Showing posts with label quaternions. Show all posts
Showing posts with label quaternions. Show all posts

06 November 2023

On Quaternions (1875-1899)

"Quantity is that which is operated with according to fixed mutually consistent laws. Both operator and operand must derive their meaning from the laws of operation. In the case of ordinary algebra these are the three laws already indicated [the commutative, associative, and distributive laws], in the algebra of quaternions the same save the law of commutation for multiplication and division, and so on. It may be questioned whether this definition is sufficient, and it may be objected that it is vague; but the reader will do well to reflect that any definition must include the linear algebras of Peirce, the algebra of logic, and others that may be easily imagined, although they have not yet been developed. This general definition of quantity enables us to see how operators may be treated as quantities, and thus to understand the rationale of the so called symbolical methods." (George Chrystal, "Mathematics", Encyclopedia Britannica, 1875)

"When the formulas admit of intelligible interpretation, they are accessions to knowledge; but independently of their interpretation they are invaluable as symbolical expressions of thought. But the most noted instance is the symbol called the impossible or imaginary, known also as the square root of minus one, and which, from a shadow of meaning attached to it, may be more definitely distinguished as the symbol of semi-inversion. This symbol is restricted to a precise signification as the representative of perpendicularity in quaternions, and this wonderful algebra of space is intimately dependent upon the special use of the symbol for its symmetry, elegance, and power."  (Benjamin Peirce, "On the Uses and Transformations of Linear Algebra", 1875)

"Closely akin to his third and fourth propositions is Riemann's fifth proposition, that continuous quantities are coördinate with discrete quantities, both being in their nature multiples or aggregates, and therefore species of the same genus. This pernicious fallacy is one of the traditional errors current among mathematicians, and has been prolific of innumerable delusions. It is this error which has stood in the way of the formation of a rational, intelligible, and consistent theory of irrational and imaginary quantities, so called, and has shrouded the true principles of the doctrine of "complex numbers" and of the calculus of quaternions in an impenetrable haze." (John Stallo, "The Concepts and Theories of Modern Physics", 1881)

"[....] this definition of mathematics is wider than that which is ordinarily given, and by which its range is limited to quantitative research. The ordinary definition, like those of other sciences, is objective; whereas this is subjective. Recent investigations, of which quaternions is the most noteworthy instance, make it manifest that the old definition is too restricted. The sphere of mathematics is here extended, in accordance with all the derivation of its name, to all demonstrative research, so as to include all knowledge capable of dogmatic teaching." (Benjamin Peirce, 1881)

"This symbol [v-1] is restricted to a precise signification as the representative of perpendicularity in quaternions, and this wonderful algebra of space is intimately dependent upon the special use of the symbol for its symmetry, elegance, and power. The immortal author of quaternions has shown that there are other significations which may attach to the symbol in other cases. But the strongest use of the symbol is to be found in its magical power of doubling the actual universe, and placing by its side an ideal universe, its exact counterpart, with which it can be compared and contrasted, and, by means of curiously connecting fibres, form with it an organic whole, from which modern analysis has developed her surpassing geometry." (Benjamin Peirce, "On the Uses and Transformations of Linear Algebras", American Journal of Mathematics Vol. 4, 1881)

"I think the time may come when double algebra will be the beginner’s tool; and quaternions will be where double algebra is now. The Lord only knows what will come above the quaternions." (Augustus De Morgan, "A. Graves’ Life of Hamilton" Vol. 3, 1882-1889)

"The merits or demerits of a pamphlet printed for private distribution a good many years ago do not constitute a subject of any great importance, but the assumptions implied in the sentence quoted are suggestive of certain reflections and inquiries which are of broader interest, and seem not untimely at a period when the methods and results of the various forms of multiple algebra are attracting so much attention. It seems to be assumed that a departure from quaternionic usage in the treatment of vectors is an enormity. If this assumption is true, it is an important truth; if not, it would be unfortunate if it should remain unchallenged, especially when supported by so high an authority. The criticism relates particularly to the notations, but I believe that there is a deeper question of notions underlying that of notations. Indeed, if my offence had been solely in the matter of notations, it would have been less accurate to describe my productions as a monstrosity, than to characterize its dress as uncouth." (Josiah W Gibbs, "The Rôle of Quaternions in the Algebra of Vectors, Nature vol. xliii, 1891)

"I do think [...] that you would find it would lose nothing by omitting the word 'vector' throughout. It adds nothing to the clearness or simplicity of the geometry, whether of two dimensions or three dimensions. Quaternions came from Hamilton after his really good work had been done; and, though beautifully ingenious, have been an unmixed evil to those who have touched them in any way, including Clerk Maxwell." (William T Kelvin, [Letter to Robert B Hayward] 1892) 

"[...] it is as unfair to call a vector a quaternion  as to call a man a quadruped." (Oliver Heaviside, 1892)

"The invention of quaternions must be regarded as a most remarkable feat of human ingenuity. Vector analysis, without quaternions, could have been found by any mathematician [...] but to find out quaternions required genius." (Oliver Heaviside, 1892)

"Symmetrical equations are good in their place, but "vector" is a useless survival, or offshoot, from quaternions, and has never been of the slightest use to any creature. Hertz wisely shunted it, but unwisely he adopted temporarily Heaviside’s nihilism. He even tended to nihilism in dynamics, as I warned you soon after his death. He would have grown out of all this, I believe, if he had lived. He certainly was the opposite pole of nature to a nihilist in his experimental work, and in his Doctorate Thesis on the impact of elastic bodies." (William T Kelvin, [footnote in Letter to George F FitzGerald] 1896)

"A much more natural and adequate comparison would, it seems to me, liken Coordinate Geometry to a steam-hammer, which an expert may employ on any destructive or constructive work of one general kind, say the cracking of an eggshell, or the welding of an anchor. But you must have your expert to manage it, for without him it is useless. He has to toil amid the heat, smoke, grime, grease, and perpetual din of the suffocating engine-room. The work has to be brought to the hammer, for it cannot usually be taken to its work. And it is not in general, transferable; for each expert, as a rule, knows, fully and confidently, the working details of his own weapon only. Quaternions, on the other hand, are like the elephant’s trunk, ready at any moment for anything, be it to pick up a crumb or a field-gun, to strangle a tiger, or uproot a tree; portable in the extreme, applicable anywhere - alike in the trackless jungle and in the barrack square - directed by a little native who requires no special skill or training, and who can be transferred from one elephant to another without much hesitation. Surely this, which adapts itself to its work, is the grander instrument. But then, it is the natural, the other, the artificial one." (Peter G Tait [in Alexander MacFarlane's "Lectures on Ten British Mathematicians", 1916])

"[...] of possible quadruple algebras the one [...] by far the most beautiful and remarkable was practically identical with quaternions, and [...] it [is] most interesting that a calculus which so strongly appealed to the human mind by its intrinsic beauty and symmetry should prove to be especially adapted to the study of natural phenomena. The mind of man and that of Nature’s God must work in the same channels." (Benjamin Peirce) [atributed by William E Byerly, former student of Peirce)

"Quaternions came from Hamilton [...] and have been an unmixed evil to those who have touched them in any way. Vector is a useless survival [...] and has never been of the slightest use to any creature."  (William T Kelvin)

"There is still something in the system [of quaternions] which gravels me. I have not yet any clear views as to the extent to which we are at liberty arbitrarily to create imaginaries, and to endow them with supernatural properties. [...] If with your alchemy you can make three pounds of gold, why should you stop there?" (John T Graves)

"Time is said to have only one dimension, and space to have three dimensions [...] The mathematical quaternion partakes of both these elements; in technical language it may be said to be 'time plus space', or 'space plus time': and in this sense it has, or at least involves a reference to, four dimensions. And how the One of Time, of Space the Three, Might in the Chain of Symbols girdled be." (William R Hamilton [in Robert P Graves's "Life of Sir William Rowan Hamilton", 1882-1889])

On Quaternions (1900 - )

"It is a curious fact in the history of mathematics that discoveries of the greatest importance were made simultaneously by different men of genius. The classical example is the […] development of the infinitesimal calculus by Newton and Leibniz. Another case is the development of vector calculus in Grassmann's Ausdehnungslehre and Hamilton's Calculus of Quaternions. In the same way we find analytic geometry simultaneously developed by Fermat and Descartes." (Julian L Coolidge, "A History of Geometrical Methods", 1940)

"His optical and dynamical investigations were prophetic and foreshadowed the quantum theory of our days. His quaternions foreshadowed the space-time world of relativity. The quaternion algebra was the first example of a noncommutative algebra, which released an avalanche of literature in all parts of the world. Indeed, his professional life was fruitful beyond measure." (Cornelius Lanczos, "William Rowan Hamilton - an appreciation", American Scientist 2, 1967)

"While translations are well animated by using vectors, rotation animation can be improved by using the progenitor of vectors, quaternions. [...] By an odd quirk of mathematics, only systems of two, four, or eight components will multiply as Hamilton desired; triples had been his stumbling block." (Ken Shoemake, "Animating Rotation with Quaternion Curves", ACM SIGGRAPH Computer Graphics Vol. 19 (3), 1985)

"Any system with this mix of properties, commutative or not, is called a division algebra. The real numbers and the complex numbers are division algebras, be- cause we don't rule out commutativity of multiplication, we just don't demand it. Every field is a division algebra. But some division algebras are not fields, and the first to be discovered was the quaternions. In 1898, Adolf Hurwitz proved that the system of quaternions is also unique. The quaternions are the only finite-dimensional division algebra that contains the real numbers and is not equal either to the real numbers or the complex numbers." (Ian Stewart, "Why Beauty Is Truth", 2007)

"Quaternions have developed a strange habit of turning up in the most unlikely places. One reason is that they are unique. They can be characterized by a few reasonable, relatively simple properties-a selection of the 'laws of arithmetic', omitting only one important law-and they constitute the only mathematical system with that list of properties." (Ian Stewart, "Why Beauty Is Truth", 2007)

"The quaternions arise when we try to extend the complex numbers, increasing the dimension (while keeping it finite) and retaining as many of the laws of algebra as possible. The laws we want to keep are all the usual properties of addition and subtraction, most of the properties of multiplication, and the possibility of dividing by anything other than zero. The sacrifice this time is more serious; it is what caused Hamilton so much heartache. You have to abandon the commutative law of multiplication. You just have to accept that as a brutal fact, and move on. When you get used to it, you wonder why you ever expected the commutative law to hold in any case, and start to think it a minor miracle that it holds for the complex numbers." (Ian Stewart, "Why Beauty Is Truth", 2007)

"The system of quaternions contains a copy of the complex numbers, the quaternions of the form x + iy. Hamilton's formulas show that -1 does not have just two square roots, i and -i. It also has j, -j, k, and -k. In fact there are infinitely many different square roots of minus one in the quaternion system." (Ian Stewart, "Why Beauty Is Truth", 2007)

"However the nature of mathematics itself has led us, at first reluctantly, to go beyond real numbers to the realm of the so-called imaginary and complex numbers. Moreover modern mathematicians also deal in infinite numbers of more than one kind, and also quaternions, octonians, and matrices, which can be regarded as another generalization of number." (Peter M Higgins, "Number Story: From Counting to Cryptography", 2008)

"Quantum theory may be formulated using Hilbert spaces over any of the three associative normed division algebras: the real numbers, the complex numbers and the quaternions. Indeed, these three choices appear naturally in a number of axiomatic approaches. However, there are internal problems with real or quaternionic quantum theory. Here we argue that these problems can be resolved if we treat real, complex and quaternionic quantum theory as part of a unified structure. Dyson called this structure the ‘three-fold way’ […] This three-fold classification sheds light on the physics of time reversal symmetry, and it already plays an important role in particle physics." (John C Baez, "Division Algebras and Quantum Theory", 2011)

"Quaternions are not actual extensions of imaginary numbers, and they are not taking complex numbers into a multi-dimensional space on their own. Quaternion units are instances of some number-like object type, identified collectively, but they are not numbers (be it real or imaginary). In other words, they form a closed, internally consistent set of object instances; they can of course be plotted visually on a multi-dimensional space but this only is a visualization within their own definition." (Huseyin Ozel, "Redefining Imaginary and Complex Numbers, Defining Imaginary and Complex Objects", 2018)

On Quaternions ( - 1874)

"There is still something in the system [of quaternions] which gravels me. I have not yet any clear views as to the extent to which we are at liberty arbitrarily to create imaginaries, and to endow them with supernatural properties. [...] If with your alchemy you can make three pounds of gold, why should you stop there?" (John T Graves, [letter to William R Hamilton] 1843)

"There seems to me to be something analogous to polarized intensity in the pure imaginary part; and to unpolarized energy (indifferent to direction) in the real part of a quaternion: and thus we have some slight glimpse of a future Calculus of Polarities. This is certainly very vague […]" (Sir William R Hamilton, "On Quaternions; or on a new System of Imaginaries in Algebra", 1844)

"The algebraically real part may receive [...] all values contained on the one scale of progression of number from negative to positive infinity; we shall call it therefore the scalar part, or simply the scalar of the quaternion, and shall form its symbol by prefixing, to the symbol of the quaternion, the characteristic Scal., or simply S., where no confusion seems likely to arise from using this last abbreviation. On the other hand, the algebraically imaginary part, being geometrically constructed by a straight line, or radius vector, which has, in general, for each determined quaternion, a determined length and determined direction in space, may be called the vector part, or simply the vector of the quaternion; andmay be denoted by prefixing the characteristic Vect., or V." (William R Hamilton, 1846)

"The quaternion [was] born, as a curious offspring of a quaternion of parents, say of geometry, algebra, metaphysics, and poetry. [...] I have never been able to give a clearer statement of their nature and their aim than I have done in two lines of a sonnet addressed to Sir John Herschel: 'And how the one of Time, of Space the Three,/Might in the Chain of Symbols girdled be'" (William R Hamilton, [letter to  Rev. Townsend] 1855)

"Every man is ready to join in the approval or condemnation of a philosopher or a statesman, a poet or an orator, an artist or an architect. But who can judge of a mathematician? Who will write a review of Hamilton’s Quaternions, and show us wherein it is superior to Newton’s Fluxions?" (Thomas Hill, 'Imagination in Mathematics', North American Review 85, 1857)

"The prominent reason why a mathematician can be judged by none but mathematicians, is that he uses a peculiar language. The language of mathesis is special and untranslatable. In its simplest forms it can be translated, as, for instance, we say a right angle to mean a square corner. But you go a little higher in the science of mathematics, and it is impossible to dispense with a peculiar language. It would defy all the power of Mercury himself to explain to a person ignorant of the science what is meant by the single phrase “functional exponent.” How much more impossible, if we may say so, would it be to explain a whole treatise like Hamilton’s Quaternions, in such a wise as to make it possible to judge of its value! But to one who has learned this language, it is the most precise and clear of all modes of expression. It discloses the thought exactly as conceived by the writer, with more or less beauty of form, but never with obscurity. It may be prolix, as it often is among French writers; may delight in mere verbal metamorphoses, as in the Cambridge University of England; or adopt the briefest and clearest forms, as under the pens of the geometers of our Cambridge; but it always reveals to us precisely the writer’s thought." (Thomas Hill, North American Review 85, 1857)

"The next grand extensions of mathematical physics will, in all likelihood, be furnished by quaternions." (Peter G Tait, "Note on a Quaternion Transformation", [communication read] 1863) 

"If nothing more could be said of Quaternions than that they enable us to exhibit in a singularly compact and elegant form, whose meaning is obvious at a glance on account of the utter inartificiality of the method, results which in the ordinary Cartesian co-ordinates are of the utmost complexity, a very powerful argument for their use would be furnished. But it would be unjust to Quaternions to be content with such a statement; for we are fully entitled to say that in all cases, even in those to which the Cartesian methods seem specially adapted, they give as simple an expression as any other method; while in the great majority of cases they give a vastly simpler one. In the common methods a judicious choice of co-ordinates is often of immense importance in simplifying an investigation; in Quaternions there is usually no choice, for (except when they degrade to mere scalars) they are in general utterly independent of any particular directions in space, and select of themselves the most natural reference lines for each particular problem." (Peter G Tait, Nature Vol. 4, [address] 1871)

24 February 2020

On Complex Numbers X (Quantum Mechanics I)

"Meantime, there is no doubt a certain crudeness in the use of a complex wave function. If it were unavoidable in principle, and not merely a facilitation of the calculation, this would mean that there are in principle two wave functions, which must be used together in order to obtain information on the state of the system. [...] Our inability to give more accurate information about this is intimately connected with the fact that, in the pair of equations [considered], we have before us only the substitute - extraordinarily convenient for the calculation, to be sure - for a real wave equation of probably the fourth order, which, however, I have not succeeded in forming for the non-conservative case."(Edwin Schrödinger, "Quantisation as a Problem of Proper Values" , Annalen der Physik Vol. 81 (4), 1926)

"Our bra and ket vectors are complex quantities, since they can be multiplied by complex numbers and are then of the same nature as before, but they are complex quantities of a special kind which cannot be split up into real and pure imaginary parts. The usual method of getting the real part of a complex quantity, by taking half the sum of the quantity itself and its conjugate, cannot be applied since a bra and a ket vector are of different natures and cannot be added." (Paul Dirac, "The Principles of Quantum Mechanics", 1930)

"In his desire to consider at any cost the propagation phenomenon of the waves ψ as something real in the classical sense of the word, the author had refused to acknowledge that the whole development of the theory increasingly tended to highlight the essential complex nature of the wave function." (Edwin Schrödinger. "Mémoires sur la mécanique ondulatoire", 1933) [author‘s comment in the French translation] 

"One might think one could measure a complex dynamical variable by measuring separately its real and pure imaginary parts. But this would involve two measurements or two observations, which would be alright in classical mechanics, but would not do in quantum mechanics, where two observations in general interfere with one another - it is not in general permissible to consider that two observations can be made exactly simultaneously, and if they are made in quick succession the first will usually disturb the state of the system and introduce an indeterminacy that will affect the second." (Ernst C K Stückelberg, "Quantum Theory in Real Hilbert Space", 1960) 

"It has been generally believed that only the complex numbers could legitimately be used as the ground field in discussing quantum-mechanical operators. Over the complex field, Frobenius' theorem is of course not valid; the only division algebra over the complex field is formed by the complex numbers themselves. However, Frobenius' theorem is relevant precisely because the appropriate ground field for much of quantum mechanics is real rather than complex." (Freeman Dyson, "The Threefold Way. Algebraic Structure of Symmetry Groups and Ensembles in Quantum Mechanics" , Journal of Mathematical Physics Vol. 3, 1962)

"Quantum theory may be formulated using Hilbert spaces over any of the three associative normed division algebras: the real numbers, the complex numbers and the quaternions. Indeed, these three choices appear naturally in a number of axiomatic approaches. However, there are internal problems with real or quaternionic quantum theory. Here we argue that these problems can be resolved if we treat real, complex and quaternionic quantum theory as part of a unified structure. Dyson called this structure the ‘three-fold way’ […] This three-fold classification sheds light on the physics of time reversal symmetry, and it already plays an important role in particle physics." (John C Baez, "Division Algebras and Quantum Theory", 2011)

"It is particularly helpful to use complex numbers to model periodic phenomena, especially to operate with phase differences. Mathematically, one can treat a physical quantity as being complex, but address physical meaning only to its real part. Another possibility is to treat the real and imaginary parts of a complex number as two related (real) physical quantities. In both cases, the structure of complex numbers is useful to make calculations more easily, but no physical meaning is actually attached to complex variables." (Ricardo Karam, "Why are complex numbers needed in quantum mechanics? Some answers for the introductory level", American Journal of Physics Vol. 88 (1), 2020)

"What is essentially different in quantum mechanics is that it deals with complex quantities (e.g. wave functions and quantum state vectors) of a special kind, which cannot be split up into pure real and imaginary parts that can be treated independently. Furthermore, physical meaning is not attached directly to the complex quantities themselves, but to some other operation that produces real numbers (e.g. the square modulus of the wave function or of the inner product between state vectors)." (Ricardo Karam, "Why are complex numbers needed in quantum mechanics? Some answers for the introductory level", American Journal of Physics Vol. 88 (1), 2020) 

23 February 2020

On Complex Numbers IX

"That this subject [imaginary numbers] has hitherto been surrounded by mysterious obscurity, is to be attributed largely to an ill adapted notation. If we call +1, -1, and √-1 had been called direct, inverse and lateral units, instead of positive, negative, and imaginary (or impossible) units, such an obscurity would have been out of the question." (Carl F Gauss, “Theoria residuorum biquadraticum. Commentatio secunda", Göttingische gelehrte Anzeigen 23 (4), 1831)

"The employment of the uninterpretable symbol √-1 the intermediate processes of trigonometry furnishes an illustration of what has been said. I apprehend that there is no mode of explaining that application which does not covertly assume the very principle in question." (George Boole, "Laws of Thought", 1854)

"That such comparisons with non-arithmetic notions have furnished the immediate occasion for the extension of the number-concept may, in a general way, be granted (though this was certainly not the case in the introduction of complex numbers); but this surely is no sufficient ground for introducing these foreign notions into arithmetic, the science of numbers." (Richard Dedekind, "Stetigkeit und irrationale Zahlen", 1872)

"Judged by the only standards which are admissible in a pure doctrine of numbers i is imaginary in the same sense as the negative, the fraction, and the irrational, but in no other sense; all are alike mere symbols devised for the sake of representing the results of operations even when these results are not numbers (positive integers)." (Henry B Fine, "The Number-System of Algebra", 1890)

"The natural development of this work soon led the geometers in their studies to embrace imaginary as well as real values of the variable. The theory of Taylor series, that of elliptic functions, the vast field of Cauchy analysis, caused a burst of productivity derived from this generalization. It came to appear that, between two truths of the real domain, the easiest and shortest path quite often passes through the complex domain." (Paul Painlevé, "Analyse des travaux scientifiques", 1900) 

 "It has been written that the shortest and best way between two truths of the real domain often passes through the imaginary one." (Jacque Hadamard, "An Essay on the Psychology of Invention in the Mathematical Field", 1945)
[French: "On a pu écrire depuis que la voie la plus courte et la meilleure entre deux vérités du domaine réel passe souvent par le domaine imaginaire." (Jacques Hadamard, Essai sur la psychologie de l'invention dans le domaine mathématique, 1945)]

"If explaining minds seems harder than explaining songs, we should remember that sometimes enlarging problems makes them simpler! The theory of the roots of equations seemed hard for centuries within its little world of real numbers, but it suddenly seemed simple once Gauss exposed the larger world of so-called complex numbers. Similarly, music should make more sense once seen through listeners' minds." (Marvin Minsky, "Music, Mind, and Meaning", 1981)

"Imaginary numbers are not imaginary and the theory of complex numbers is no more complex than the theory of real numbers." (Mordechai Ben-Ari, "Just a Theory: Exploring the Nature of Science", 2005)

"Complex numbers seem to be fundamental for the description of the world proposed by quantum mechanics. In principle, this can be a source of puzzlement: Why do we need such abstract entities to describe real things? One way to refute this bewilderment is to stress that what we can measure is essentially real, so complex numbers are not directly related to observable quantities. A more philosophical argument is to say that real numbers are no less abstract than complex ones, the actual question is why mathematics is so effective for the description of the physical world." (Ricardo Karam, "Why are complex numbers needed in quantum mechanics? Some answers for the introductory level", American Journal of Physics Vol. 88 (1), 2020)

26 July 2019

William R Hamilton - Collected Quotes

“There seems to me to be something analogous to polarized intensity in the pure imaginary part; and to unpolarized energy (indifferent to direction) in the real part of a quaternion: and thus we have some slight glimpse of a future Calculus of Polarities. This is certainly very vague […]” (Sir William R Hamilton, “On Quaternions; or on a new System of Imaginaries in Algebra”, 1844)

“The difficulties which so many have felt in the doctrine of Negative and Imaginary Quantities in Algebra forced themselves long ago on my attention […] And while agreeing with those who had contended that negatives and imaginaries were not properly quantities at all, I still felt dissatisfied with any view which should not give to them, from the outset, a clear interpretation and meaning [...] It early appeared to me that these ends might be attained by our consenting to regard Algebra as being no mere Art, nor Language, nor primarily a Science of Quantity; but rather as the Science of Order in Progression.” (William R Hamilton, “Lectures on Quaternions: Containing a Systematic Statement of a New Mathematical Method… “, 1853)

“Each mathematician for himself, and not anyone for any other, not even all for one, must tread that more than royal road which leads to the palace and sanctuary of mathematical truth.” (Sir William R Hamilton, “Report of the Fifth Meeting of the British Association for the Advancement of Science”, [Address] 1835)

“Instead of seeking to attain consistency and uniformity of system, as some modern writers have attempted, by banishing this thought of time from the higher Algebra, I seek to attain the same object, by systematically introducing it into the lower or earlier parts of the science.” (Sir William R Hamilton) 

”Mathematical language, precise and adequate, nay, absolutely convertible with mathematical thought, can afford us no example of those fallacies which so easily arise from the ambiguities of ordinary language; its study cannot, therefore, it is evident, supply us with any means of obviating those illusions from which it is itself exempt. The contrast of mathematics and philosophy, in this respect, is an interesting object of speculation; tut, as imitation is impossible, one of no practical result.” (Sir William R Hamilton)

"Metaphysics, in whatever latitude the term be taken, is a science or complement of sciences exclusively occupied with mind." (Sir William R Hamilton)

"Time is said to have only one dimension, and space to have three dimensions [...] The mathematical quaternion partakes of both these elements; in technical language it may be said to be ‘time plus space’, or ‘space plus time’: and in this sense it has, or at least involves a reference to, four dimensions. 
And how the One of Time, of Space the Three, 
Might in the Chain of Symbols girdled be." (Sir William R Hamilton)

“We are naturally disposed to refer everything we do not know to principles with which we are familiar.” (Sir William R Hamilton)

Related Posts Plugin for WordPress, Blogger...

On Leonhard Euler

"I have been able to solve a few problems of mathematical physics on which the greatest mathematicians since Euler have struggled in va...