Showing posts with label form. Show all posts
Showing posts with label form. Show all posts

15 May 2022

On Form (2010-2019)

"Cultures are never merely intellectual constructs. They take form through the collective intelligence and memory, through a commonly held psychology and emotions, through spiritual and artistic communion." (Tariq Ramadan, "Islam and the Arab Awakening", 2012)

"[…] statistics is a method of pursuing truth. At a minimum, statistics can tell you the likelihood that your hunch is true in this time and place and with these sorts of people. This type of pursuit of truth, especially in the form of an event’s future likelihood, is the essence of psychology, of science, and of human evolution." (Arthhur Aron et al, "Statistics for Phsychology" 6th Ed., 2012)

"Technology is the result of antifragility, exploited by risk-takers in the form of tinkering and trial and error, with nerd-driven design confined to the backstage." (Nassim N Taleb, "Antifragile: Things that gain from disorder", 2012)

"The solution to a math problem is not a number; it’s an argument, a proof. We’re trying to create these little poems of pure reason. Of course, like any other form of poetry, we want our work to be beautiful as well as meaningful. Mathematics is the art of explanation, and consequently, it is difficult, frustrating, and deeply satisfying." (Paul Lockhart, "Measurement", 2012)

"Many of the stories economists tell take the form of models - for whatever else they are, economic models are stories about how the world works." (Paul Krugman & Robin Wells, "Economics" 3rd Ed., 2013)

"Mathematical intuition is the mind’s ability to sense form and structure, to detect patterns that we cannot consciously perceive. Intuition lacks the crystal clarity of conscious logic, but it makes up for that by drawing attention to things we would never have consciously considered." (Ian Stewart, "Visions of Infinity", 2013)

"Thinking in models has enormous advantages for us as a species, in representing the unknowable world in a form in which we can locate ourselves and with which we can engage. But it also has disadvantages for us whether as natural scientists, psychoanalytic theorists, practising analysts, or simply as individuals. We can become in Wittgenstein’s phrase the fly in the ‘fly bottle’ of our own model, with its own language from which philosophy might have a part to play in rescuing us." (Ronald Britton,"Between Mind and Brain: Models of the mind and models in the mind", 2015)

"Dialectical thinking opposes formalism because of its separation of form from content. We make errors by abstracting the elements of a problem into a formal model and ignoring facts and contexts crucial to correct analysis. Overemphasis on logical approaches leads to distortion, error, and rigidity." (Richard E Nisbett, "Mindware: Tools for Smart Thinking", 2015)

"Data analysis and data mining are concerned with unsupervised pattern finding and structure determination in data sets. The data sets themselves are explicitly linked as a form of representation to an observational or otherwise empirical domain of interest. 'Structure' has long been understood as symmetry which can take many forms with respect to any transformation, including point, translational, rotational, and many others. Symmetries directly point to invariants, which pinpoint intrinsic properties of the data and of the background empirical domain of interest. As our data models change, so too do our perspectives on analysing data". (Fionn Murtagh, "Data Science Foundations: Geometry and Topology of Complex Hierarchic Systems and Big Data Analytics", 2018)

On Form (2000-2009)

"A more extreme form of exponential growth was probably responsible for the start of the universe. Astronomer and physicists now generally accept the Big Bang theory, according to which the universe started at an unimaginably small size and then doubled in a split second 100 times, enough to make it the size of a small grapefruit. This period of 'inflation' or exponential growth then ended, and linear growth took over, with an expanding fireball creating the universe that we know today." (Richar Koch, "The Power Laws", 2000)

"The seeming absence of any ascertained organizing principle in the distribution or the succession of the primes had bedeviled mathematicians for centuries and given Number Theory much of its fascination. Here was a great mystery indeed, worthy of the most exalted intelligence: since the primes are the building blocks of the integers and the integers the basis of our logical understanding of the cosmos, how is it possible that their form is not determined by law? Why isn't 'divine geometry' apparent in their case?" (Apostolos Doxiadis, "Uncle Petros and Goldbach's Conjecture", 2000)

"Formulation of a mathematical model is the first step in the process of analyzing the behaviour of any real system. However, to produce a useful model, one must first adopt a set of simplifying assumptions which have to be relevant in relation to the physical features of the system to be modelled and to the specific information one is interested in. Thus, the aim of modelling is to produce an idealized description of reality, which is both expressible in a tractable mathematical form and sufficiently close to reality as far as the physical mechanisms of interest are concerned." (Francois Axisa, "Discrete Systems" Vol. I, 2001)

"A good poem has a unified structure, each word fits perfectly, there is nothing arbitrary about it, metaphors hold together and interlock, the sound of a word and its reflections of meaning complement each other. Likewise postmodern physics asks: How well does everything fit together in a theory? How inevitable are its arguments? Are the assumptions well founded or somewhat arbitrary? Is its overall mathematical form particularly elegant?" (F David Peat, "From Certainty to Uncertainty", 2002)

"In the nonmathematical sense, symmetry is associated with regularity in form, pleasing proportions, periodicity, or a harmonious arrangement; thus it is frequently associated with a sense of beauty. In the geometric sense, symmetry may be more precisely analyzed. We may have, for example, an axis of symmetry, a center of symmetry, or a plane of symmetry, which define respectively the line, point, or plane about which a figure or body is symmetrical. The presence of these symmetry elements, usually in combinations, is responsible for giving form to many compositions; the reproduction of a motif by application of symmetry operations can produce a pattern that is pleasing to the senses." (Hans H Jaffé & ‎Milton Orchin,"Symmetry in Chemistry", 2002)

"Chaos itself is one form of a wide range of behavior that extends from simple regular order to systems of incredible complexity. And just as a smoothly operating machine can become chaotic when pushed too hard (chaos out of order), it also turns out that chaotic systems can give birth to regular, ordered behavior (order out of chaos). […] Chaos and chance don’t mean the absence of law and order, but rather the presence of order so complex that it lies beyond our abilities to grasp and describe it." (F David Peat, "From Certainty to Uncertainty", 2002)

"Chaos theory explains the ways in which natural and social systems organize themselves into stable entities that have the ability to resist small disturbances and perturbations. It also shows that when you push such a system too far it becomes balanced on a metaphoric knife-edge. Step back and it remains stable; give it the slightest nudge and it will move into a radically new form of behavior such as chaos." (F David Peat, "From Certainty to Uncertainty", 2002)

"The traditional, scientific method for studying such systems is known as reductionism. Reductionism sees the parts as paramount and seeks to identify the parts, understand the parts and work up from an understanding of the parts to an understanding of the whole. The problem with this is that the whole often seems to take on a form that is not recognizable from the parts. The whole emerges from the interactions between the parts, which affect each other through complex networks of relationships. Once it has emerged, it is the whole that seems to give meaning to the parts and their interactions." (Michael C Jackson, "Systems Thinking: Creative Holism for Managers", 2003)

"If the method of proof offers the mathematician the prospect of certainty, it is a form of certainty that is itself conditional. A proof, after all, conveys assumptions to conclusions, or axioms to theorems. If the hammer of certainty falls on the theorems, it cannot fall on the axioms with equal force." (David Berlinski, "Infinite Ascent: A short history of mathematics", 2005)

"The calculus is a theory of continuous change - processes that move smoothly and that do not stop, jerk, interrupt themselves, or hurtle over gaps in space and time. The supreme example of a continuous process in nature is represented by the motion of the planets in the night sky as without pause they sweep around the sun in elliptical orbits; but human consciousness is also continuous, the division of experience into separate aspects always coordinated by some underlying form of unity, one that we can barely identify and that we can describe only by calling it continuous." (David Berlinski, "Infinite Ascent: A short history of mathematics", 2005)

"When a musical piece is too simple we tend not to like it, finding it trivial. When it is too complex, we tend not to like it, finding it unpredictable - we don't perceive it to be grounded in anything familiar. Music, or any art form […] has to strike the right balance between simplicity and complexity […]" (Daniel Levitin, "This is Your Brain on Music", 2006)

"A great deal of the results in many areas of physics are presented in the form of conservation laws, stating that some quantities do not change during evolution of the system. However, the formulations in cybernetical physics are different. Since the results in cybernetical physics establish how the evolution of the system can be changed by control, they should be formulated as transformation laws, specifying the classes of changes in the evolution of the system attainable by control function from the given class, i.e., specifying the limits of control." (Alexander L Fradkov, "Cybernetical Physics: From Control of Chaos to Quantum Control", 2007)

"Art and music make manifest, by bringing into conscious awareness, that which has previously been felt only tentatively and internally. Art, in its widest sense, is a form of play that lies at the origin of all making, of language, and of the mind's awareness of its place within the world. Art, in all its forms, makes manifest the spiritual dimension of the cosmos, and expresses our relationship to the natural world. This may have been the cause of that natural light which first illuminated the preconscious minds of early hominids. (F David Peat, "Pathways of Chance", 2007)

"Each of the most basic physical laws that we know corresponds to some invariance, which in turn is equivalent to a collection of changes which form a symmetry group. […] whilst leaving some underlying theme unchanged. […] for example, the conservation of energy is equivalent to the invariance of the laws of motion with respect to translations backwards or forwards in time […] the conservation of linear momentum is equivalent to the invariance of the laws of motion with respect to the position of your laboratory in space, and the conservation of angular momentum to an invariance with respect to directional orientation [...] discovery of conservation laws indicated that Nature possessed built-in sustaining principles which prevented the world from just ceasing to be." (John D Barrow, "New Theories of Everything", 2007)

"We tend to form mental models that are simpler than reality; so if we create represented models that are simpler than the actual implementation model, we help the user achieve a better understanding. […] Understanding how software actually works always helps someone to use it, but this understanding usually comes at a significant cost. One of the most significant ways in which computers can assist human beings is by putting a simple face on complex processes and situations. As a result, user interfaces that are consistent with users’ mental models are vastly superior to those that are merely reflections of the implementation model." (Alan Cooper et al, "About Face 3: The Essentials of Interaction Design", 2007)

"For mathematics to be applicable in any sense at all we need to be able to do something with it. In practice this nearly always means developing forms of calculation, and this imperative channels its practitioners into algebraic manipulations of one form or another and ultimately into producing numbers. To the modern mind, this might seem natural and inevitable." (Peter M Higgins, "Number Story: From Counting to Cryptography", 2008)

"Although the potential for chaos resides in every system, chaos, when it emerges, frequently stays within the bounds of its attractor(s): No point or pattern of points is ever repeated, but some form of patterning emerges, rather than randomness. Life scientists in different areas have noticed that life seems able to balance order and chaos at a place of balance known as the edge of chaos. Observations from both nature and artificial life suggest that the edge of chaos favors evolutionary adaptation. (Terry Cooke-Davies et al, "Exploring the Complexity of Projects", 2009)

"Mathematicians seek a certain kind of beauty. Perhaps mathematical beauty is a constant - as far as the contents of mathematics are concerned - and yet the forms this beauty takes are certainly cultural. And while the history of mathematics surely is many stranded, one of its most important strands is formed by such cultural forms of mathematical beauty." (Reviel Netz,"Ludic Proof: Greek Mathematics and the Alexandrian Aesthetic", 2009)

"Much of the recorded knowledge of physics and engineering is written in the form of mathematical models. These mathematical models form the foundations of our understanding of the universe we live in. Furthermore, nearly all of the existing technology, in one way or another, rests on these models. To the extent that we are surrounded by evidence of the technology working and being reliable, human confidence in the validity of the underlying mathematical models is all but unshakable. (Jerzy A Filar, "Mathematical Models", 2009)

"Obviously, the final goal of scientists and mathematicians is not simply the accumulation of facts and lists of formulas, but rather they seek to understand the patterns, organizing principles, and relationships between these facts to form theorems and entirely new branches of human thought. (Clifford A Pickover, "The Math Book", 2009)

On Form (1990-1999)

"Adapting oneself inadequately to the sequential characteristics of processes may also be attributable to an incredibly simple feature of human data processing, namely, forgetfulness. An important requirement for gaining the correct picture of temporal sequences is having information on the length of time available. If this is not the case, one is also unable to posit hypotheses on temporal patterns. The fact that people forget means that past data are only partially available. This means that there are great difficulties in recognizing the correct form of temporal sequences. A simple means of coping with this difficulty is the 'spatialization' of time. Diagrams of temporal sequences make it possible to treat temporal sequences like 'spatial forms', which are easier to cope with." (Dietrich Dörner, "The Logic of Failure", Philosophical Transactions of the Royal Society of London (B), 1990)

"Science is (or should be) a precise art. Precise, because data may be taken or theories formulated with a certain amount of accuracy; an art, because putting the information into the most useful form for investigation or for presentation requires a certain amount of creativity and insight." (Patricia H Reiff, "The Use and Misuse of Statistics in Space Physics", Journal of Geomagnetism and Geoelectricity 42, 1990)

"On this view, we recognize science to be the search for algorithmic compressions. We list sequences of observed data. We try to formulate algorithms that compactly represent the information content of those sequences. Then we test the correctness of our hypothetical abbreviations by using them to predict the next terms in the string. These predictions can then be compared with the future direction of the data sequence. Without the development of algorithmic compressions of data all science would be replaced by mindless stamp collecting - the indiscriminate accumulation of every available fact. Science is predicated upon the belief that the Universe is algorithmically compressible and the modern search for a Theory of Everything is the ultimate expression of that belief, a belief that there is an abbreviated representation of the logic behind the Universe's properties that can be written down in finite form by human beings." (John D Barrow, New Theories of Everything", 1991)

"The term chaos is used in a specific sense where it is an inherently random pattern of behaviour generated by fixed inputs into deterministic (that is fixed) rules (relationships). The rules take the form of non-linear feedback loops. Although the specific path followed by the behaviour so generated is random and hence unpredictable in the long-term, it always has an underlying pattern to it, a 'hidden' pattern, a global pattern or rhythm. That pattern is self-similarity, that is a constant degree of variation, consistent variability, regular irregularity, or more precisely, a constant fractal dimension. Chaos is therefore order (a pattern) within disorder (random behaviour)." (Ralph D Stacey, "The Chaos Frontier: Creative Strategic Control for Business", 1991)

"On this view, we recognize science to be the search for algorithmic compressions. We list sequences of observed data. We try to formulate algorithms that compactly represent the information content of those sequences. Then we test the correctness of our hypothetical abbreviations by using them to predict the next terms in the string. These predictions can then be compared with the future direction of the data sequence. Without the development of algorithmic compressions of data all science would be replaced by mindless stamp collecting - the indiscriminate accumulation of every available fact. Science is predicated upon the belief that the Universe is algorithmically compressible and the modern search for a Theory of Everything is the ultimate expression of that belief, a belief that there is an abbreviated representation of the logic behind the Universe's properties that can be written down in finite form by human beings." (John D Barrow, New Theories of Everything", 1991)

"Nature behaves in ways that look mathematical, but nature is not the same as mathematics. Every mathematical model makes simplifying assumptions; its conclusions are only as valid as those assumptions. The assumption of perfect symmetry is excellent as a technique for deducing the conditions under which symmetry-breaking is going to occur, the general form of the result, and the range of possible behaviour. To deduce exactly which effect is selected from this range in a practical situation, we have to know which imperfections are present" (Ian Stewart & Martin Golubitsky,"Fearful Symmetry", 1992)

"To a mathematician, an object possesses symmetry if it retains its form after some transformation. A circle, for example, looks the same after any rotation; so a mathematician says that a circle is symmetric, even though a circle is not really a pattern in the conventional sense - something made up from separate, identical bits. Indeed the mathematician generalizes, saying that any object that retains its form when rotated - such as a cylinder, a cone, or a pot thrown on a potter's wheel - has circular symmetry." (Ian Stewart & Martin Golubitsky, "Fearful Symmetry: Is God a Geometer?", 1992)

"The belief that the underlying order of the world can be expressed in mathematical form lies at the very heart of science. So deep does this belief run that a branch of science is considered not to be properly understood until it can be cast in mathematics." (Paul C W Davies, "The Mind of God: The Scientific Basis for a Rational World", 1992)

"When a system has more than one attractor, the points in phase space that are attracted to a particular attractor form the basin of attraction for that attractor. Each basin contains its attractor, but consists mostly of points that represent transient states. Two contiguous basins of attraction will be separated by a basin boundary." (Edward N Lorenz, "The Essence of Chaos", 1993)

"Homeomorphism is one of the basic concepts in topology. Homeomorphism, along with the whole topology, is in a sense the basis of spatial perception. When we look at an object, we see, say, a telephone receiver or a ring-shaped roll and first of all pay attention to the geometrical shape (although we do not concentrate on it specially) - an oblong figure thickened at the ends or a round rim with a large hole in the middle. Even if we deliberately concentrate on the shape of the object and forget about its practical application, we do not yet 'see' the essence of the shape. The point is that oblongness, roundness, etc. are metric properties of the object. The topology of the form lies 'beyond them'." (Anatolij Fomenko, "Visual Geometry and Topology", 1994)

"In abstract mathematics, special attention is given to particular properties of numbers. Then those properties are taken in a very pure (and primitive) form. Those properties in pure form are then assigned to a given set. Therefore, by studying in details the internal mathematical structure of a set, we should be able to clarify the meaning of original properties of the objects. Likewise, in set theory, numbers disappear and only the concept of sets and characteristic properties of sets remain. (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"Science focuses on the study of the natural world. It seeks to describe what exists. Focusing on problem finding, it studies and describes problems in its various domains. The humanities focus on understanding and discussing the human experience. In design, we focus on finding solutions and creating things and systems of value that do not yet exist.   The methods of science include controlled experiments, classification, pattern recognition, analysis, and deduction. In the humanities we apply analogy, metaphor, criticism, and (e)valuation. In design we devise alternatives, form patterns, synthesize, use conjecture, and model solutions." (Béla H Bánáthy, "Designing Social Systems in a Changing World", 1996)

"The methods of science include controlled experiments, classification, pattern recognition, analysis, and deduction. In the humanities we apply analogy, metaphor, criticism, and (e)valuation. In design we devise alternatives, form patterns, synthesize, use conjecture, and model solutions." (Béla H Bánáthy, "Designing Social Systems in a Changing World", 1996)

"The mystery of sound is mysticism; the harmony of life is religion. The knowledge of vibrations is metaphysics, the analysis of atoms is science, and their harmonious grouping is art. The rhythm of form is poetry, and the rhythm of sound is music. This shows that music is the art of arts and the science of all sciences; and it contains the fountain of all knowledge within itself." (Inayat Khan, "The Mysticism of Sound and Music", 1996)

"The linear programming problem is to determine the values of the variables of the system that (a) are nonnegative or satisfy certain bounds, (b) satisfy a system of linear constraints, and (c) minimize or maximize a linear form in the variables called an objective." (George B Dantzig & Mukund N Thapa, "Linear Programming" Vol I, 1997)

"The whole apparatus of the calculus takes on an entirely different form when developed for the complex numbers." (Keith Devlin, "Mathematics: The New Golden Age", 1998)

"[...] an accurate statement of the 'weak' form of the random-walk hypothesis goes as follows: The history of stock price movements contains no useful information that will enable an investor consistently to outperform a buy-and-hold strategy in managing a portfolio. [...] Moreover, new fundamental information about a company [...] is also unpredictable. It will occur randomly over time. Indeed, successive appearances of news items must be random. If an item of news were not random, that is, if it were dependent on an earlier item of news, then it wouldn't be news at all. The weak form of the random-walk theory says only that stock prices cannot be predicted on the basis of past stock prices. [...] the weak form of the efficient-market hypothesis (the random-walk notion) says simply that the technical analysis of past price patterns to forecast the future is useless because any information from such an analysis will already have been incorporated in current market prices. (Burton G Malkiel, "A Random Walk Down Wall Street", 1999)

"Complexity theory is really a movement of the sciences. Standard sciences tend to see the world as mechanistic. That sort of science puts things under a finer and finer microscope. […] The movement that started complexity looks in the other direction. It’s asking, how do things assemble themselves? How do patterns emerge from these interacting elements? Complexity is looking at interacting elements and asking how they form patterns and how the patterns unfold. It’s important to point out that the patterns may never be finished. They’re open-ended. In standard science this hit some things that most scientists have a negative reaction to. Science doesn’t like perpetual novelty." (W Brian Arthur, "Coming from Your Inner Self", 1999)

"Fractals are patterns which occur on many levels. This concept can be applied to any musical parameter. I make melodic fractals, where the pitches of a theme I dream up are used to determine a melodic shape on several levels, in space and time. I make rhythmic fractals, where a set of durations associated with a motive get stretched and compressed and maybe layered on top of each other. I make loudness fractals, where the characteristic loudness of a sound, its envelope shape, is found on several time scales. I even make fractals with the form of a piece, its instrumentation, density, range, and so on. Here I’ve separated the parameters of music, but in a real piece, all of these things are combined, so you might call it a fractal of fractals." (Györgi Ligeti, [interview] 1999)

"Models form extraordinarily powerful and economical ways of thinking about the world. In fact they are often so good that the model is confused with reality." (David Stirzaker, "Probability and Random Variables: A Beginner's Guide", 1999)

On Form (1980-1989)

"Autopoietic organization simply means processes interlaced in the specific form of a network of productions of components which realizing the network that produced them constitutes it as a unity. (Francisco Varela & Humberto Maturana "Autopoiesis and cognition: The realization of the living", 1980)

"Our form of life depends, in delicate and subtle ways, on several apparent ‘coincidences’ in the fundamental laws of nature which make the Universe tick. Without those coincidences, we would not be here to puzzle over the problem of their existence […] What does this mean? One possibility is that the Universe we know is a highly improbable accident, ‘just one of those things’. (John R Gribbin, "Genesis: The Origins of Man and the Universe", 1981)

"The ‘mad idea’ which will lie at the basis of a future fundamental physical theory will come from a realization that physical meaning has some mathematical form not previously associated with reality. From this point of view the problem of the ‘mad idea’ is the problem of choosing, not of generating, the right idea." (Yuri I. Manin, "Mathematics and Physics", 1981)

"In a modern professional vocabulary a hypothesis is an imaginative preconception of what might be true in the form of a declaration with verifiable deductive consequences. It no longer tows ‘gratuitous’, ‘mere’, or ‘wild’ behind it, and the pejorative usage (‘Evolution is a mere hypothesis’, ‘It is only a hypothesis that smoking causes lung cancer’) is one of the outward signs of little learning." (Sir Peter B Medawar, "Pluto’s Republic: Incorporating the Art of the Soluble and Induction Intuition in Scientific Thought", 1982)

"Living systems are organized in such a way that they form multileveled structures, each level consisting of subsystems which are wholes in regard to their parts, and parts with respect to the larger wholes." (Fritjof Capra, "The Turning Point: Science, Society, and the Turning Culture", 1982)

"The phenomenon of self-organization is not limited to living matter but occurs also in certain chemical systems […] [Ilya] Prigogine has called these systems 'dissipative structures' to express the fact that they maintain and develop structure by breaking down other structures in the process of metabolism, thus creating entropy­ disorder - which is subsequently dissipated in the form of degraded waste products. Dissipative chemical structures display the dynamics of self-organization in its simplest form, exhibiting most of the phenomena characteristic of life self-renewal, adaptation, evolution, and even primitive forms of 'mental' processes." (Fritjof Capra, "The Turning Point: Science, Society, and the Turning Culture", 1982)

"Every phenomenon is related to other phenomena by connections of more than one value. It is the result both of certain conditions and certain basic factors that act as its cause. That is why the cause-effect connection has to be artificially isolated from the rest of conditions so that we can see this connection in its 'pure form'. But this is achieved only by abstraction. In reality we cannot isolate this connection from the whole set of conditions. There is always a closely interwoven mass of extremely diverse secondary conditions, which leave their mark on the form in which the general connection emerges. This means that there can never be two exactly identical phenomena, even if they are generated by the same causes. They have always developed in empirically different conditions. So there can be no absolute identity in the world." (Alexander Spirkin, "Dialectical Materialism", 1983)

"The category of form is used in the sense of external appearance, that is to say, the boundaries of the given content, its outward posture, in the sense of structure, and also in the sense of the mode of expression and existence of the content. Form is often defined in such a way that it coincides with structure, although these are different concepts." (Alexander Spirkin, "Dialectical Materialism", 1983)

"The defining attribute of harmony is a relationship between the elements of the whole in which the development of one of them is a condition for the development of the others or vice versa. In art, harmony may be understood as a form of relationship in which each element, while retaining a relative independence, contributes greater expressiveness to the whole and, at the same time and because of this, more fully expresses its own essence. Beauty may be defined as harmony of all the parts, united by that to which they belong in such a way that nothing can be added or taken away or changed without detriment to the whole." (Alexander Spirkin, "Dialectical Materialism", 1983)

"The unity of form and content presupposes their relative independence and the active role of the form. The modification of form involves reorganisation of the relations within the object. This process takes place in time and through contradictions." (Alexander Spirkin, "Dialectical Materialism", 1983)

"Topology, which used to be called geometry of situation or analysis situs ('topos' means position, situation in Greek), considers that all pots with two handles are of the same form because, if both are infinitely flexible and compressible, they can be molded into any other continuously, without tearing any new opening or closing up any old one. It also teaches that all single island coastlines are of the same form, because they are topologically identical to a circle." (Benoît B Mandelbrot, "The Fractal Geometry of Nature" 3rd Ed., 1983)

"Theoretical scientists, inching away from the safe and known, skirting the point of no return, confront nature with a free invention of the intellect. They strip the discovery down and wire it into place in the form of mathematical models or other abstractions that define the perceived relation exactly. The now-naked idea is scrutinized with as much coldness and outward lack of pity as the naturally warm human heart can muster. They try to put it to use, devising experiments or field observations to test its claims. By the rules of scientific procedure it is then either discarded or temporarily sustained. Either way, the central theory encompassing it grows. If the abstractions survive they generate new knowledge from which further exploratory trips of the mind can be planned. Through the repeated alternation between flights of the imagination and the accretion of hard data, a mutual agreement on the workings of the world is written, in the form of natural law." (Edward O Wilson, "Biophilia", 1984)

"Cellular automata may be considered as discrete dynamical systems. In almost all cases, cellular automaton evolution is irreversible. Trajectories in the configuration space for cellular automata therefore merge with time, and after many time steps, trajectories starting from almost all initial states become concentrated onto 'attractors'. These attractors typically contain only a very small fraction of possible states. Evolution to attractors from arbitrary initial states allows for 'self-organizing' behaviour, in which structure may evolve at large times from structureless initial states. The nature of the attractors determines the form and extent of such structures." (Stephen Wolfram, "Nonlinear Phenomena, Universality and complexity in cellular automata", Physica 10D, 1984)

"Theoretical scientists, inching away from the safe and known, skirting the point of no return, confront nature with a free invention of the intellect. They strip the discovery down and wire it into place in the form of mathematical models or other abstractions that define the perceived relation exactly. The now-naked idea is scrutinized with as much coldness and outward lack of pity as the naturally warm human heart can muster. They try to put it to use, devising experiments or field observations to test its claims. By the rules of scientific procedure it is then either discarded or temporarily sustained. Either way, the central theory encompassing it grows. If the abstractions survive they generate new knowledge from which further exploratory trips of the mind can be planned. Through the repeated alternation between flights of the imagination and the accretion of hard data, a mutual agreement on the workings of the world is written, in the form of natural law." (Edward O Wilson, "Biophilia", 1984)

"In every subject one looks for the topological and algebraic structures involved, since these structures form a unifying core for the most varied branches of mathematics." (K Weise and H Noack, "Aspects of Topology", 1986)

"One of the features that distinguishes applied mathematics is its interest in framing important questions about the observed world in a mathematical way. This process of translation into a mathematical form can give a better handle for certain problems than would be otherwise possible. We call this the modeling process. It combines formal reasoning with intuitive insights. Understanding the models devised by others is a first step in learning some of the skills involved, and that is how we proceed in this text, which is an informal introduction to the mathematics of dynamical systems." (Edward Beltrami, "Mathematics for Dynamic Modeling", 1987)

"The essence of modeling, as we see it, is that one begins with a nontrivial word problem about the world around us. We then grapple with the not always obvious problem of how it can be posed as a mathematical question. Emphasis is on the evolution of a roughly conceived idea into a more abstract but manageable form in which inessentials have been eliminated. One of the lessons learned is that there is no best model, only better ones." (Edward Beltrami,"Mathematics for Dynamic Modeling", 1987)

"Although science literally means ‘knowledge’, the scientific attitude is concerned much more with rational perception through the mind and with testing such perceptions against actual fact, in the form of experiments and observations." (David Bohm & F David Peat, "Science, Order, and Creativity", 1987)

"Geometry is the study of form and shape. Our first encounter with it usually involves such figures as triangles, squares, and circles, or solids such as the cube, the cylinder, and the sphere. These objects all have finite dimensions of length, area, and volume - as do most of the objects around us. At first thought, then, the notion of infinity seems quite removed from ordinary geometry. That this is not so can already be seen from the simplest of all geometric figures - the straight line. A line stretches to infinity in both directions, and we may think of it as a means to go 'far out' in a one-dimensional world." (Eli Maor, "To Infinity and Beyond: A Cultural History of the Infinite", 1987)

"Neural computing is the study of cellular networks that have a natural property for storing experimental knowledge. Such systems bear a resemblance to the brain in the sense that knowledge is acquired through training rather than programming and is retained due to changes in node functions. The knowledge takes the form of stable states or cycles of states in the operation of the net. A central property of such nets is to recall these states or cycles in response to the presentation of cues." (Igor Aleksander & Helen Morton, "Neural computing architectures: the design of brain-like machines", 1989)

"[…] a model is the picture of the real - a short form of the whole. Hence, a model is an abstraction or simplification of a system. It is a technique by which aspects of reality can be 'artificially' represented or 'simulated' and at the same time simplified to facilitate comprehension." (Laxmi K Patnaik, "Model Building in Political Science", The Indian Journal of Political Science, Vol. 50, No. 2, 1989)

On Form (1970-1979)

"Discovery is a double relation of analysis and synthesis together. As an analysis, it probes for what is there; but then, as a synthesis, it puts the parts together in a form by which the creative mind transcends the bare limits, the bare skeleton, that nature provides."(Jacob Bronowski, "The Ascent of Man", 1973)

"Modeling is definitely the most important and critical problem. If the mathematical model is not valid, any subsequent analysis, estimation, or control study is meaningless. The development of the model in a convenient form can greatly reduce the complexity of the actual studies. (Fred C Scweppe, "Uncertain dynamic systems", 1973)

"Data are often presented in a form that is not immediately clear. The reader can then either ignore the data, analyze them himself, or return them to the author for him to analyze. (Andrew S C Ehrenberg, "Data Reduction", 1975)

"In his emotional involvement with the machine, the engineer cannot help but feel at times that he has come face to face with a strange but potent form of life." (Samuel C Florman, "The Existential Pleasures of Engineering", 1976)

The connection between a model and a theory is that a model satisfies a theory; that is, a model obeys those laws of behavior that a corresponding theory explicitly states or which may be derived from it. [...] Computers make possible an entirely new relationship between theories and models. [...] A theory written in the form of a computer program is [...] both a theory and, when placed on a computer and run, a model to which the theory applies. (Joseph Weizenbaum, "Computer power and human reason: From judgment to calculation" , 1976)

"Because of its foundation in topology, catastrophe theory is qualitative, not quantitative. Just as geometry treated the properties of a triangle without regard to its size, so topology deals with properties that have no magnitude, for example, the property of a given point being inside or outside a closed curve or surface. This property is what topologists call 'invariant' -it does not change even when the curve is distorted. A topologist may work with seven-dimensional space, but he does not and cannot measure (in the ordinary sense) along any of those dimensions. The ability to classify and manipulate all types of form is achieved only by giving up concepts such as size, distance, and rate. So while catastrophe theory is well suited to describe and even to predict the shape of processes, its descriptions and predictions are not quantitative like those of theories built upon calculus. Instead, they are rather like maps without a scale: they tell us that there are mountains to the left, a river to the right, and a cliff somewhere ahead, but not how far away each is, or how large." (Alexander Woodcock & Monte Davis, "Catastrophe Theory", 1978)

"[...] much of the information on which human decisions are based is possibilistic rather than probabilistic in nature, and the intrinsic fuzziness of natural languages - which is a logical consequence of the necessity to express information in a summarized form - is, in the main, possibilistic in origin." (Lotfi A Zadeh, "Fuzzy Sets as the Basis for a Theory of Possibility", Fuzzy Sets and Systems, 1978)

"A model […] is a story with a specified structure: to explain this catch phrase is to explain what a model is. The structure is given by the logical and mathematical form of a set of postulates, the assumptions of the model. The structure forms an uninterpreted system, in much the way the postulates of a pure geometry are now commonly regarded as doing. The theorems that follow from the postulates tell us things about the structure that may not be apparent from an examination of the postulates alone." (Allan Gibbard & Hal R Varian, "Economic Models", The Journal of Philosophy, Vol. 75, No. 11, 1978)

On Form (1960-1969)

"Thus, the central theme that runs through my remarks is that complexity frequently takes the form of hierarchy, and that hierarchic systems have some common properties that are independent of their specific content. Hierarchy, I shall argue, is one of the central structural schemes that the architect of complexity uses." (Herbert A Simon, "The Architecture of Complexity", Proceedings of the American Philosophical Society Vol. 106 (6), 1962)

"To say a system is 'self-organizing' leaves open two quite different meanings. There is a first meaning that is simple and unobjectionable. This refers to the system that starts with its parts separate (so that the behavior of each is independent of the others' states) and whose parts then act so that they change towards forming connections of some type. Such a system is 'self-organizing' in the sense that it changes from 'parts separated' to 'parts joined'. […] In general such systems can be more simply characterized as 'self-connecting', for the change from independence between the parts to conditionality can always be seen as some form of 'connection', even if it is as purely functional […] 'Organizing' […] may also mean 'changing from a bad organization to a good one' […] The system would be 'self-organizing' if a change were automatically made to the feedback, changing it from positive to negative; then the whole would have changed from a bad organization to a good." (W Ross Ashby, "Principles of the self-organizing system", 1962)

"It is the medium that shapes and controls the scale and form of human association and action." (Marshall McLuhan, "Understanding Media", 1964)

"Scientific discovery, or the formulation of scientific theory, starts in with the unvarnished and unembroidered evidence of the senses. It starts with simple observation - simple, unbiased, unprejudiced, naive, or innocent observation - and out of this sensory evidence, embodied in the form of simple propositions or declarations of fact, generalizations will grow up and take shape, almost as if some process of crystallization or condensation were taking place. Out of a disorderly array of facts, an orderly theory, an orderly general statement, will somehow emerge." (Sir Peter B Medawar, "Is the Scientific Paper Fraudulent?", The Saturday Review, 1964)

"The question ‘What is mathematics?’ cannot be answered meaningfully by philosophical generalities, semantic definitions or journalistic circumlocutions. Such characterizations also fail to do justice to music or painting. No one can form an appreciation of these arts without some experience with rhythm, harmony and structure, or with form, color and composition. For the appreciation of mathematics actual contact with its substance is even more necessary. (Richard Courant, "Mathematics in the Modern World", Scientific American Vol. 211 (3), 1964)

"Mathematics is a form of poetry which transcends poetry in that it proclaims a truth; a form of reasoning which transcends reasoning in that it wants to bring about the truth it proclaims; a form of action, of ritual behavior, which does not find fulfilment in the act but must proclaim and elaborate a poetic form of truth." (Salomon Bochner,"Why Mathematics Grows", Journal of the History of Ideas, 1965)

"In the language of cybernetics, maintaining reactions can be outlined as follows: the sensing material receives information about the external environment in the form of coded signals. This information is reprocessed and sent in the form of new signals through defined channels, or networks. This new information brings about an internal reorganization of the system which contributes to the preservation of its integrity. The mechanism which reprocesses the information is called the control system. It consists of a vast number of input and output elements, connected by channels through which the signals are transmitted. The information can be stored in a recall or memory system, which may consist of separate elements, each of which can be in one of several stable states. The particular state of the element varies, under the influence of the input signals. When a number of such elements are in certain specified states, information is, in effect, recorded in the form of a text of finite length, using an alphabet with a finite number of characters. These processes underlie contemporary electronic computing machines and are, in a number of respects, strongly analogous to biological memory systems." (Carl Sagan, "Intelligent Life in the Universe", 1966)

"Higher, directed forms of energy (e.g., mechanical, electric, chemical) are dissipated, that is, progressively converted into the lowest form of energy, i.e., undirected heat movement of molecules; chemical systems tend toward equilibria with maximum entropy; machines wear out owing to friction; in communication channels, information can only be lost by conversion of messages into noise but not vice versa, and so forth." (Ludwig von Bertalanffy, "Robots, Men and Minds", 1967)

"Science has a simple faith, which transcends utility. Nearly all men of science, all men of learning for that matter, and men of simple ways too, have it in some form and in some degree. It is the faith that it is the privilege of man to learn to understand, and that this is his mission. If we abandon that mission under stress we shall abandon it forever, for stress will not cease. Knowledge for the sake of understanding, not merely to prevail, that is the essence of our being. None can define its limits, or set its ultimate boundaries." (Vannevar Bush, "Science Is Not Enough", 1967)

"Everything lives by movement, everything is maintained by equilibrium, and harmony results from the analogy of contraries; this law is the form of forms." (Eliphas Levi, "Transcendental Magic", 1968)

"Intelligence has two parts, which we shall call the epistemological and the heuristic. The epistemological part is the representation of the world in such a form that the solution of problems follows from the facts expressed in the representation. The heuristic part is the mechanism that on the basis of the information solves the problem and decides what to do." (John McCarthy & Patrick J Hayes, "Some Philosophical Problems from the Standpoint of Artificial Intelligence", Machine Intelligence 4, 1969)

02 May 2022

On Form (1925-1949)

"[…] mathematics, accessible in its full depth only to the very few, holds a quite peculiar position amongst the creation of the mind. It is a science of the most rigorous kind, like logic but more comprehensive and very much fuller; it is a true art, along with sculpture and music, as needing the guidance of inspiration and as developing under great conventions of form […]" (Oswald Spengler, "The Decline of the West" Vol. 1, 1926)

"Mathematicians call this combination [space and time] a quadratic form of the differentials of four variables, but we may call it more briefly, with Minkowski, ‘the Universe’." (Émile Borel, "Space and Time", 1926)

"The circle is the synthesis of the greatest oppositions. It combines the concentric and the eccentric in a single form and in equilibrium. Of the three primary forms [triangle, square, circle], it points most clearly to the fourth dimension." (Wassily Kandinsky, [letter] 1926)

"The mystery that clings to numbers, the magic of numbers, may spring from this very fact, that the intellect, in the form of the number series, creates an infinite manifold of well distinguishable individuals. Even we enlightened scientists can still feel it e.g. in the impenetrable law of the distribution of prime numbers." (Hermann Weyl, "Philosophy of Mathematics and Natural Science", 1927)

"Scientific laws, when we have reason to think them accurate, are different in form from the common-sense rules which have exceptions: they are always, at least in physics, either differential equations, or statistical averages." (Bertrand A Russell,"The Analysis of Matter", 1927)

"We wish to obtain a representation of phenomena and form an image of them in our minds. Till now, we have always attempted to form these images by means of the ordinary notions of time and space. These notions are perhaps innate; in any case they have been developed by our daily observations. For me, these notions are clear, and I confess that I am unable to gain any idea of physics without them. […] I would like to retain this ideal of other days and describe everything that occurs in this world in terms of clear pictures." (Hendrik A Lorentz, [Fifth Solvay Conference] 1927)

"Once a statement is cast into mathematical form it may be manipulated in accordance with [mathematical] rules and every configuration of the symbols will represent facts in harmony with and dependent on those contained in the original statement. Now this comes very close to what we conceive the action of the brain structures to be in performing intellectual acts with the symbols of ordinary language. In a sense, therefore, the mathematician has been able to perfect a device through which a part of the labor of logical thought is carried on outside the central nervous system with only that supervision which is requisite to manipulate the symbols in accordance with the rules." (Horatio B Williams, "Mathematics and the Biological Sciences", Bulletin of the American Mathematical Society Vol. 38, 1927)

"Scientific laws, when we have reason to think them accurate, are different in form from the common-sense rules which have exceptions: they are always, at least in physics, either differential equations or statistical averages." (Bertrand Russell, "The Analysis of Matter", 1927)

"[…] to the scientific mind the living and the non-living form one continuous series of systems of differing degrees of complexity […], while to the philosophic mind the whole universe, itself perhaps an organism, is composed of a vast number of interlacing organisms of all sizes." (James G Needham, "Developments in Philosophy of Biology", Quarterly Review of Biology Vol. 3 (1), 1928)

"What had already been done for music by the end of the eighteenth century has at last been begun for the pictorial arts. Mathematics and physics furnished the means in the form of rules to be followed and to be broken. In the beginning it is wholesome to be concerned with the functions and to disregard the finished form. Studies in algebra, in geometry, in mechanics characterize teaching directed towards the essential and the functional, in contrast to apparent. One learns to look behind the façade, to grasp the root of things. One learns to recognize the undercurrents, the antecedents of the visible. One learns to dig down, to uncover, to find the cause, to analyze." (Paul Klee, "Bauhaus prospectus", 1929)

"It has become increasingly evident in recent times, however, that nature works on a different plan. Her fundamental laws do not govern the world as it appears in our mental picture in any very direct way, but instead they control a substratum of which we cannot form a mental picture without introducing irrelevancies." (Paul A M Dirac, "The Principles of Quantum Mechanics", 1930)

"The methods of progress in theoretical physics have undergone a vast change during the present century. The classical tradition has been to consider the world to be an association of observable objects (particles, fluids, fields, etc.) moving about according to definite laws of force, so that one could form a mental picture in space and time of the whole scheme. This led to a physics whose aim was to make assumptions about the mechanism and forces connecting these observable objects, to account for their behaviour in the simplest possible way. It has become increasingly evident in recent times, however, that nature works on a different plan. Her fundamental laws do not govern the world as it appears in our mental picture in any very direct way, but instead they control a substratum of which we cannot form a mental picture without introducing irrelevancies." (Paul A M Dirac, "The Principles of Quantum Mechanics", 1930)

"[…] the process of scientific discovery may be regarded as a form of art. This is best seen in the theoretical aspects of Physical Science. The mathematical theorist builds up on certain assumptions and according to well understood logical rules, step by step, a stately edifice, while his imaginative power brings out clearly the hidden relations between its parts. A well-constructed theory is in some respects undoubtedly an artistic production." (Ernest Rutherford, 1932)

"Every hypothesis in physical science has to go through a period of difficult gestation and parturition before it can be brought out into the light of day and handed to others, ready-made in scientific form so that it will be, as it were, fool-proof in the hands of outsiders who wish to apply it." (Max Planck, "Where Is Science Going?", 1932)

"But I shall certainly admit a system as empirical or scientific only if it is capable of being tested by experience. These considerations suggest that not the verifiability but the falsifiability of a system is to be taken as a criterion of demarcation. In other words: I shall not require of a scientific system that it shall be capable of being singled out, once and for all, in a positive sense; but I shall require that its logical form shall be such that it can be singled out, by means of empirical tests, in a negative sense: it must be possible for an empirical scientific system to be refuted by experience." (Karl R Popper, "The Logic of Scientific Discovery", 1934)

"The classical physics seemed to bolt and bar the door leading to any sort of freedom of the will; the new physics hardly does this; it almost seems to suggest that the door may be unlocked - if only we could find the handle. The old physics showed us a universe which looked more like a prison than a dwelling place. The new physics shows us a universe which looks as though it might conceivably form a suitable dwelling place for free men, and not a mere shelter for brutes - a home in which it may at least be possible for us to mould events to our desires and live lives of endeavor and achievement." (Sir James Jeans, "Physics and Philosophy", 1942)

"Market competition is the only form of organization which can afford a large measure of freedom to the individual." (Frank Knight, "Freedom and Reform", 1947)

"The former distrust of specialization has been supplanted by its opposite, a distrust of generalization. Not only has man become a specialist in practice, he is being taught that special facts represent the highest form of knowledge." (Richard Weaver, "Ideas have Consequences", 1948)

"We have decided to call the entire field of control and communication theory, whether in the machine or in the animal, by the name Cybernetics, which we form from the Greek [...] for steersman. In choosing this term, we wish to recognize that the first significant paper on feedback mechanisms is an article on governors, which was published by Clerk Maxwell in 1868, and that governor is derived from a Latin corruption [...] We also wish to refer to the fact that the steering engines of a ship are indeed one of the earliest and best-developed forms of feedback mechanisms." (Norbert Wiener, "Cybernetics", 1948)

"The mystery that clings to numbers, the magic of numbers, may spring from this very fact, that the intellect, in the form of the number series, creates an infinite manifold of well-distinguished individuals. Even we enlightened scientists can still feel it, e.g., in the impenetrable law of the distribution of prime numbers." (Hermann Weyl, "Philosophy of Mathematics and Natural Science", 1949)

"We have assumed that the laws of nature must be capable of expression in a form which is invariant for all possible transformations of the space-time co-ordinates." (Gerald J Whitrow, "The Structure of the Universe: An Introduction to Cosmology", 1949)

On Form (1900-1924)

"Mathematicians do not study objects, but the relations between objects; to them it is a matter of indifference if these objects are replaced by others, provided that the relations do not change. Matter does not engage their attention, they are interested in form alone." (Henri Poincaré, "Science and Hypothesis", 1901)

"To undertake the calculation of any probability, and even for that calculation to have any meaning at all, we must admit, as a point of departure, an hypothesis or convention which has always something arbitrary about it. In the choice of this convention we can be guided only by the principle of sufficient reason. Unfortunately, this principle is very vague and very elastic, and in the cursory examination we have just made we have seen it assume different forms. The form under which we meet it most often is the belief in continuity, a belief which it would be difficult to justify by apodeictic reasoning, but without which all science would be impossible. Finally, the problems to which the calculus of probabilities may be applied with profit are those in which the result is independent of the hypothesis made at the outset, provided only that this hypothesis satisfies the condition of continuity." (Henri Poincaré, "Science and Hypothesis", 1901)

"The new mathematics is a sort of supplement to language, affording a means of thought about form and quantity and a means of expression, more exact, compact, and ready than ordinary language. The great body of physical science, a great deal of the essential facts of financial science, and endless social and political problems are only accessible and only thinkable to those who have had a sound training in mathematical analysis, and the time may not be very remote when it will be understood that for complete initiation as an efficient citizen of the great complex world-wide States that are now developing, it is as necessary to be able to compute, to think in averages and maxima and minima, as it is now to be able to read and write." (Herbert G Wells,"Mankind in the Making", 1903)

"Consider, for instance, one of the white flakes that are obtained by salting a solution of soap. At a distance its contour may appear sharply defined, but as we draw nearer its sharpness disappears. The eye can no longer draw a tangent at any point. A line that at first sight would seem to be satisfactory appears on close scrutiny to be perpendicular or oblique. The use of a magnifying glass or microscope leaves us just as uncertain, for fresh irregularities appear every time we increase the magnification, and we never succeed in getting a sharp, smooth impression, as given, for example, by a steel ball. So, if we accept the latter as illustrating the classical form of continuity, our flake could just as logically suggest the more general notion of a continuous function without a derivative." (Jean-Baptiste Perrin, 1906)

 "By laying down the relativity postulate from the outset, sufficient means have been created for deducing henceforth the complete series of Laws of Mechanics from the principle of conservation of energy (and statements concerning the form of the energy) alone." (Hermann Minkowski, "The Fundamental Equations for Electromagnetic Processes in Moving Bodies", 1907)

"The beautiful has its place in mathematics as elsewhere. The prose of ordinary intercourse and of business correspondence might be held to be the most practical use to which language is put, but we should be poor indeed without the literature of imagination. Mathematics too has its triumphs of the Creative imagination, its beautiful theorems, its proofs and processes whose perfection of form has made them classic. He must be a 'practical' man who can see no poetry in mathematics." (Wiliam F White, "A Scrap-book of Elementary Mathematics: Notes, Recreations, Essays", 1908)

"The equations of Newton's mechanics exhibit a two-fold invariance. Their form remains unaltered, firstly, if we subject the underlying system of spatial coordinates to any arbitrary change of position ; secondly, if we change its state of motion, namely, by imparting to it any uniform translatory motion ; furthermore, the zero point of time is given no part to play. We are accustomed to look upon the axioms of geometry as finished with, when we feel ripe for the axioms of mechanics, and for that reason the two invariances are probably rarely mentioned in the same breath. Each of them by itself signifies, for the differential equations of mechanics, a certain group of transformations. The existence of the first group is looked upon as a fundamental characteristic of space. The second group is preferably treated with disdain, so that we with un-troubled minds may overcome the difficulty of never being able to decide, from physical phenomena, whether space, which is supposed to be stationary, may not be after all in a state of uniform translation. Thus the two groups, side by side, lead their lives entirely apart. Their utterly heterogeneous character may have discouraged any attempt to compound them. But it is precisely when they are compounded that the complete group, as a whole, gives us to think." (Hermann Minkowski, "Space and Time", [Address to the 80th Assembly of German Natural Scientists and Physicians] 1908)

"The fact is that the beautiful, humanly speaking, is merely form considered in its simplest aspect, in its most perfect symmetry, in its most entire harmony with our make-up." (Victor Hugo, "Cromwell", 1909)

"Perhaps the least inadequate description of the general scope of modern Pure Mathematics - I will not call it a definition - would be to say that it deals with form, in a very general sense of the term; this would include algebraic form, functional relationship, the relations of order in any ordered set of entities such as numbers, and the analysis of the peculiarities of form of groups of operations." (Ernst W Hobson, Nature Vol. 84, [address] 1910)

"Science is reduction. Mathematics is its ideal, its form par excellence, for it is in mathematics that assimilation, identification, is most perfectly realized." (Émile Boutroux, "Natural law in Science and Philosophy", 1914)

"The concept of an independent system is a pure creation of the imagination. For no material system is or can ever be perfectly isolated from the rest of the world. Nevertheless it completes the mathematician’s ‘blank form of a universe’ without which his investigations are impossible. It enables him to introduce into his geometrical space, not only masses and configurations, but also physical structure and chemical composition." (Lawrence J Henderson, "The Order of Nature: An Essay", 1917)

"We rise from the conception of form to an understanding of the forces which gave rise to it [...] in the representation of form we see a diagram of forces in equilibrium, and in the comparison of kindred forms we discern the magnitude and the direction of the forces which have sufficed to convert the one form into the other." (D'Arcy Wentworth Thompson, "On Growth and Form" Vol. 2, 1917)

"The conception of lines of force was introduced by Faraday to form a mental picture of the processes going on in the electric field. To him these lines were not mere mathematical abstractions. He ascribed to them properties that gave them a real physical significance." (Hendrik van der Bijl,"The Thermionic Vacuum Tube and Its Applications", 1920)

"Philosophy in its old form could exist only in the absence of engineering, but with engineering in existence and daily more active and far reaching, the old verbalistic philosophy and metaphysics have lost their reason to exist. They were no more able to understand the ‘production’ of the universe and life than they are now able to understand or grapple with 'production' as a means to provide a happier existence for humanity. They failed because their venerated method of ‘speculation’ can not produce, and its place must be taken by mathematical thinking. Mathematical reasoning is displacing metaphysical reasoning. Engineering is driving verbalistic philosophy out of existence and humanity gains decidedly thereby." (Alfred Korzybski, "Manhood of Humanity", 1921)

"The story of scientific discovery has its own epic unity - a unity of purpose and endeavour - the single torch passing from hand to hand through the centuries; and the great moments of science when, after long labour, the pioneers saw their accumulated facts falling into a significant order - sometimes in the form of a law that revolutionised the whole world of thought - have an intense human interest, and belong essentially to the creative imagination of poetry." (Alfred Noyes, "Watchers of the Sky", 1922)

On Form (1850-1899)

"We need a system of symbols from which every ambiguity is banned, which has a strict logical form from which the content cannot escape." (Gottlob Frege, "Über die wissenschaftliche berechtigung einer begriffsschrift", Zeitschrift für Philosophie und philosophische Kritik 81, 1882)

"To the thought of considering the infinitely great not merely in the form of what grows without limits - and in the closely related form of the convergent infinite series first introduced in the seventeenth century-, but also fixing it mathematically by numbers in the determinate form of the completed-infinite, I have been logically compelled in the course of scientific exertions and attempts which have lasted many years, almost against my will, for it contradicts traditions which had become precious to me; and therefore I believe that no arguments can be made good against it which I would not know how to meet." (Georg Cantor, "Grundlagen einer allgemeinen Mannigfaltigkeitslehre", 1883)

"The theory most prevalent among teachers is that mathematics affords the best training for the reasoning powers; […] The modem, and to my mind true, theory is that mathematics is the abstract form of the natural sciences; and that it is valuable as a training of the reasoning powers, not because it is abstract, but because it is a representation of actual things." (Truman H Safford, "Mathematical Teaching and Its Modern Methods", 1886)

"I think it would be desirable that this form of word [mathematics] should be reserved for the applications of the science, and that we should use mathematic in the singular to denote the science itself, in the same way as we speak of logic, rhetoric, or (own sister to algebra) music." (James J Sylvester, Collected Mathematical Papers, 1869)   

 "I know of scarcely anything so apt to impress the imagination as the wonderful form of cosmic order expressed by the law of frequency of error. The law would have been personified by the Greeks if they had known of it. It reigns with serenity and complete self-effacement amidst the wildest confusion. The larger the mob, the greater the apparent anarchy, the more perfect is its sway. It is the supreme law of unreason." (Sir Francis Galton, 1889)

"Time with its continuity logically involves some other kind of continuity than its own. Time, as the universal form of change, cannot exist unless there is something to undergo change, and to undergo a change continuous in time, there must be a continuity of changeable qualities." (Charles S Peirce, "The Law of Mind", 1892)

"In every symmetrical system every deformation that tends to destroy the symmetry is complemented by an equal and opposite deformation that tends to restore it. […] One condition, therefore, though not an absolutely sufficient one, that a maximum or minimum of work corresponds to the form of equilibrium, is thus applied by symmetry." (Ernst Mach,"The Science of Mechanics: A Critical and Historical Account of Its Development", 1893)

"[…] as a general rule, that in selecting a particular case for constructing a model the first prerequisite is regularity. By selecting a symmetrical form for the model, not only is the execution simplified, but what is of more importance, the model will be of such a character as to impress itself readily on the mind." (Felix Klein, 1893)

"In every symmetrical system every deformation that tends to destroy the symmetry is complemented by an equal and opposite deformation that tends to restore it. […] One condition, therefore, though not an absolutely sufficient one, that a maximum or minimum of work corresponds to the form of equilibrium, is thus applied by symmetry." (Ernst Mach, "The Science of Mechanics: A Critical and Historical Account of Its Development", 1893)

"[…] we cannot a priori demand from nature simplicity, nor can we judge what in her opinion is simple. But with regard to images of our own creation we can lay down requirements. We are justified in deciding that if our images are well adapted to the things, the actual relations of the things must be represented by simple relations between the images. And if the actual relations between the things can only be represented by complicated relations, which are not even intelligible to an unprepared mind, we decide that those images are not sufficiently well adapted to the things. Hence our requirement of simplicity does not apply to nature, but to the images thereof which we fashion ; and our repugnance to a complicated statement as a fundamental law only expresses the conviction that, if the contents of the statement are correct and comprehensive, it can be stated in a simpler form by a more suitable choice of the fundamental conceptions." (Heinrich Hertz, "The Principles of Mechanics Presented in a New Form", 1894)

"In mathematics we see the conscious logical activity of our mind in its purest and most perfect form; here is made manifest to us all the labor and the great care with which it progresses, the precision which is necessary to determine exactly the source of the established general theorems, and the difficulty with which we form and comprehend abstract conceptions; but we also learn here to have confidence in the certainty, breadth, and fruitfulness of such intellectual labor. (Hermann von Helmholtz, "Vorträge und Reden", 1896)

20 December 2020

On Nonlinearity II

"Indeed, except for the very simplest physical systems, virtually everything and everybody in the world is caught up in a vast, nonlinear web of incentives and constraints and connections. The slightest change in one place causes tremors everywhere else. We can't help but disturb the universe, as T.S. Eliot almost said. The whole is almost always equal to a good deal more than the sum of its parts. And the mathematical expression of that property - to the extent that such systems can be described by mathematics at all - is a nonlinear equation: one whose graph is curvy." (M Mitchell Waldrop, "Complexity: The Emerging Science at the Edge of Order and Chaos", 1992)

"Today the network of relationships linking the human race to itself and to the rest of the biosphere is so complex that all aspects affect all others to an extraordinary degree. Someone should be studying the whole system, however crudely that has to be done, because no gluing together of partial studies of a complex nonlinear system can give a good idea of the behaviour of the whole." (Murray Gell-Mann, 1997)

"Much of the art of system dynamics modeling is discovering and representing the feedback processes, which, along with stock and flow structures, time delays, and nonlinearities, determine the dynamics of a system. […] the most complex behaviors usually arise from the interactions (feedbacks) among the components of the system, not from the complexity of the components themselves." (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)

"The mental models people use to guide their decisions are dynamically deficient. […] people generally adopt an event-based, open-loop view of causality, ignore feedback processes, fail to appreciate time delays between action and response and in the reporting of information, do not understand stocks and flows and are insensitive to nonlinearities that may alter the strengths of different feedback loops as a system evolves." (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)

"Most physical processes in the real world are nonlinear. It is our abstraction of the real world that leads us to the use of linear systems in modeling these processes. These linear systems are simple, understandable, and, in many situations, provide acceptable simulations of the actual processes. Unfortunately, only the simplest of linear processes and only a very small fraction of the nonlinear having verifiable solutions can be modeled with linear systems theory. The bulk of the physical processes that we must address are, unfortunately, too complex to reduce to algorithmic form - linear or nonlinear. Most observable processes have only a small amount of information available with which to develop an algorithmic understanding. The vast majority of information that we have on most processes tends to be nonnumeric and nonalgorithmic. Most of the information is fuzzy and linguistic in form." (Timothy J Ross & W Jerry Parkinson, "Fuzzy Set Theory, Fuzzy Logic, and Fuzzy Systems", 2002)

"Swarm intelligence can be effective when applied to highly complicated problems with many nonlinear factors, although it is often less effective than the genetic algorithm approach [...]. Swarm intelligence is related to swarm optimization […]. As with swarm intelligence, there is some evidence that at least some of the time swarm optimization can produce solutions that are more robust than genetic algorithms. Robustness here is defined as a solution’s resistance to performance degradation when the underlying variables are changed. (Michael J North & Charles M Macal, Managing Business Complexity: Discovering Strategic Solutions with Agent-Based Modeling and Simulation, 2007)

"[…] our mental models fail to take into account the complications of the real world - at least those ways that one can see from a systems perspective. It is a warning list. Here is where hidden snags lie. You can’t navigate well in an interconnected, feedback-dominated world unless you take your eyes off short-term events and look for long-term behavior and structure; unless you are aware of false boundaries and bounded rationality; unless you take into account limiting factors, nonlinearities and delays. You are likely to mistreat, misdesign, or misread systems if you don’t respect their properties of resilience, self-organization, and hierarchy." (Donella H Meadows, "Thinking in Systems: A Primer", 2008)

"You can’t navigate well in an interconnected, feedback-dominated world unless you take your eyes off short-term events and look for long term behavior and structure; unless you are aware of false boundaries and bounded rationality; unless you take into account limiting factors, nonlinearities and delays." (Donella H Meadow, "Thinking in Systems: A Primer", 2008)

"A network of many simple processors ('units' or 'neurons') that imitates a biological neural network. The units are connected by unidirectional communication channels, which carry numeric data. Neural networks can be trained to find nonlinear relationships in data, and are used in various applications such as robotics, speech recognition, signal processing, medical diagnosis, or power systems." (Adnan Khashman et al, "Voltage Instability Detection Using Neural Networks", 2009)

"Linearity is a reductionist’s dream, and nonlinearity can sometimes be a reductionist’s nightmare. Understanding the distinction between linearity and nonlinearity is very important and worthwhile." (Melanie Mitchell, "Complexity: A Guided Tour", 2009)


29 November 2020

On Tektology

"Tectology, or the theory of structure in organisms, is the comprehensive science of individuality among living natural bodies, which usually represent an aggregate of individuals of various orders.  The task of organic tectology is therefore to identify and explain organic individuality, i.e. to identify the precise natural laws according to which organic matter individualises itself, and according to which most organisms construct a unified form-complex composed of individuals of various orders." (Ernst  Häckel, "Generelle Morphologie der Organismen" ["General Morphology of Organisms"], 1866)

"It should therewith be remembered that as mathematics studies neutral complexes, mathematical thinking is an organizational process and hence its methods, as well as the methods of all other sciences and those of any practice, fall within the province of a general tektology. Tektology is a unique science which must not only work out its own methods by itself but must study them as well; therefore it is the completion of the cycle of sciences." (Alexander Bogdanov, "Tektology: The Universal Organizational Science" Vol. I, 1913)

"Mathematics abstracts from all the particular properties of the elements hidden behind its schemata. This is achieved by mathematics with the help of indifferent symbols, like numbers or letters. Tektology must do likewise. Its generalizations should abstract from the concreteness of elements whose organizational relationships they express, and conceal this concreteness behind indifferent symbols." (Alexander Bogdanov, "Tektology: The Universal Organizational Science" Vol. I, 1913)

"Tektology must discover what modes of organization are observed in nature and human activities; then generalize and systemize these modes; further it should explain them, that is, elaborate abstract schemes of their tendencies and regularities; finally, based on these schemes it must determine the directions of organizational modes development and elucidate their role in the economy of world processes. This general plan is similar to the plan of any other science but the object studied differs essentially. Tektology deals with the organizational experience not of some particular branch but with that of all of them in the aggregate; to put it in other words, tektology embraces the material of all the other sciences, as well as of all the vital practices from which those sciences arose, but considers this material only in respect of methods, i.e. everywhere it takes an interest in the mode of the organization of this material."  (Alexander Bogdanov, "Tektology: The Universal Organizational Science" Vol. I, 1913)

"The methods of tektology, as is seen, combine the abstract symbolism of mathematics and the experimental character Of the natural sciences. Furthermore, the very formulation of its problems, the very treatment of organizedness by tektology, as has been elucidated, should stick to the social historical viewpoint. And whatever the subject matter, or the content, of tektology , it embraces the whole world of experience. So tektology is really a universal science by its methods and its content."  (Alexander Bogdanov, "Tektology: The Universal Organizational Science" Vol. I, 1913)

"[…] there is a special relationship, a profound affinity between mathematics and tektology. Mathematical laws do not refer to a particular area of natural phenomena, as the laws of the other, special, sciences do, but to each and all phenomena, considered merely in their quantitative aspect; mathematics is in its own way universal, like tektology."  (Alexander Bogdanov, "Tektology: The Universal Organizational Science" Vol. I, 1913)

"Two divisions are distinguished in all natural sciences - 'statics' which deals with forms in equilibrium, and 'dynamics' which deals with the same forms, as well as their motion, in the process of change. […] Statics always evolves earlier than dynamics, the former being then reconstructed under the influence of the latter. The relationship between mathematics and tektology is seen to be similar: one represents the standpoint of organizational statics and the other - that of organizational dynamics. The latter standpoint is the more general, for equilibrium is only a particular case of motion, and in essence, is just an ideal case resulting from changes which are completely equal but quite opposite in direction." (Alexander Bogdanov, "Tektology: The Universal Organizational Science" Vol. I, 1913)

"We shall call this universal organizational science the 'Tektology'. The literal translation of this word from the Greek is 'the theory of construction'. 'Construction' is the most generaI and suitable synonym for the modern concept of 'organization'. [...] The aim of tektology is to systematize organizational experience; this science is clearly empirical and should draw its conclusions by way of induction." (Alexander Bogdanov, "Tektology: The Universal Organizational Science" Vol. I, 1913)

"For tektology the unity of experience is not 'discovered', but actively created by organizational means: ‘philosophers wanted to explain the world, but the main point is it change it’ said the greater precursor of organizational science, Karl Marx. The explanation of organizational forms and methods by tektology is directed not to a contemplation of their unity, but to a practical mastery over them." (Alexander Bogdanov, "Tektology: The Universal Organizational Science", 1922)

"Tektology must clarify the modes of organization that are perceived to exist in nature and human activity; then it must generalize and systematize these modes; further it must explain them, that is, propose abstract schemes of their tendencies and laws; finally, based on these schemes, determine the direction of organizational methods and their role in the universal process. This general plan is similar to the plan of any natural science; but the objective of tektology is basically different. Tektology deals with organizational experiences not of this or that specialized field, but of all these fields together. In other words, tektology embraces the subject matter of all the other sciences and of all the human experience giving rise to these sciences, but only from the aspect of method, that is, it is interested only in the modes of organization of this subject matter." (Alexander Bogdanov, "Tektology: The Universal Organizational Science", 1922)

"The strength of an organization lies in precise coordination of its parts, in strict correspondence of various mutually connected functions. This coordination is maintained through constant growth in tektological variety, but not without bounds […] there comes a moment when the parts of the whole become too differentiated in their organization and their resistance to the surrounding environment weakens. This leads sooner or later to disorganization." (Alexander Bogdanov, "Tektology: The Universal Organizational Science", 1922)

"Tektology was the first attempt in the history of science to arrive at a systematic formulation of the principles of organization operating in living and nonliving systems." (Fritjof Capra, "The Web of Life", 1996)

"Tektology is concerned only with activities, but activities are characterized by the fact that they produce changes. From this point of view it is out of the question to think about a simple and pure 'preservation' of forms, one that would constitute a real absence of changes. Preservation is always only a result of immediately equilibrating each of the appearing changes by another opposing change; it Is a dynamic equilibrium of changes."(Alexander Bogdanov) 

19 November 2020

On Diagrams (1900-1924)

"We form in the imagination some sort of diagrammatic, that is, iconic, representation of the facts, as skeletonized as possible. The impression of the present writer is that with ordinary persons this is always a visual image, or mixed visual and muscular; but this is an opinion not founded on any systematic examination." (Charles S Peirce, "Notes on Ampliative Reasoning", 1901)

"We imagine cases, place mental diagrams before our mind's eye, and multiply these cases, until a habit is formed of expecting that always to turn out the case, which has been seen to be the result in all the diagrams. To appeal to such a habit is a very different thing from appealing to any immediate instinct of rationality. That the process of forming a habit of reasoning by the use of diagrams is often performed there is no room for doubt. It is perfectly open to consciousness." (Charles S Peirce,"Fallibility of Reasoning and the Feeling of Rationality", cca. 1902)

"Arithmetical symbols are written diagrams and geometrical figures are graphic formulas." (David Hilbert, Bulletin of the American Mathematical Society, Mathematical Problems Vol. 8, 1902)

"A diagram is a representamen [representation] which is predominantly an icon of relations and is aided to be so by conventions. Indices are also more or less used. It should be carried out upon a perfectly consistent system of representation, founded upon a simple and easily intelligible basic idea." (Charles S Peirce, 1903)

"A diagram is an icon or schematic image embodying the meaning of a general predicate; and from the observation of this icon we are supposed to construct a new general predicate." (Charles S Peirce, "New Elements" ["Kaina stoiceia"], 1904) 

"A theorem […] is an inference obtained by constructing a diagram according to a general precept, and after modifying it as ingenuity may dictate, observing in it certain relations, and showing that they must subsist in every case, retranslating the proposition into general terms." (Charles S Peirce, "New Elements" ["Kaina stoiceia"], 1904)

"By [diagrams] it is possible to present at a glance all the facts which could be obtained from figures as to the increase,  fluctuations, and relative importance of prices, quantities, and values of different classes of goods and trade with various countries; while the sharp irregularities of the curves give emphasis to the disturbing causes which produce any striking change." (Arthur L Bowley, "A Short Account of England's Foreign Trade in the Nineteenth Century, its Economic and Social Results", 1905)

"Diagrammatic reasoning is the only really fertile reasoning. If logicians would only embrace this method, we should no longer see attempts to base their science on the fragile foundations of metaphysics or a psychology not based on logical theory; and there would soon be such an advance in logic that every science would feel the benefit of it." (Charles S Peirce, "Prolegomena to an Apology for Pragmaticism", Monist 16(4), 1906)

"To facilitate eyeless observation of his sense-transcending world, the mathematician invokes the aid of physical diagrams and physical symbols in endless variety and combination [...]" (Cassius J Keyser, "Lectures on Science, Philosophy and Art", 1907-1908, 1908)

"This diagrammatic method has, however, serious inconveniences as a method for solving logical problems. It does not show how the data are exhibited by cancelling certain constituents, nor does it show how to combine the remaining constituents so as to obtain the consequences sought. In short, it serves only to exhibit one single step in the argument, namely the equation of the problem; it dispenses neither with the previous steps, i.e., 'throwing of the problem into an equation' and the transformation of the premises, nor with the subsequent steps, i.e., the combinations that lead to the various consequences. Hence it is of very little use, inasmuch as the constituents can be represented by algebraic symbols quite as well as by plane regions, and are much easier to deal with in this form." (Louis Couturat, "The Algebra of Logic", 1914)

"We rise from the conception of form to an understanding of the forces which gave rise to it. [...] in the representation of form we see a diagram of forces in equilibrium, and in the comparison of kindred forms we discern the magnitude and the direction of the forces which have sufficed to convert the one form into the other." (D'Arcy Wentworth Thompson, "On Growth and Form" Vol. II, 1917)

09 July 2020

Mental Models XLIX

"For imagination is different from either perceiving or discursive thinking, though it is not found without sensation, or judgement without it. That this activity is not the same kind of thinking as judgement is obvious. For imagining lies within our own power whenever we wish (e.g. we can call up a picture, as in the practice of mnemonics by the use of mental images), but in forming opinions we are not free: we cannot escape the alternative of falsehood or truth." (Aristotle, "De Anima", cca. 350 BC)

"Since it seems that there is nothing outside and separate in existence from sensible spatial magnitudes, the objects of thought are in the sensible forms, viz. both the abstract objects and all the states and affections of sensible things. Hence no one can learn or understand anything in the absence of sense, and when the mind is actively aware of anything it is necessarily aware of it along with an image; for images are like sensuous contents except in that they contain no matter. Imagination is different from assertion and denial; for what is true or false involves a synthesis of thoughts. In what will the primary thoughts differ from images? Must we not say that neither these nor even our other thoughts are images, though they necessarily involve them?" (Aristotle, "De Anima", cca. 350 BC)

"Thinking is different from perceiving and is held to be in part imagination, in part judgement: we must therefore first mark off the sphere of imagination and then speak of judgement. If then imagination is that in virtue of which an image arises for us, excluding metaphorical uses of the term, is it a single faculty or disposition relative to images, in virtue of which we discriminate and are either in error or not? The faculties in virtue of which we do this are sense, opinion, knowledge, thought." (Aristotle, "De Anima", cca. 350 BC)

"As regards the question, therefore, what memory or remembering is, it has now been shown that it is the having of an image, related as a likeness to that of which it is an image; and as to the question of which of the faculties within us memory is a function, it has been shown that it is a function of the primary faculty of sense-perception, i.e. of that faculty whereby we perceive time."  (Aristotle," De Memoria et Reminiscentia" ["On Memory and Recollection"], 4th century BC)

"But since we have, in our work on the soul, treated of imagination, and the faculty of imagination is identical with that of sense-perception, though the being of a faculty of imagination is different from that of a faculty of sense-perception; and since imagination is the movement set up by a sensory faculty when actually discharging its function, while a dream appears to be an image (for which occurs in sleep - whether simply or in some particular way - is what we call a dream): it manifestly follows that dreaming is an activity of the faculty of sense-perception, but belongs to this faculty qua imaginative." (Aristotle, On Dreams, 4th century BC)

"For according to the arguments from the existence of the sciences there will be Forms of all things of which there are sciences, and according to the argument that there is one attribute common to many things there will be Forms even of negations, and according to the argument that there is an object for thought even when the thing has perished, there will be Forms of perishable things; for we can have an image of these." (Aristotle, "Metaphysics", 4th century BC)

"All that is required between cognizer and cognized is a likeness in terms of representation, not a likeness in terms of an agreement in nature. For it's plain that the form of a stone in the soul is of a far higher nature than the form of a stone in matter. But that form, insofar as it represents the stone, is to that extent the principle leading to its cognition." (Thomas Aquinas, "Quaestiones disputatae de veritate", cca. 1256-1259) 

"Imagery is not past but present. It rests with what we call our mental processes to place these images in a temporal order." (George H Mead, 1929)

"It is not surprising that our language should be incapable of describing the processes occurring within the atoms, for, as has been remarked, it was invented to describe the experiences of daily life, and these consist only of processes involving exceedingly large numbers of atoms. Furthermore, it is very difficult to modify our language so that it will be able to describe these atomic processes, for words can only describe things of which we can form mental pictures, and this ability, too, is a result of daily experience. Fortunately, mathematics is not subject to this limitation, and it has been possible to invent a mathematical scheme - the quantum theory - which seems entirely adequate for the treatment of atomic processes; for visualisation, however, we must content ourselves with two incomplete analogies - the wave picture and the corpuscular picture." (Werner Heisenberg, "On Quantum Physics", 1930)

"The solution of the difficulty is that the two mental pictures which experiment lead us to form - the one of the particles, the other of the waves - are both incomplete and have only the validity of analogies which are accurate only in limiting cases." (Werner Heisenberg,"On Quantum Mechanics", 1930)


01 March 2020

On Stability I

"The behavior of two individuals, consisting of effort which results in output, is considered to be determined by a satisfaction function which depends on remuneration (receiving part of the output) and on the effort expended. The total output of the two individuals is not additive, that is, together they produce in general more than separately. Each individual behaves in a way which he considers will maximize his satisfaction function. Conditions are deduced for a certain relative equilibrium and for the stability of this equilibrium, i.e., conditions under which it will not pay the individual to decrease his efforts. In the absence of such conditions ‘exploitation’ occurs which may or may not lead to total parasitism." (Anatol Rapoport, "Mathematical theory of motivation interactions of two individuals," The Bulletin of Mathematical Biophysics 9, 1947)

"[…] there are three different but interconnected conceptions to be considered in every structure, and in every structural element involved: equilibrium, resistance, and stability." (Eduardo Torroja, "Philosophy of Structure" , 1951) 

"As shorthand, when the phenomena are suitably simple, words such as equilibrium and stability are of great value and convenience. Nevertheless, it should be always borne in mind that they are mere shorthand, and that the phenomena will not always have the simplicity that these words presuppose." (W Ross Ashby, "An Introduction to Cybernetics", 1956)

"The static stability of a system is defined by the initial tendency to return to equilibrium conditions following some disturbance from equilibrium. […] If the object has a tendency to continue in the direction of disturbance, negative static stability or static instability exists. […] If the object subject to disturbance has neither the tendency to return nor the tendency to continue in the displacement direction, neutral static stability exists." (Hugh H Hurt, "Aerodynamics for Naval Aviators", 1960)

"While static stability is concerned with the tendency of a displaced body to return to equilibrium, dynamic stability is concerned with the resulting motion with time. If an object is disturbed from equilibrium, the time history of the resulting motion indicates the dynamic stability of the system. In general, the system will demonstrate positive dynamic stability if the amplitude of the motion decreases with time." (Hugh H Hurt, "Aerodynamics for Naval Aviators", 1960)


"[...] in a state of dynamic equilibrium with their environments. If they do not maintain this equilibrium they die; if they do maintain it they show a degree of spontaneity, variability, and purposiveness of response unknown in the non-living world. This is what is meant by ‘adaptation to environment’ […] [Its] essential feature […] is stability - that is, the ability to withstand disturbances." (Kenneth Craik, 'Living organisms', “The Nature of Psychology”, 1966)

"One of the central problems studied by mankind is the problem of the succession of form. Whatever is the ultimate nature of reality (assuming that this expression has meaning). it is indisputable that our universe is not chaos. We perceive beings, objects, things to which we give names. These beings or things are forms or structures endowed with a degree of stability: they take up some part of space and last for some period of time." (René Thom, "Structural Stability and Morphogenesis", 1972)

"There seems to be a time scale in all natural processes beyond which structural stability and calculability become incompatible." (René Thom, "Structural Stability and Morphogenesis", 1972)

"Complex systems operate under conditions far from equilibrium. Complex systems need a constant flow of energy to change, evolve and survive as complex entities. Equilibrium, symmetry and complete stability mean death. Just as the flow, of energy is necessary to fight entropy and maintain the complex structure of the system, society can only survive as a process. It is defined not by its origins or its goals, but by what it is doing." (Paul Cilliers,"Complexity and Postmodernism: Understanding Complex Systems", 1998)

"Cybernetics is the science of effective organization, of control and communication in animals and machines. It is the art of steersmanship, of regulation and stability. The concern here is with function, not construction, in providing regular and reproducible behaviour in the presence of disturbances. Here the emphasis is on families of solutions, ways of arranging matters that can apply to all forms of systems, whatever the material or design employed. [...] This science concerns the effects of inputs on outputs, but in the sense that the output state is desired to be constant or predictable – we wish the system to maintain an equilibrium state. It is applicable mostly to complex systems and to coupled systems, and uses the concepts of feedback and transformations (mappings from input to output) to effect the desired invariance or stability in the result." (Chris Lucas, "Cybernetics and Stochastic Systems", 1999)
Related Posts Plugin for WordPress, Blogger...

On Leonhard Euler

"I have been able to solve a few problems of mathematical physics on which the greatest mathematicians since Euler have struggled in va...