, that is one, I call the absolute unit, all others relative." (Hermann G Grassmann, "Ausdehnungslehre", 1844)

"I feel entitled to hope that I have found in this new analysis the only natural method according to which mathematics should be applied to nature, and according to which geometry may also be treated, whenever it leads to general and to fruitful results." (Hermann G Grassmann, "Ausdehnungslehre", 1844)

"The concept of rotation led to geometrical exponential magnitudes, to the analysis of angles and of trigonometric functions, etc. I was delighted how thorough the analysis thus formed and extended, not only the often very complex and unsymmetric formulae which are fundamental in tidal theory, but also the technique of development parallels the concept." (Hermann GGrassmann, "Ausdehnungslehre", 1844) 

"Few will deny that even in the first scientific instruction in mathematics the most rigorous method is to be given preference over all others. Especially will every teacher prefer a consistent proof to one which is based on fallacies or proceeds in a vicious circle, indeed it will be morally impossible for the teacher to present a proof of the latter kind consciously and thus in a sense deceive his pupils. Notwithstanding these objectionable so-called proofs, so far as the foundation and the development of the system is concerned, predominate in our textbooks to the present time. Perhaps it will be answered, that rigorous proof is found too difficult for the pupil’s power of comprehension. Should this be anywhere the case, - which would only indicate some defect in the plan or treatment of the whole, - the only remedy would be to merely state the theorem in a historic way, and forego a proof with the frank confession that no proof has been found which could be comprehended by the pupil; a remedy which is ever doubtful and should only be applied in the case of extreme necessity. But this remedy is to be preferred to a proof which is no proof, and is therefore either wholly unintelligible to the pupil, or deceives him with an appearance of knowledge which opens the door to all superficiality and lack of scientific method." (Hermann G Grassmann, "Stücke aus dem Lehrbuche der Arithmetik", 1861)

"Mathematics is the science of the connection of magnitudes. Magnitude is anything that can be put equal or unequal to another thing. Two things are equal when in every assertion each may be replaced by the other."  (Hermann G Grassmann, "Stücke aus dem Lehrbuche der Arithmetik", 1861)

"Every science aims to become a popular science. A science can only reach this goal if it also uses a popular language." (Hermann G Grassmann, 1870)

"An essential defect of previous presentations of geometry is that one usually returns to discrete numerical ratios in the treatment of similarity theory. This procedure, which at first seems simple, soon enough becomes entangled in complicated investigations concerning incommensurable magnitudes, as we have already hinted above; and the initial impression of simplicity is revenged upon problems of a purely geometrical procedure by the appearance of a set of difficult investigations of a completely heterogeneous type, which shed no light on the essence of spatial magnitudes. To be sure, one cannot eliminate the problem of measuring spatial magnitudes and expressing the results of these measurements numerically. But this problem cannot originate in geometry itself, but only arises when one, equipped on the one hand with the concept of number and on the other with spatial perceptions, applies them to that problem, and thus in a mixed branch that one can in a general sense call by the name 'theory of measurement' […] To relegate the theory of similarity, and even that of surface area, to this branch as has previously occurred (not to the form but to the substance) is to steal the essential content from what is called (pure) geometry." (Hermann G Grassmann)

15 May 2020

Giuseppe Peano - Collected Quotes

"Questions that pertain to the foundations of mathematics, although treated by many in recent times, still lack a satisfactory solution. Ambiguity of language is philosophy's main source of problems. That is why it is of the utmost importance to examine attentively the very words we use. (Giuseppe Peano, "I fondamenti dell’aritmetica nel Formulario del 1898" ["The Principles of Arithmetic, presented by a new method"], 1889)

"These primitive propositions […] suffice to deduce all the properties of the numbers that we shall meet in the sequel. There is, however, an infinity of systems which satisfy the five primitive propositions. [...] All systems which satisfy the five primitive propositions are in one-to-one correspondence with the natural numbers. The natural numbers are what one obtains by abstraction from all these systems; in other words, the natural numbers are the system which has all the properties and only those properties listed in the five primitive propositions." (Giuseppe Peano, "I fondamenti dell’aritmetica nel Formulario del 1898" ["The Principles of Arithmetic, presented by a new method"], 1889)

"Certainly it is permitted to anyone to put forward whatever hypotheses he wishes, and to develop the logical consequences contained in those hypotheses. But in order that this work merit the name of Geometry, it is necessary that these hypotheses or postulates express the result of the more simple and elementary observations of physical figures." (Giuseppe Peano, "Sui fondamenti della geometria", 1894)

"In every science, after having analysed the ideas, expressing the more complicated by means of the more simple, one finds a certain number that cannot be reduced among them, and that one can define no further. These are the primitive ideas of the science; it is necessary to acquire them through experience, or through induction; it is impossible to explain them by deduction. (Giuseppe Peano, "Notations de Logique Mathématique", 1894)

"Geometric calculus consists in a system of operations analogous to those of algebraic calculus, but in which the entities on which the calculations are carried out, instead of being numbers, are geometric entities which we shall define." (Giuseppe Peano, "Geometric Calculus", 1895)

"1. Zero is a number.
2. The successor of any number is another number.
3. There are no two numbers with the same successor.
4. Zero is not the successor of a number.
5. Every property of zero, which belongs to the successor of every number with this property, belongs to all numbers." (Giuseppe Peano)

02 May 2020

Nicomachus of Gerasa - Collected Quotes

"Among simple even numbers, some are superabundant, others are deficient: these two classes are as two extremes opposed to one another; as for those that occupy the middle position between the two, they are said to be perfect. And those which are said to be opposite to each other, the superabundant and the deficient, are divided in their condition, which is inequality, into the too much and the too little." (Nicomachus of Gerasa,"Introductio Arithmetica", cca. 100 AD)

"There exists an elegant and sure method of generating these numbers, which does not leave out any perfect numbers and which does not include any that are not; and which is done in the following way. First set out in order the powers of two in a line, starting from unity, and proceeding as far as you wish: 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096; and then they must be totalled each time there is a new term, and at each totaling examine the result, if you find that it is prime and non-composite, you must multiply it by the quantity of the last term that you added to the line, and the product will always be perfect. If, otherwise, it is composite and not prime, do not multiply it, but add on the next term, and again examine the result, and if it is composite leave it aside, without multiplying it, and add on the next term. If, on the other hand, it is prime, and non-composite, you must multiply it by the last term taken for its composition, and the number that results will be perfect, and so on as far as infinity." (Nicomachus of Gerasa,"Introductio Arithmetica", cca. 100 AD)

"Things […] are some of them continuous […] which are properly and peculiarly called 'magnitudes'; others are discontinuous, in a side-by-side arrangement, and, as it were, in heaps, which are called 'multitudes', a flock, for instance, a people, a heap, a chorus, and the like. Wisdom, then, must be considered to be the knowledge of these two forms. Since, however, all multitude and magnitude are by their own nature of necessity infinite - for multitude starts from a definite root and never ceases increasing; and magnitude, when division beginning with a limited whole is carried on, cannot bring the dividing process to an end […] and since sciences are always sciences of limited things, and never of infinites, it is accordingly evident that a science dealing with magnitude […] or with multitude […] could never be formulated. […] A science, however, would arise to deal with something separated from each of them, with quantity, set off from multitude, and size, set off from magnitude." (Nicomachus of Gerasa, "Introductio Arithmetica", cca. 100 AD)

"All that has by nature, with systematic method, been arranged in the universe, seems both in part and as a whole to have been determined and ordered in accordance with number, by the forethought and the mind of him that created all things; for the pattern was fixed, like a preliminary sketch, by the domination of number preexistent in the mind of the world-creating God, number conceptual only and immaterial in every way, but at the same time the true and the eternal essence, so that with reference to it, as to an artistic plan, should be created all these things: time, motion, the heavens, the stars, all sorts of revolutions." (Nicomachus of Gerasa)

"Number is limited multitude or a combination of units or a flow of quantity made up of units; and the first division of number is even and odd." (Nicomachus of Gerasa)

"More evidently still astronomy attains through arithmetic the investigations that pertain to it, not alone because it is later than geometry in origin - for motion naturally comes after rest - nor because the motions of the stars have a perfectly melodious harmony, but also because risings, settings, progressions, retrogressions, increases, and all sorts of phases are governed by numerical cycles and quantities. So then we have rightly undertaken first the systematic treatment of this, as the science naturally prior, more honorable, and more venerable, and, as it were, mother and nurse of the rest; and here we will take our start for the sake of clearness." (Nicomachus of Gerasa)

"Since of quantity, one kind is viewed by itself, having no relation to anything else, as 'even,' 'odd,' 'perfect,' and the like, and the other is relative to something else, and is conceived of together with its relationship to another thing, like' double,', greater,' 'smaller,' 'half,' 'one and one-half times,' 'one and one-third times,' and so forth, it is clear that two scientific methods will lay hold of and deal with the whole investigation of quantity: arithmetic, [with] absolute quantity; and music, [with] relative quantity." (Nicomachus of Gerasa)

"The even is that which can be divided into two equal parts without a unit intervening in the middle; and the odd is that which cannot […]" (Nicomachus of Gerasa)

"Two other sciences in the same way will accurately treat of 'size': geometry, the part that abides and is at rest, [and] astronomy, that which moves and revolves." (Nicomachus of Gerasa)

23 February 2020

On Complex Numbers IX

"That this subject [imaginary numbers] has hitherto been surrounded by mysterious obscurity, is to be attributed largely to an ill adapted notation. If we call +1, -1, and √-1 had been called direct, inverse and lateral units, instead of positive, negative, and imaginary (or impossible) units, such an obscurity would have been out of the question." (Carl F Gauss, “Theoria residuorum biquadraticum. Commentatio secunda", Göttingische gelehrte Anzeigen 23 (4), 1831)

"The employment of the uninterpretable symbol √-1 the intermediate processes of trigonometry furnishes an illustration of what has been said. I apprehend that there is no mode of explaining that application which does not covertly assume the very principle in question." (George Boole, "Laws of Thought", 1854)

"That such comparisons with non-arithmetic notions have furnished the immediate occasion for the extension of the number-concept may, in a general way, be granted (though this was certainly not the case in the introduction of complex numbers); but this surely is no sufficient ground for introducing these foreign notions into arithmetic, the science of numbers." (Richard Dedekind, "Stetigkeit und irrationale Zahlen", 1872)

"Judged by the only standards which are admissible in a pure doctrine of numbers i is imaginary in the same sense as the negative, the fraction, and the irrational, but in no other sense; all are alike mere symbols devised for the sake of representing the results of operations even when these results are not numbers (positive integers)." (Henry B Fine, "The Number-System of Algebra", 1890)

"The natural development of this work soon led the geometers in their studies to embrace imaginary as well as real values of the variable. The theory of Taylor series, that of elliptic functions, the vast field of Cauchy analysis, caused a burst of productivity derived from this generalization. It came to appear that, between two truths of the real domain, the easiest and shortest path quite often passes through the complex domain." (Paul Painlevé, "Analyse des travaux scientifiques", 1900) 

 "It has been written that the shortest and best way between two truths of the real domain often passes through the imaginary one." (Jacque Hadamard, "An Essay on the Psychology of Invention in the Mathematical Field", 1945)
[French: "On a pu écrire depuis que la voie la plus courte et la meilleure entre deux vérités du domaine réel passe souvent par le domaine imaginaire." (Jacques Hadamard, Essai sur la psychologie de l'invention dans le domaine mathématique, 1945)]

"If explaining minds seems harder than explaining songs, we should remember that sometimes enlarging problems makes them simpler! The theory of the roots of equations seemed hard for centuries within its little world of real numbers, but it suddenly seemed simple once Gauss exposed the larger world of so-called complex numbers. Similarly, music should make more sense once seen through listeners' minds." (Marvin Minsky, "Music, Mind, and Meaning", 1981)

"Imaginary numbers are not imaginary and the theory of complex numbers is no more complex than the theory of real numbers." (Mordechai Ben-Ari, "Just a Theory: Exploring the Nature of Science", 2005)

"Complex numbers seem to be fundamental for the description of the world proposed by quantum mechanics. In principle, this can be a source of puzzlement: Why do we need such abstract entities to describe real things? One way to refute this bewilderment is to stress that what we can measure is essentially real, so complex numbers are not directly related to observable quantities. A more philosophical argument is to say that real numbers are no less abstract than complex ones, the actual question is why mathematics is so effective for the description of the physical world." (Ricardo Karam, "Why are complex numbers needed in quantum mechanics? Some answers for the introductory level", American Journal of Physics Vol. 88 (1), 2020)
Related Posts Plugin for WordPress, Blogger...

On Leonhard Euler

"I have been able to solve a few problems of mathematical physics on which the greatest mathematicians since Euler have struggled in va...