Showing posts with label invariance. Show all posts
Showing posts with label invariance. Show all posts

20 June 2023

On Invariance (2010 - )

"In dynamical systems, a bifurcation occurs when a small smooth change made to the parameter values (the bifurcation parameters) of a system causes a sudden 'qualitative' or topological change in its behaviour. Generally, at a bifurcation, the local stability properties of equilibria, periodic orbits or other invariant sets changes." (Gregory Faye, "An introduction to bifurcation theory", 2011)

"One of the most important skills you will need to acquire in order to use manifold theory effectively is an ability to switch back and forth easily between invariant descriptions and their coordinate counterparts." (John M Lee, "Introduction to Smooth Manifolds" 2nd Ed., 2013)

"The fact that manifolds do not come with any predetermined choice of coordinates is both a blessing and a curse. The flexibility to choose coordinates more or less arbitrarily can be a big advantage in approaching problems in manifold theory, because the coordinates can often be chosen to simplify some aspect of the problem at hand. But we pay for this flexibility by being obliged to ensure that any objects we wish to define globally on a manifold are not dependent on a particular choice of coordinates. There are generally two ways of doing this: either by writing down a coordinate-dependent definition and then proving that the definition gives the same results in any coordinate chart, or by writing down a definition that is manifestly coordinate-independent (often called an invariant definition)." (John M Lee, "Introduction to Smooth Manifolds" 2nd Ed., 2013)

"Intersections of lines, for example, remain intersections, and the hole in a torus (doughnut) cannot be transformed away. Thus a doughnut may be transformed topologically into a coffee cup (the hole turning into a handle) but never into a pancake. Topology, then, is really a mathematics of relationships, of unchangeable, or 'invariant', patterns." (Fritjof Capra, "The Systems View of Life: A Unifying Vision", 2014)

"The invariance principle states that the result of counting a set does not depend on the order imposed on its elements during the counting process. Indeed, a mathematical set is just a collection without any implied ordering. A set is the collection of its elements - nothing more." (Alfred S Posamentier & Bernd Thaller, "Numbers: Their tales, types, and treasures", 2015)

"[…] the role that symmetry plays is not confined to material objects. Symmetries can also refer to theories and, in particular, to quantum theory. For if the laws of physics are to be invariant under changes of reference frames, the set of all such transformations will form a group. Which transformations and which groups depends on the systems under consideration." (William H Klink & Sujeev Wickramasekara, "Relativity, Symmetry and the Structure of Quantum Theory I: Galilean quantum theory", 2015)

"Data analysis and data mining are concerned with unsupervised pattern finding and structure determination in data sets. The data sets themselves are explicitly linked as a form of representation to an observational or otherwise empirical domain of interest. 'Structure' has long been understood as symmetry which can take many forms with respect to any transformation, including point, translational, rotational, and many others. Symmetries directly point to invariants, which pinpoint intrinsic properties of the data and of the background empirical domain of interest. As our data models change, so too do our perspectives on analysing data." (Fionn Murtagh, "Data Science Foundations: Geometry and Topology of Complex Hierarchic Systems and Big Data Analytics", 2018)

28 August 2021

On Invariance (2000-2009)

"A physical system is said to possess a symmetry if one can make a change in the system such that, after the change, the system is exactly the same as it was before. We call the change we are making to the system a symmetry operation or a symmetry transformation. If a system stays the same when we do a transformation to it, we say that the system is invariant under the transformation." (Leon M Lederman & Christopher T Hill, "Symmetry and the Beautiful Universe", 2004)

"So, a scientist's definition of symmetry would be something like this: symmetry is an invariance of an object or system to a transformation. The invariance is the sameness or constancy of the system in form, appearance, composition, arrangement, and so on, and a transformation is the abstract action we apply to the system that takes it from one state into another, equivalent, one. There are often numerous transformations we can apply on a given system that take it into an equivalent state." (Leon M Lederman & Christopher T Hill, "Symmetry and the Beautiful Universe", 2004)

"Quantum physics, in particular particle and string theory, has proven to be a remarkable fruitful source of inspiration for new topological invariants of knots and manifolds. With hindsight this should perhaps not come as a complete surprise. Roughly one can say that quantum theory takes a geometric object (a manifold, a knot, a map) and associates to it a (complex) number, that represents the probability amplitude for a certain physical process represented by the object." (Robbert Dijkgraaf, "Mathematical Structures", 2005)

"Numerical invariants and invariant properties enable us to distinguish certain topological spaces. We can go further and associate with a topological space a set having an algebraic structure. The fundamental group is the most basic of such possibilities. It not only provides a useful invariant for topological spaces, but the algebraic operation of multiplication defined for this group reflects the global structure of the space." (Robert Messer & Philip Straffin, "Topology Now!", 2006)

"Each of the most basic physical laws that we know corresponds to some invariance, which in turn is equivalent to a collection of changes which form a symmetry group. […] whilst leaving some underlying theme unchanged. […] for example, the conservation of energy is equivalent to the invariance of the laws of motion with respect to translations backwards or forwards in time […] the conservation of linear momentum is equivalent to the invariance of the laws of motion with respect to the position of your laboratory in space, and the conservation of angular momentum to an invariance with respect to directional orientation… discovery of conservation laws indicated that Nature possessed built-in sustaining principles which prevented the world from just ceasing to be." (John D Barrow, "New Theories of Everything", 2007)

"The concept of symmetry (invariance) with its rigorous mathematical formulation and generalization has guided us to know the most fundamental of physical laws. Symmetry as a concept has helped mankind not only to define ‘beauty’ but also to express the ‘truth’. Physical laws tries to quantify the truth that appears to be ‘transient’ at the level of phenomena but symmetry promotes that truth to the level of ‘eternity’." (Vladimir G Ivancevic & Tijana T Ivancevic,"Quantum Leap", 2008)

"Mathematical symmetries and invariants underlie nearly all physical laws in nature, suggesting that the search for many natural laws is inseparably a search for conserved quantities and invariant equations [...]" (Michael Schmidt & Hod Lipson, "Distilling Free-Form Natural Laws from Experimental Data", Science, Vol 324 (5923), 2009)

"The concept of symmetry is used widely in physics. If the laws that determine relations between physical magnitudes and a change of these magnitudes in the course of time do not vary at the definite operations (transformations), they say, that these laws have symmetry (or they are invariant) with respect to the given transformations. For example, the law of gravitation is valid for any points of space, that is, this law is in variant with respect to the system of coordinates." (Alexey Stakhov et al, "The Mathematics of Harmony", 2009)

08 June 2021

On Patterns (2010-2019)

"Because the question for me was always whether that shape we see in our lives was there from the beginning or whether these random events are only called a pattern after the fact. Because otherwise we are nothing." (Cormac McCarthy, "All the Pretty Horses", 2010)

"The human mind delights in finding pattern - so much so that we often mistake coincidence or forced analogy for profound meaning. No other habit of thought lies so deeply within the soul of a small creature trying to make sense of a complex world not constructed for it." (Stephen J Gould, "The Flamingo's Smile: Reflections in Natural History", 2010)

"What advantages do diagrams have over verbal descriptions in promoting system understanding? First, by providing a diagram, massive amounts of information can be presented more efficiently. A diagram can strip down informational complexity to its core - in this sense, it can result in a parsimonious, minimalist description of a system. Second, a diagram can help us see patterns in information and data that may appear disordered otherwise. For example, a diagram can help us see mechanisms of cause and effect or can illustrate sequence and flow in a complex system. Third, a diagram can result in a less ambiguous description than a verbal description because it forces one to come up with a more structured description." (Robbie T Nakatsu, "Diagrammatic Reasoning in AI", 2010)

"A surprising proportion of mathematicians are accomplished musicians. Is it because music and mathematics share patterns that are beautiful?" (Martin Gardner, "The Dover Math and Science Newsletter", 2011)

"It is the consistency of the information that matters for a good story, not its completeness. Indeed, you will often find that knowing little makes it easier to fit everything you know into a coherent pattern." (Daniel Kahneman, "Thinking, Fast and Slow", 2011)

"Knowing the importance of luck, you should be particularly suspicious when highly consistent patterns emerge from the comparison of successful and less successful firms. In the presence of randomness, regular patterns can only be mirages." (Daniel Kahneman, "Thinking, Fast and Slow", 2011)

"Once a myth becomes established, it forms part of our mental model of the world and alters our perception, the way our brains interpret the fleeting patterns our eyes pick up." (Jeremy Wade, "River Monsters: True Stories of the Ones that Didn't Get Away", 2011)

"Randomness might be defined in terms of order - its absence, that is. […] Everything we care about lies somewhere in the middle, where pattern and randomness interlace." (James Gleick, "The Information: A History, a Theory, a Flood", 2011)

"Equations have hidden powers. They reveal the innermost secrets of nature. […] The power of equations lies in the philosophically difficult correspondence between mathematics, a collective creation of human minds, and an external physical reality. Equations model deep patterns in the outside world. By learning to value equations, and to read the stories they tell, we can uncover vital features of the world around us." (Ian Stewart, "In Pursuit of the Unknown", 2012)

"Finding patterns is easy in any kind of data-rich environment; that's what mediocre gamblers do. The key is in determining whether the patterns represent signal or noise." (Nate Silver, "The Signal and the Noise: Why So Many Predictions Fail-but Some Don't", 2012)

"Mathematical intuition is the mind’s ability to sense form and structure, to detect patterns that we cannot consciously perceive. Intuition lacks the crystal clarity of conscious logic, but it makes up for that by drawing attention to things we would never have consciously considered." (Ian Stewart, "Visions of Infinity", 2013)

"Proof, in fact, is the requirement that makes great problems problematic. Anyone moderately competent can carry out a few calculations, spot an apparent pattern, and distil its essence into a pithy statement. Mathematicians demand more evidence than that: they insist on a complete, logically impeccable proof. Or, if the answer turns out to be negative, a disproof. It isn’t really possible to appreciate the seductive allure of a great problem without appreciating the vital role of proof in the mathematical enterprise. Anyone can make an educated guess. What’s hard is to prove it’s right. Or wrong." (Ian Stewart, "Visions of Infinity", 2013)

"Swarm intelligence illustrates the complex and holistic way in which the world operates. Order is created from chaos; patterns are revealed; and systems are free to work out their errors and problems at their own level. What natural systems can teach humanity is truly amazing." (Lawrence K Samuels, "Defense of Chaos: The Chaology of Politics, Economics and Human Action", 2013)

"To put it simply, we communicate when we display a convincing pattern, and we discover when we observe deviations from our expectations. These may be explicit in terms of a mathematical model or implicit in terms of a conceptual model. How a reader interprets a graphic will depend on their expectations. If they have a lot of background knowledge, they will view the graphic differently than if they rely only on the graphic and its surrounding text." (Andrew Gelman & Antony Unwin, "Infovis and Statistical Graphics: Different Goals, Different Looks", Journal of Computational and Graphical Statistics Vol. 22(1), 2013)

"Another way to secure statistical significance is to use the data to discover a theory. Statistical tests assume that the researcher starts with a theory, collects data to test the theory, and reports the results - whether statistically significant or not. Many people work in the other direction, scrutinizing the data until they find a pattern and then making up a theory that fits the pattern." (Gary Smith, "Standard Deviations", 2014)

"Intersections of lines, for example, remain intersections, and the hole in a torus (doughnut) cannot be transformed away. Thus a doughnut may be transformed topologically into a coffee cup (the hole turning into a handle) but never into a pancake. Topology, then, is really a mathematics of relationships, of unchangeable, or 'invariant', patterns." (Fritjof Capra, "The Systems View of Life: A Unifying Vision", 2014)

"One of the remarkable features of these complex systems created by replicator dynamics is that infinitesimal differences in starting positions create vastly different patterns. This sensitive dependence on initial conditions is often called the butterfly-effect aspect of complex systems - small changes in the replicator dynamics or in the starting point can lead to enormous differences in outcome, and they change one’s view of how robust the current reality is. If it is complex, one small change could have led to a reality that is quite different." (David Colander & Roland Kupers, "Complexity and the art of public policy : solving society’s problems from the bottom up", 2014)

"[…] regard it in fact as the great advantage of the mathematical technique that it allows us to describe, by means of algebraic equations, the general character of a pattern even where we are ignorant of the numerical values which will determine its particular manifestation." (Friedrich A von Hayek, "The Market and Other Orders", 2014)

"We are genetically predisposed to look for patterns and to believe that the patterns we observe are meaningful. […] Don’t be fooled into thinking that a pattern is proof. We need a logical, persuasive explanation and we need to test the explanation with fresh data." (Gary Smith, "Standard Deviations", 2014)

"We are hardwired to make sense of the world around us - to notice patterns and invent theories to explain these patterns. We underestimate how easily pat - terns can be created by inexplicable random events - by good luck and bad luck." (Gary Smith, "Standard Deviations", 2014)

"A pattern is a design or model that helps grasp something. Patterns help connect things that may not appear to be connected. Patterns help cut through complexity and reveal simpler understandable trends. […] Patterns can be temporal, which is something that regularly occurs over time. Patterns can also be spatial, such as things being organized in a certain way. Patterns can be functional, in that doing certain things leads to certain effects. Good patterns are often symmetric. They echo basic structures and patterns that we are already aware of." (Anil K Maheshwari, "Business Intelligence and Data Mining", 2015)

"The human mind builds up theories by recognising familiar patterns and glossing over details that are well understood, so that it can concentrate on the new material. In fact it is limited by the amount of new information it can hold at any one time, and the suppression of familiar detail is often essential for a grasp of the total picture. In a written proof, the step-by-step logical deduction is therefore foreshortened where it is already a part of the reader's basic technique, so that they can comprehend the overall structure more easily." (Ian Stewart & David Tall, "The Foundations of Mathematics" 2nd Ed., 2015)

"Why do mathematicians care so much about pi? Is it some kind of weird circle fixation? Hardly. The beauty of pi, in part, is that it puts infinity within reach. Even young children get this. The digits of pi never end and never show a pattern. They go on forever, seemingly at random - except that they can’t possibly be random, because they embody the order inherent in a perfect circle. This tension between order and randomness is one of the most tantalizing aspects of pi." (Steven Strogatz, "Why PI Matters" 2015)

"Without chaos there would be no creation, no structure and no existence. After all, order is merely the repetition of patterns; chaos is the process that establishes those patterns. Without this creative self-organizing force, the universe would be devoid of biological life, the birth of stars and galaxies - everything we have come to know. (Lawrence K Samuels, "Chaos Gets a Bad Rap: Importance of Chaology to Liberty", 2015)

"A mental representation is a mental structure that corresponds to an object, an idea, a collection of information, or anything else, concrete or abstract, that the brain is thinking about. […] Because the details of mental representations can differ dramatically from field to field, it’s hard to offer an overarching definition that is not too vague, but in essence these representations are preexisting patterns of information - facts, images, rules, relationships, and so on - that are held in long-term memory and that can be used to respond quickly and effectively in certain types of situations." (Anders Ericsson & Robert Pool," Peak: Secrets from  the  New  Science  of  Expertise", 2016)

"String theory today looks almost fractal. The more closely people explore any one corner, the more structure they find. Some dig deep into particular crevices; others zoom out to try to make sense of grander patterns. The upshot is that string theory today includes much that no longer seems stringy. Those tiny loops of string whose harmonics were thought to breathe form into every particle and force known to nature (including elusive gravity) hardly even appear anymore on chalkboards at conferences." (K C Cole, "The Strange Second Life of String Theory", Quanta Magazine", 2016)

"The relationship of math to the real world has been a conundrum for philosophers for centuries, but it is also an inspiration for poets. The patterns of mathematics inhabit a liminal space - they were initially derived from the natural world and yet seem to exist in a separate, self-contained system standing apart from that world. This makes them a source of potential metaphor: mapping back and forth between the world of personal experience and the world of mathematical patterns opens the door to novel connections." (Alice Major, "Mapping from e to Metaphor", 2018)

"Apart from the technical challenge of working with the data itself, visualization in big data is different because showing the individual observations is just not an option. But visualization is essential here: for analysis to work well, we have to be assured that patterns and errors in the data have been spotted and understood. That is only possible by visualization with big data, because nobody can look over the data in a table or spreadsheet." (Robert Grant, "Data Visualization: Charts, Maps and Interactive Graphics", 2019)

07 June 2021

On Patterns (1990-1999)

"Mathematics is an exploratory science that seeks to understand every kind of pattern - patterns that occur in nature, patterns invented by the human mind, and even patterns created by other patterns." (Lynn A Steen, "The Future of Mathematics Education", 1990)

"Phenomena having uncertain individual outcomes but a regular pattern of outcomes in many repetitions are called random. 'Random' is not a synonym for 'haphazard' but a description of a kind of order different from the deterministic one that is popularly associated with science and mathematics. Probability is the branch of mathematics that describes randomness." (David S Moore, "Uncertainty", 1990)

"Systems thinking is a framework for seeing interrelationships rather than things, for seeing patterns rather than static snapshots. It is a set of general principles spanning fields as diverse as physical and social sciences, engineering and management." (Peter Senge, "The Fifth Discipline", 1990)

"The term chaos is used in a specific sense where it is an inherently random pattern of behaviour generated by fixed inputs into deterministic (that is fixed) rules (relationships). The rules take the form of non-linear feedback loops. Although the specific path followed by the behaviour so generated is random and hence unpredictable in the long-term, it always has an underlying pattern to it, a 'hidden' pattern, a global pattern or rhythm. That pattern is self-similarity, that is a constant degree of variation, consistent variability, regular irregularity, or more precisely, a constant fractal dimension. Chaos is therefore order (a pattern) within disorder (random behaviour)." (Ralph D Stacey, "The Chaos Frontier: Creative Strategic Control for Business", 1991)

"Chaos demonstrates that deterministic causes can have random effects […] There's a similar surprise regarding symmetry: symmetric causes can have asymmetric effects. […] This paradox, that symmetry can get lost between cause and effect, is called symmetry-breaking. […] From the smallest scales to the largest, many of nature's patterns are a result of broken symmetry; […]" (Ian Stewart & Martin Golubitsky, "Fearful Symmetry: Is God a Geometer?", 1992)

"In everyday language, the words 'pattern' and 'symmetry' are used almost interchangeably, to indicate a property possessed by a regular arrangement of more-or-less identical units […]” (Ian Stewart & Martin Golubitsky, “Fearful Symmetry: Is God a Geometer?”, 1992)

"Scientists have discovered many peculiar things, and many beautiful things. But perhaps the most beautiful and the most peculiar thing that they have discovered is the pattern of science itself. Our scientific discoveries are not independent isolated facts; one scientific generalization finds its explanation in another, which is itself explained by yet another. By tracing these arrows of explanation back toward their source we have discovered a striking convergent pattern - perhaps the deepest thing we have yet learned about the universe." (Steven Weinberg, "Dreams of a Final Theory: The Scientist’s Search for the Ultimate Laws of Nature", 1992)

"Searching for patterns is a way of thinking that is essential for making generalizations, seeing relationships, and understanding the logic and order of mathematics. Functions evolve from the investigation of patterns and unify the various aspects of mathematics." (Marilyn Burns, "About Teaching Mathematics: A K–8 Resource", 1992)

"Symmetry is bound up in many of the deepest patterns of Nature, and nowadays it is fundamental to our scientific understanding of the universe. Conservation principles, such as those for energy or momentum, express a symmetry that (we believe) is possessed by the entire space-time continuum: the laws of physics are the same everywhere." (Ian Stewart & Martin Golubitsky, "Fearful Symmetry: Is God a Geometer?", 1992)

"World view, a concept borrowed from cultural anthropology, refers to the culturally dependent, generally subconscious, fundamental organization of the mind. This conceptual organization manifests itself as a set of presuppositions that predispose one to feel, think, and act in predictable patterns." (Kenneth G Tobin, "The practice of constructivism in science education", 1993)

"[For] us to be able to speak and understand novel sentences, we have to store in our heads not just the words of our language but also the patterns of sentences possible in our language. These patterns, in turn, describe not just patterns of words but also patterns of patterns. Linguists refer to these patterns as the rules of language stored in memory; they refer to the complete collection of rules as the mental grammar of the language, or grammar for short." (Ray Jackendoff, "Patterns in the Mind", 1994)

"A neural network is characterized by A) its pattern of connections between the neurons (called its architecture), B) its method of determining the weights on the connections (called its training, or learning, algorithm), and C) its activation function." (Laurene Fausett, "Fundamentals of Neural Networks", 1994)

"At the other far extreme, we find many systems ordered as a patchwork of parallel operations, very much as in the neural network of a brain or in a colony of ants. Action in these systems proceeds in a messy cascade of interdependent events. Instead of the discrete ticks of cause and effect that run a clock, a thousand clock springs try to simultaneously run a parallel system. Since there is no chain of command, the particular action of any single spring diffuses into the whole, making it easier for the sum of the whole to overwhelm the parts of the whole. What emerges from the collective is not a series of critical individual actions but a multitude of simultaneous actions whose collective pattern is far more important. This is the swarm model." (Kevin Kelly, "Out of Control: The New Biology of Machines, Social Systems and the Economic World", 1995)

"Each of nature's patterns is a puzzle, nearly always a deep one. Mathematics is brilliant at helping us to solve puzzles. It is a more or less systematic way of digging out the rules and structures that lie behind some observed pattern or regularity, and then using those rules and structures to explain what's going on." (Ian Stewart, "Nature's Numbers: The unreal reality of mathematics", 1995)

"Human mind and culture have developed a formal system of thought for recognizing, classifying, and exploiting patterns. We call it mathematics. By using mathematics to organize and systematize our ideas about patterns, we have discovered a great secret: nature's patterns are not just there to be admired, they are vital clues to the rules that govern natural processes." (Ian Stewart, "Nature's Numbers: The unreal reality of mathematics", 1995)

"Patterns possess utility as well as beauty. Once we have learned to recognize a background pattern, exceptions suddenly stand out." (Ian Stewart, "Nature's Numbers: The unreal reality of mathematics", 1995)

"Self-organization refers to the spontaneous formation of patterns and pattern change in open, nonequilibrium systems. […] Self-organization provides a paradigm for behavior and cognition, as well as the structure and function of the nervous system. In contrast to a computer, which requires particular programs to produce particular results, the tendency for self-organization is intrinsic to natural systems under certain conditions." (J A Scott Kelso, "Dynamic Patterns : The Self-organization of Brain and Behavior", 1995)

"Symmetry is basically a geometrical concept. Mathematically it can be defined as the invariance of geometrical patterns under certain operations. But when abstracted, the concept applies to all sorts of situations. It is one of the ways by which the human mind recognizes order in nature. In this sense symmetry need not be perfect to be meaningful. Even an approximate symmetry attracts one's attention, and makes one wonder if there is some deep reason behind it." (Eguchi Tohru & ?K Nishijima , "Broken Symmetry: Selected Papers Of Y Nambu", 1995)

"Whatever the reasons, mathematics definitely is a useful way to think about nature. What do we want it to tell us about the patterns we observe? There are many answers. We want to understand how they happen; to understand why they happen, which is different; to organize the underlying patterns and regularities in the most satisfying way; to predict how nature will behave; to control nature for our own ends; and to make practical use of what we have learned about our world. Mathematics helps us to do all these things, and often it is indispensable." (Ian Stewart, "Nature's Numbers: The unreal reality of mathematics", 1995)

"If we are to have meaningful, connected experiences; ones that we can comprehend and reason about; we must be able to discern patterns to our actions, perceptions, and conceptions. Underlying our vast network of interrelated literal meanings (all of those words about objects and actions) are those imaginative structures of understanding such as schema and metaphor, such as the mental imagery that allows us to extrapolate a path, or zoom in on one part of the whole, or zoom out until the trees merge into a forest." (William H Calvin, "The Cerebral Code", 1996)

"The methods of science include controlled experiments, classification, pattern recognition, analysis, and deduction. In the humanities we apply analogy, metaphor, criticism, and (e)valuation. In design we devise alternatives, form patterns, synthesize, use conjecture, and model solutions." (Béla H Bánáthy, "Designing Social Systems in a Changing World", 1996)

"The more complex the network is, the more complex its pattern of interconnections, the more resilient it will be." (Fritjof Capra, "The Web of Life: A New Scientific Understanding of Living Systems", 1996)

"The role of science, like that of art, is to blend proximate imagery with more distant meaning, the parts we already understand with those given as new into larger patterns that are coherent enough to be acceptable as truth. Biologists know this relation by intuition during the course of fieldwork, as they struggle to make order out of the infinitely varying patterns of nature." (Edward O Wilson, "In Search of Nature", 1996)

"Mathematics can function as a telescope, a microscope, a sieve for sorting out the signal from the noise, a template for pattern perception, a way of seeking and validating truth. […] A knowledge of the mathematics behind our ideas can help us to fool ourselves a little less often, with less drastic consequences." (K C Cole, "The Universe and the Teacup: The Mathematics of Truth and Beauty", 1997)

"Mathematics is a way of thinking that can help make muddy relationships clear. It is a language that allows us to translate the complexity of the world into manageable patterns. In a sense, it works like turning off the houselights in a theater the better to see a movie. Certainly, something is lost when the lights go down; you can no longer see the faces of those around you or the inlaid patterns on the ceiling. But you gain a far better view of the subject at hand." (K C Cole, "The Universe and the Teacup: The Mathematics of Truth and Beauty", 1997)

"A formal system consists of a number of tokens or symbols, like pieces in a game. These symbols can be combined into patterns by means of a set of rules which defines what is or is not permissible (e.g. the rules of chess). These rules are strictly formal, i.e. they conform to a precise logic. The configuration of the symbols at any specific moment constitutes a ‘state’ of the system. A specific state will activate the applicable rules which then transform the system from one state to another. If the set of rules governing the behaviour of the system are exact and complete, one could test whether various possible states of the system are or are not permissible." (Paul Cilliers, "Complexity and Postmodernism: Understanding Complex Systems", 1998)

"Mathematics, in the common lay view, is a static discipline based on formulas taught in the school subjects of arithmetic, geometry, algebra, and calculus. But outside public view, mathematics continues to grow at a rapid rate, spreading into new fields and spawning new applications. The guide to this growth is not calculation and formulas but an open-ended search for pattern." (Lynn A Steen, "The Future of Mathematics Education", 1998)

"A neural network consists of large numbers of simple neurons that are richly interconnected. The weights associated with the connections between neurons determine the characteristics of the network. During a training period, the network adjusts the values of the interconnecting weights. The value of any specific weight has no significance; it is the patterns of weight values in the whole system that bear information. Since these patterns are complex, and are generated by the network itself (by means of a general learning strategy applicable to the whole network), there is no abstract procedure available to describe the process used by the network to solve the problem. There are only complex patterns of relationships." (Paul Cilliers, "Complexity and Postmodernism: Understanding Complex Systems", 1998)

"Mathematics has traditionally been described as the science of number and shape. […] When viewed in this broader context, we see that mathematics is not just about number and shape but about pattern and order of all sorts. Number and shape - arithmetic and geometry - are but two of many media in which mathematicians work. Active mathematicians seek patterns wherever they arise." (Lynn A Steen, "The Future of Mathematics Education", 1998)

"Often, we use the word random loosely to describe something that is disordered, irregular, patternless, or unpredictable. We link it with chance, probability, luck, and coincidence. However, when we examine what we mean by random in various contexts, ambiguities and uncertainties inevitably arise. Tackling the subtleties of randomness allows us to go to the root of what we can understand of the universe we inhabit and helps us to define the limits of what we can know with certainty." (Ivars Peterson, "The Jungles of Randomness: A Mathematical Safari", 1998)

"Sequences of random numbers also inevitably display certain regularities. […] The trouble is, just as no real die, coin, or roulette wheel is ever likely to be perfectly fair, no numerical recipe produces truly random numbers. The mere existence of a formula suggests some sort of predictability or pattern." (Ivars Peterson, "The Jungles of Randomness: A Mathematical Safari", 1998)

"We use mathematics and statistics to describe the diverse realms of randomness. From these descriptions, we attempt to glean insights into the workings of chance and to search for hidden causes. With such tools in hand, we seek patterns and relationships and propose predictions that help us make sense of the world."  (Ivars Peterson, "The Jungles of Randomness: A Mathematical Safari", 1998)

"Complexity is looking at interacting elements and asking how they form patterns and how the patterns unfold. It’s important to point out that the patterns may never be finished. They’re open-ended. In standard science this hit some things that most scientists have a negative reaction to. Science doesn’t like perpetual novelty." (W Brian Arthur, 1999)

"Randomness is the very stuff of life, looming large in our everyday experience. […] The fascination of randomness is that it is pervasive, providing the surprising coincidences, bizarre luck, and unexpected twists that color our perception of everyday events." (Edward Beltrami, "Chaos and Order in Mathematics and Life", 1999)

"The first view of randomness is of clutter bred by complicated entanglements. Even though we know there are rules, the outcome is uncertain. Lotteries and card games are generally perceived to belong to this category. More troublesome is that nature's design itself is known imperfectly, and worse, the rules may be hidden from us, and therefore we cannot specify a cause or discern any pattern of order. When, for instance, an outcome takes place as the confluence of totally unrelated events, it may appear to be so surprising and bizarre that we say that it is due to blind chance." (Edward Beltrami. "What is Random?: Chance and Order in Mathematics and Life", 1999)

06 June 2021

On Invariance (1975-1999)

"Because of its foundation in topology, catastrophe theory is qualitative, not quantitative. Just as geometry treated the properties of a triangle without regard to its size, so topology deals with properties that have no magnitude, for example, the property of a given point being inside or outside a closed curve or surface. This property is what topologists call 'invariant' -it does not change even when the curve is distorted. A topologist may work with seven-dimensional space, but he does not and cannot measure (in the ordinary sense) along any of those dimensions. The ability to classify and manipulate all types of form is achieved only by giving up concepts such as size, distance, and rate. So while catastrophe theory is well suited to describe and even to predict the shape of processes, its descriptions and predictions are not quantitative like those of theories built upon calculus. Instead, they are rather like maps without a scale: they tell us that there are mountains to the left, a river to the right, and a cliff somewhere ahead, but not how far away each is, or how large." (Alexander Woodcock & Monte Davis, "Catastrophe Theory", 1978)

"Every branch of geometry can be defined as the study of properties that are unaltered when a specified figure is given specified symmetry transformations. Euclidian plane geometry, for instance, concerns the study of properties that are 'invariant' when a figure is moved about on the plane, rotated, mirror reflected, or uniformly expanded and contracted. Affine geometry studies properties that are invariant when a figure is "stretched" in a certain way. Projective geometry studies properties invariant under projection. Topology deals with properties that remain unchanged even when a figure is radically distorted in a manner similar to the deformation of a figure made of rubber." (Martin Gardner, "Aha! Insight", 1978)

"[…] in trying to prove a concrete geometrical result such as the classification theorem for surfaces, the purely topological structure of the surface (that it be locally euclidean) does not give us much leverage from which to start. On the other hand, although we can define algebraic invariants, such as the fundamental group, for topological spaces in general, they are not a great deal of use to us unless we can calculate them for a reasonably large collection of spaces. Both of these problems may be dealt with effectively by working with spaces that can be broken up into pieces which we can recognize, and which fit together nicely, the so called triangulable spaces." (Mark A Armstrong, "Basic Topology", 1979)

"Showing that two spaces are homeomorphic is a geometrical problem, involving the construction of a specific homeomorphism between them. The techniques used vary with the problem. […] Attempting to prove that two spaces are not homeomorphic to one another is a problem of an entirely different nature. We cannot possibly examine each function between the two spaces individually and check that it is not a homeomorphism. Instead we look for 'topological invariants' of spaces: an invariant may be a geometrical property of the space, a number like the Euler number defined for the space, or an algebraic system such as a group or a ring constructed from the space. The important thing is that the invariant be preserved by a homeomorphism- hence its name. If we suspect that two spaces are not homeomorphic, we may be able to confirm our suspicion by computing some suitable invariant and showing that we obtain different answers." (Mark A Armstrong, "Basic Topology", 1979)

"An essential condition for a theory of choice that claims normative status is the principle of invariance: different representations of the same choice problem should yield the same preference. That is, the preference between options should be independent of their description. Two characterizations that the decision maker, on reflection, would view as alternative descriptions of the same problem should lead to the same choice-even without the benefit of such reflection." (Amos Tversky & Daniel Kahneman, "Rational Choice and the Framing of Decisions", The Journal of Business Vol. 59 (4), 1986)

"Axiomatic theories of choice introduce preference as a primitive relation, which is interpreted through specific empirical procedures such as choice or pricing. Models of rational choice assume a principle of procedure invariance, which requires strategically equivalent methods of elicitation to yield the same preference order." (Amos Tversky et al, "The Causes of Preference Reversal", The American Economic Review Vol. 80 (1), 1990)

"Scaling invariance results from the fact that homogeneous power laws lack natural scales; they do not harbor a characteristic unit (such as a unit length, a unit time, or a unit mass). Such laws are therefore also said to be scale-free or, somewhat paradoxically, 'true on all scales'. Of course, this is strictly true only for our mathematical models. A real spring will not expand linearly on all scales; it will eventually break, at some characteristic dilation length. And even Newton's law of gravitation, once properly quantized, will no doubt sprout a characteristic length." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"The unifying concept underlying fractals, chaos, and power laws is self-similarity. Self-similarity, or invariance against changes in scale or size, is an attribute of many laws of nature and innumerable phenomena in the world around us. Self-similarity is, in fact, one of the decisive symmetries that shape our universe and our efforts to comprehend it." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"Homology theory introduces a new connection between invariants of manifolds. Continuing the "physical" analogy, we say that a homology theory studies the intrinsic structure of a manifold by breaking it into a system of portions arranged simply, or, more precisely, in a standard way. Then, given certain rules for glueing the portions together, the theory obtains the whole manifold. The main problem consists in proving the resultant geometric quantities that are independent of the decomposition and glueing (i.e., proving the topological invariance of the characteristics)." (Michael IMonastyrsky, "Topology of Gauge Fields and Condensed Matter", 1993)

"Symmetry is basically a geometrical concept. Mathematically it can be defined as the invariance of geometrical patterns under certain operations. But when abstracted, the concept applies to all sorts of situations. It is one of the ways by which the human mind recognizes order in nature. In this sense symmetry need not be perfect to be meaningful. Even an approximate symmetry attracts one's attention, and makes one wonder if there is some deep reason behind it." (Eguchi Tohru & ‎K Nishijima ," Broken Symmetry: Selected Papers Of Y Nambu", 1995)

"The cliché became, erroneously, 'everything is relative'; whereas the point is that out of the vast flux one can distill the very opposite: 'some things are invariant'." (Gerald Holton, "Einstein, History, and Other Passions: The Rebellion Against Science at the End of the Twentieth Century", 1996)

"How deep truths can be defined as invariants – things that do not change no matter what; how invariants are defined by symmetries, which in turn define which properties of nature are conserved, no matter what. These are the selfsame symmetries that appeal to the senses in art and music and natural forms like snowflakes and galaxies. The fundamental truths are based on symmetry, and there’s a deep kind of beauty in that." (K C Cole, "The Universe and the Teacup: The Mathematics of Truth and Beauty", 1997)

"Homology theory studies properties of manifolds by decomposing them into simpler parts. The structure of these parts can be investigated easily by introducing algebraic characteristics associated with these decompositions. The main difficulty lies in proving that the corresponding characteristics of the decomposition, in fact, do not depend on the particular choice of the decomposition but are rather a topological invariant of the manifold itself." (Michael I Monastyrsky, "Riemann, Topology, and Physics", 1999)

"Cybernetics is the science of effective organization, of control and communication in animals and machines. It is the art of steersmanship, of regulation and stability. The concern here is with function, not construction, in providing regular and reproducible behaviour in the presence of disturbances. Here the emphasis is on families of solutions, ways of arranging matters that can apply to all forms of systems, whatever the material or design employed. [...] This science concerns the effects of inputs on outputs, but in the sense that the output state is desired to be constant or predictable – we wish the system to maintain an equilibrium state. It is applicable mostly to complex systems and to coupled systems, and uses the concepts of feedback and transformations (mappings from input to output) to effect the desired invariance or stability in the result." (Chris Lucas, "Cybernetics and Stochastic Systems", 1999)

"One of the basic tasks of topology is to learn to distinguish nonhomeomorphic figures. To this end one introduces the class of invariant quantities that do not change under homeomorphic transformations of a given figure. The study of the invariance of topological spaces is connected with the solution of a whole series of complex questions: Can one describe a class of invariants of a given manifold? Is there a set of integral invariants that fully characterizes the topological type of a manifold? and so forth." (Michael I Monastyrsky, "Riemann, Topology, and Physics", 1999)

On Invariance (1950-1974)

"Every object that we perceive appears in innumerable aspects. The concept of the object is the invariant of all these aspects. From this point of view, the present universally used system of concepts in which particles and waves appear simultaneously, can be completely justified. The latest research on nuclei and elementary particles has led us, however, to limits beyond which this system of concepts itself does not appear to suffice. The lesson to be learned from what I have told of the origin of quantum mechanics is that probable refinements of mathematical methods will not suffice to produce a satisfactory theory, but that somewhere in our doctrine is hidden a concept, unjustified by experience, which we must eliminate to open up the road." (Max Born, "The Statistical Interpretations of Quantum Mechanics", [Nobel lecture] 1954)

"[…] as every law of nature implies the existence of an invariant, it follows that every law of nature is a constraint. […] Science looks for laws; it is therefore much concerned with looking for constraints. […] the world around us is extremely rich in constraints. We are so familiar with them that we take most of them for granted, and are often not even aware that they exist. […] A world without constraints would be totally chaotic." (W Ross Ashby, "An Introduction to Cybernetics", 1956)

"Many of the activities of living organisms permit this double aspect. On the one hand the observer can notice the great deal of actual movement and change that occurs, and on the other hand he can observe that throughout these activities, so far as they are coordinated or homeostatic, there are invariants and constancies that show the degree of regulation that is being achieved." (W Ross Ashby, "An Introduction to Cybernetics", 1956)

"[...] the existence of any invariant over a set of phenomena implies a constraint, for its existence implies that the full range of variety does not occur. The general theory of invariants is thus a part of the theory of constraints. Further, as every law of nature implies the existence of an invariant, it follows that every law of nature is a constraint." (W Ross Ashby, "An Introduction to Cybernetics", 1956)

"Through all the meanings runs the basic idea of an 'invariant': that although the system is passing through a series of changes, there is some aspect that is unchanging; so some statement can be made that, in spite of the incessant changing, is true unchangingly." (W Ross Ashby, "An Introduction to Cybernetics", 1956)

"A satisfactory prediction of the sequential properties of learning data from a single experiment is by no means a final test of a model. Numerous other criteria - and some more demanding - can be specified. For example, a model with specific numerical parameter values should be invariant to changes in independent variables that explicitly enter in the model." (Robert R Bush & Frederick Mosteller,"A Comparison of Eight Models?", Studies in Mathematical Learning Theory, 1959)

"We know many laws of nature and we hope and expect to discover more. Nobody can foresee the next such law that will be discovered. Nevertheless, there is a structure in laws of nature which we call the laws of invariance. This structure is so far-reaching in some cases that laws of nature were guessed on the basis of the postulate that they fit into the invariance structure." (Eugene P Wigner, "The Role of Invariance Principles in Natural Philosophy", 1963)

"[..] principle of equipresence: A quantity present as an independent variable in one constitutive equation is so present in all, to the extent that its appearance is not forbidden by the general laws of Physics or rules of invariance. […] The principle of equipresence states, in effect, that no division of phenomena is to be laid down by constitutive equations." (Clifford Truesdell, "Six Lectures on Modern Natural Philosophy", 1966)

"It is now natural for us to try to derive the laws of nature and to test their validity by means of the laws of invariance, rather than to derive the laws of invariance from what we believe to be the laws of nature." (Eugene P Wigner, "Symmetries and Reflections", 1967)

"As a metaphor - and I stress that it is intended as a metaphor - the concept of an invariant that arises out of mutually or cyclically balancing changes may help us to approach the concept of self. In cybernetics this metaphor is implemented in the ‘closed loop’, the circular arrangement of feedback mechanisms that maintain a given value within certain limits. They work toward an invariant, but the invariant is achieved not by a steady resistance, the way a rock stands unmoved in the wind, but by compensation over time. Whenever we happen to look in a feedback loop, we find the present act pitted against the immediate past, but already on the way to being compensated itself by the immediate future. The invariant the system achieves can, therefore, never be found or frozen in a single element because, by its very nature, it consists in one or more relationships - and relationships are not in things but between them."  (Ernst von Glasersfeld German, "Cybernetics, Experience and the Concept of Self", 1970)

"Non-standard analysis frequently simplifies substantially the proofs, not only of elementary theorems, but also of deep results. This is true, e.g., also for the proof of the existence of invariant subspaces for compact operators, disregarding the improvement of the result; and it is true in an even higher degree in other cases. This state of affairs should prevent a rather common misinterpretation of non-standard analysis, namely the idea that it is some kind of extravagance or fad of mathematical logicians. Nothing could be farther from the truth. Rather, there are good reasons to believe that non-standard analysis, in some version or other, will be the analysis of the future." (Kurt Gödel, "Remark on Non-standard Analysis", 1974)

On Invariance I (-1949)

"The calculation of probabilities is of the utmost value, […] but in statistical inquiries there is need not so much of mathematical subtlety as of a precise statement of all the circumstances. The possible contingencies are too numerous to be covered by a finite number of experiments, and exact calculation is, therefore, out of the question. Although nature has her habits, due to the recurrence of causes, they are general, not invariable. Yet empirical calculation, although it is inexact, may be adequate in affairs of practice." (Gottfried W Leibniz [letter to Bernoulli], 1703)

"The analytical equations, unknown to the ancient geometers, which Descartes was the first to introduce into the study of curves and surfaces, are not restricted to the properties of figures, and to those properties which are the object of rational mechanics; they extend to all general phenomena. There cannot be a language more universal and more simple, more free from errors and from obscurities, that is to say more worthy to express the invariable relations of natural things." (Joseph Fourier, "The Analytical Theory of Heat", 1822)

"There cannot be a language more universal and more simple, more free from errors and obscurities [...] more worthy to express the invariable relations of all natural things [than mathematics]. [It interprets] all phenomena by the same language, as if to attest the unity and simplicity of the plan of the universe, and to make still more evident that unchangeable order which presides over all natural causes." (Joseph Fourier, "The Analytical Theory of Heat", 1822)

"In our century the conceptions substitution and substitution group, transformation and transformation group, operation and operation group, invariant, differential invariant and differential parameter, appear more and more clearly as the most important conceptions of mathematics." (Sophus Lie, Leipziger Berichte No. 47, 1896)

"It [mathematics] is in the inner world of pure thought, where all entia dwell, where is every type of order and manner of correlation and variety of relationship, it is in this infinite ensemble of eternal verities whence, if there be one cosmos or many of them, each derives its character and mode of being, - it is there that the spirit of mathesis has its home and its life. [/] Is it a restricted home, a narrow life, static and cold and grey with logic, without artistic interest, devoid of emotion and mood and sentiment? That world, it is true, is not a world of solar light, not clad in the colours that liven and glorify the things of sense, but it is an illuminated world, and over it all and everywhere throughout are hues and tints transcending sense, painted there by radiant pencils of psychic light, the light in which it lies. It is a silent world, and, nevertheless, in respect to the highest principle of art - the interpenetration of content and form, the perfect fusion of mode and meaning - it even surpasses music. In a sense, it is a static world, but so, too, are the worlds of the sculptor and the architect. The figures, however, which reason constructs and the mathematic vision beholds, transcend the temple and the statue, alike in simplicity and in intricacy, in delicacy and in grace, in symmetry and in poise. Not only are this home and this life thus rich in aesthetic interests, really controlled and sustained by motives of a sublimed and supersensuous art, but the religious aspiration, too, finds there, especially in the beautiful doctrine of invariants, the most perfect symbols of what it seeks - the changeless in the midst of change, abiding things hi a world of flux, configurations that remain the same despite the swirl and stress of countless hosts of curious transformations." (Cassius J Keyser, "The Universe and Beyond", Hibbert Journal, 1904-1906)

"The power of differential calculus is that it linearizes all problems by going back to the 'infinitesimally small', but this process can be used only on smooth manifolds. Thus our distinction between the two senses of rotation on a smooth manifold rests on the fact that a continuously differentiable coordinate transformation leaving the origin fixed can be approximated by a linear transformation at О and one separates the (nondegenerate) homogeneous linear transformations into positive and negative according to the sign of their determinants. Also the invariance of the dimension for a smooth manifold follows simply from the fact that a linear substitution which has an inverse preserves the number of variables." (Hermann Weyl, "The Concept of a Riemann Surface", 1913)

"There appears a fundamental principle which can serve to characterize all possible geometries. […] Given any group of transformations in space which includes the principal group as a sub-group, then the invariant theory of this group gives a definite kind of geometry, and every possible geometry can be obtained in this way." (Felix Klein, "Elementary Mathematics from an Advanced Standpoint", 1919)

"The sequence of different positions of the same particle at different times forms a one-dimensional continuum in the four-dimensional space-time, which is called the world-line of the particle. All that physical experiments or observations can teach us refers to intersections of world-lines of different material particles, light-pulsations, etc., and how the course of the world-line is between these points of intersection is entirely irrelevant and outside the domain of physics. The system of intersecting world-lines can thus be twisted about at will, so long as no points of intersection are destroyed or created, and their order is not changed. It follows that the equations expressing the physical laws must be invariant for arbitrary transformations." (Willem de Sitter, "Kosmos", 1932) 

"The theory [of categories] also emphasizes that, whenever new abstract objects are constructed in a specified way out of given ones, it is advisable to regard the construction of the corresponding induced mappings on these new objects as an integral part of their definition. The pursuit of this program entails a simultaneous consideration of objects and their mappings (in our terminology, this means the consideration not of individual objects but of categories). This emphasis on the specification of the type of mappings employed gives more insight onto the degree of invariance of the various concepts involved." (Samuel Eilenberg & Saunders Mac Lane, "A general theory of natural equivalences", Transactions of the American Mathematical Society 58, 1945)

"For mathematics, in a wilderness of tragedy and change, is a creature of the mind, born to the cry of humanity in search of an invariant reality, immutable in substance, unalterable with time." (Cletus O Oakley, The American Mathematical Monthly, 1949)

"We have assumed that the laws of nature must be capable of expression in a form which is invariant for all possible transformations of the space-time co-ordinates." (Gerald J Whitrow, "The Structure of the Universe: An Introduction to Cosmology", 1949)

"In mathematics there is no understanding. In mathematics there are only necessities, laws of existence, invariant relationships. Thus any mathematico-mechanistic outlook must, in the last analysis, waive all understanding. For, we only understand when we know the motives; where there are no motives, all understanding ceases." (Friedrich W Nietzsche) [attributed]

05 June 2021

On Concepts IX

"The symbols organized by knowledge, or concepts, themselves belong to social nature as its ideological elements. Therefore, by operating upon them, knowledge is able to expand its organizing function much more broadly than labour in its technological operation of real things; and as we have already seen that many things, which are not organized in practice, can be organized by knowledge, i.e. in symbols: where the ingression of things is absent, the ingression of their concepts is still possible." (Alexander A Bogdanov, "Tektology: The Universal Organizational Science" Vol. I, 1913)

"Every object that we perceive appears in innumerable aspects. The concept of the object is the invariant of all these aspects." (Max Born physicist, "The Statistical Interpretations of Quantum Mechanics", [Nobel lecture] 1954)

"It is one of the consolations of philosophy that the benefit of showing how to dispense with a concept does not hinge on dispensing with it." (Willard v O Quine, "Word and Object", 1960)

"The idea that one can 'introduce' a kind of objects simply by laying down an identity criterion for them really inverts the proper order of explanation. As Locke clearly understood, one must first have a clear conception of what kind of objects one is dealing with in order to extract a criterion of identity for them from that conception. […] So, rather than 'abstract' a kind of object from a criterion of identity, one must in general 'extract' a criterion of identity from a metaphysically defensible conception of a given kind of objects." (Edward J Lowe," The metaphysics of abstract objects", Journal of Philosophy 92(10), 1995)

"The realm of the particularity of each experienced item differs from the formal realm of concepts. [...] The power of paradigmatic thought is to bring order to experience by seeing individual things as belonging to a category." (Donald E Polkinghorne, “Narrative configuration in qualitative analysis", International Journal of Qualitative Studies in Education Vol. 8 (1), 1995)

"In the new systems thinking, the metaphor of knowledge as a building is being replaced by that of the network. As we perceive reality as a network of relationships, our descriptions, too, form an interconnected network of concepts and models in which there are no foundations. For most scientists such a view of knowledge as a network with no firm foundations is extremely unsettling, and today it is by no means generally accepted. But as the network approach expands throughout the scientific community, the idea of knowledge as a network will undoubtedly find increasing acceptance." (Fritjof Capra, "The Web of Life: a new scientific understanding of living systems", 1996)

"Abstraction is an essential knowledge process, the process (or, to some, the alleged process) by which we form concepts. It consists in recognizing one or several common features or attributes (properties, predicates) in individ­uals, and on that basis stating a concept subsuming those common features or attributes. Concept is an idea, associated with a word expressing a prop­erty or a collection of properties inferred or derived from different samples. Subsumption is the logical technique to get generality from particulars." (Hourya B Sinaceur," Facets and Levels of Mathematical Abstraction", Standards of Rigor in Mathematical Practice 18-1, 2014)

Related Posts Plugin for WordPress, Blogger...

On Leonhard Euler

"I have been able to solve a few problems of mathematical physics on which the greatest mathematicians since Euler have struggled in va...