Showing posts with label organization. Show all posts
Showing posts with label organization. Show all posts

07 March 2021

Machines X (Man vs. Machine II)

"Man is so complicated a machine that it is impossible to get a clear idea of the machine beforehand, and hence impossible to define it. For this reason, all the investigations have been vain, which the greatest philosophers have made à priori, that is to say, in so far as they use, as it were, the wings of the spirit. Thus it is only à posteriori or by trying to disentangle the soul from the organs of the body, so to speak, that one can reach the highest probability concerning man's own nature, even though one can not discover with certainty what his nature is." (Julien Offray de La Mettrie, "Man a Machine", 1747) 

"The machines that are first invented to perform any particular movement are always the most complex, and succeeding artists generally discover that, with fewer wheels the same effects may be more easily produced." (Adam Smith, "An Inquiry into the Nature and Causes of the Wealth of Nations", 1776)

"As nature has uncovered from under this hard shell the seed for which she most tenderly cares - the propensity and vocation to free thinking - this gradually works back upon the character of the people, who thereby gradually become capable of managing freedom; finally, it affects the principles of government, which finds it to its advantage to treat men, who are now more than machines, in accordance with their dignity." (Immanuel Kant, "An Answer to the Question: What Is Enlightenment?", 1784)

"Human nature is not a machine to be built after a model, and set to do exactly the work prescribed for it, but a tree, which requires to grow and develop itself on all sides, according to the tendency of the inward forces which make it a living thing." (John S Mill, "On Liberty Source: On Liberty", 1859)

"The machine unmakes the man. Now that the machine is so perfect, the engineer is nobody." (Ralph W Emerson, "Society and Solitude", 1870)

"It is because the body is a machine that education is possible. Education is the formation of habits, a superinducing of an artificial organisation upon the natural organisation of the body: so that acts, which at first required a conscious effort, eventually became unconscious and mechanical." (Thomas H Huxley, "Descartes’ Discourse on Method", 1904)

"As long as the machine has beaten the man who programmed it in checkers, it will in some sense compete with human intelligence over a limited scope." (Norbert Wiener, "Computer of the Future", 1962)

"Man is not an appropriate model for a machine. If we abandon that model, we are free to take a totally different approach to a task, as Howe did with sewing, and end up with a new definition of it as well as a new way of doing it. Only when we have studied the task and understood its requirements can we properly decide what the machine or robot for that job should be like. [...] Robots are not mechanical people; they are parts of an integrated manufacturing system." (Daniel E Whitney, Harvard Business Review, 1986)

"A computer makes calculations quickly and correctly, but doesn’t ask if the calculations are meaningful or sensible. A computer just does what it is told." (Gary Smith, "Standard Deviations", 2014)

"Now think about the prospect of competition from computers instead of competition from human workers. On the supply side, computers are far more different from people than any two people are different from each other: men and machines are good at fundamentally different things. People have intentionality - we form plans and make decisions in complicated situations. We’re less good at making sense of enormous amounts of data. Computers are exactly the opposite: they excel at efficient data processing, but they struggle to make basic judgments that would be simple for any human." (Peter Thiel & Blake Masters, "Zero to One: Notes on Startups, or How to Build the Future", 2014)

16 February 2021

Karl E Weick - Collected Quotes

"If all of the elements in a large system are loosely coupled to one another, then any one element can adjust to and modify a local a local unique contingency without affecting the whole system. These local adaptations can be swift, relatively economical, and substantial." (Karl E Weick, "Educational organizations as loosely coupled systems", 1976)

"There is no methodological process by which one can confirm the existence of an object independent of the confirmatory process involving oneself. The outside is a void, there is only the inside. A person's world, the inside or internal view is all that can be known. The rest can only be the object of speculation." (Karl E Weick, 1977)

"In a loosely coupled system there is more room available for self-determination by the actors. If it is argued that a sense of efficacy is crucial for human beings. when a sense of efficacy might be greater in a loosely coupled system with autonomous units than it would be in a tightly coupled system where discretion is limited." (Karl E Weick, "Educational organizations as loosely coupled systems", 1976)

"Any approach to the study of organizations is built on specific assumptions about the nature of organizations and how they are designed and function." (Richard L Daft & Karl E Weick, "Toward a model of organizations as interpretation systems", Academy of Management Review Vol 9 (2), 1984)

"An ordered set of assertions about a generic behavior or structure assumed to hold throughout a significantly broad range of specific instances." (Karl E Weick, "Theory construction as disciplined imagination", 1989)

"Sensemaking is about the enlargement of small cues. It is a search for contexts within which small details fit together and make sense. It is people interacting to flesh out hunches. It is a continuous alternation between particulars and explanations with each cycle giving added form and substance to the other." (Karl E Weick, "Sensemaking in Organizations", 1995)

"Sensemaking tends to be swift, which means we are more likely to see products than processes." (Karl E Weick, Sensemaking in Organizations, 1995)

"The point we want to make here is that sensemaking is about plausibility, coherence, and reasonableness. Sensemaking is about accounts that are socially acceptable and credible... It would be nice if these accounts were also accurate. But in an equivocal, postmodern world, infused with the politics of interpretation and conflicting interests and inhabited by people with multiple shifting identities, an obsession with accuracy seems fruitless, and not of much practical help, either." (Karl E Weick, "Sensemaking in Organizations", 1995)

"To talk about sensemaking is to talk about reality as an ongoing accomplishment that takes form when people make retrospective sense of the situations in which they find themselves and their creations. There is a strong reflexive quality to this process. People make sense of things by seeing a world on which they already imposed what they believe. In other words, people discover their own inventions. This is why sensemaking can be understood as invention and interpretations understood as discovery. These are complementary ideas. If sensemaking is viewed as an act of invention, then it is also possible to argue that the artifacts it produces include language games and texts." (Karl E Weick, "Sensemaking in Organizations", 1995)

"The basic idea of sensemaking is that reality is an ongoing accomplishment that emerges from efforts to create order and make retrospective sense of what occurs." (Karl E Weick, "The collapse of sensemaking in organizations: The Mann Gulch disaster", Administrative Science Quarterly 3, 1993)

22 January 2021

Thermodynamics III

"My analysis of living systems uses concepts of thermodynamics, information theory, cybernetics, and systems engineering, as well as the classical concepts appropriate to each level. The purpose is to produce a description of living structure and process in terms of input and output, flows through systems, steady states, and feedbacks, which will clarify and unify the facts of life." (James G Miller, "Living Systems: Basic Concepts", 1969)

"In an isolated system, which cannot exchange energy and matter with the surroundings, this tendency is expressed in terms of a function of the macroscopic state of the system: the entropy." (Ilya Prigogine, "Thermodynamics of Evolution", 1972)

"[The] system may evolve through a whole succession of transitions leading to a hierarchy of more and more complex and organized states. Such transitions can arise in nonlinear systems that are maintained far from equilibrium: that is, beyond a certain critical threshold the steady-state regime become unstable and the system evolves into a new configuration." (Ilya Prigogine, Gregoire Micolis & Agnes Babloyantz, "Thermodynamics of Evolution", Physics Today 25 (11), 1972)

"The evolution of a physicochemical system leads to an equilibrium state of maximum disorder." (Ilya Prigogine, "Thermodynamics of Evolution", 1972)

"The functional order maintained within living systems seems to defy the Second Law; nonequilibrium thermodynamics describes how such systems come to terms with entropy." (Ilya Prigogine, "Thermodynamics of Evolution", 1972)

"When matter is becoming disturbed by non-equilibrium conditions it organizes itself, it wakes up. It happens that our world is a non-equilibrium system." (Ilya Prigogine, "Thermodynamics of Evolution", 1972)

"There is nothing supernatural about the process of self-organization to states of higher entropy; it is a general property of systems, regardless of their materials and origin. It does not violate the Second Law of thermodynamics since the decrease in entropy within an open system is always offset by the increase of entropy in its surroundings." (Ervin László, "Introduction to Systems Philosophy", 1972)

"Concepts form the basis for any science. These are ideas, usually somewhat vague (especially when first encountered), which often defy really adequate definition. The meaning of a new concept can seldom be grasped from reading a one-paragraph discussion. There must be time to become accustomed to the concept, to investigate it with prior knowledge, and to associate it with personal experience. Inability to work with details of a new subject can often be traced to inadequate understanding of its basic concepts." (William C Reynolds & Harry C Perkins, "Engineering Thermodynamics", 1977)

"Just like a computer, we must remember things in the order in which entropy increases. This makes the second law of thermodynamics almost trivial. Disorder increases with time because we measure time in the direction in which disorder increases."  (Stephen Hawking, "A Brief History of Time", 1988)

"Life is nature's solution to the problem of preserving information despite the second law of thermodynamics." (Howard L Resnikoff, "The Illusion of Reality", 1989)

Thermodynamics II

"Everywhere […] in the Universe, we discern that closed physical systems evolve in the same sense from ordered states towards a state of complete disorder called thermal equilibrium. This cannot be a consequence of known laws of change, since […] these laws are time symmetric- they permit […] time-reverse. […] The initial conditions play a decisive role in endowing the world with its sense of temporal direction. […] some prescription for initial conditions is crucial if we are to understand […]" (John D Barrow, "Theories of Everything: The Quest for Ultimate Explanation", 1991)

"Three laws governing black hole changes were thus found, but it was soon noticed that something unusual was going on. If one merely replaced the words 'surface area' by 'entropy' and 'gravitational field' by 'temperature', then the laws of black hole changes became merely statements of the laws of thermodynamics. The rule that the horizon surface areas can never decrease in physical processes becomes the second law of thermodynamics that the entropy can never decrease; the constancy of the gravitational field around the horizon is the so-called zeroth law of thermodynamics that the temperature must be the same everywhere in a state of thermal equilibrium. The rule linking allowed changes in the defining quantities of the black hole just becomes the first law of thermodynamics, which is more commonly known as the conservation of energy." (John D Barrow, "Theories of Everything: The Quest for Ultimate Explanation", 1991)

"The second law of thermodynamics, which requires average entropy (or disorder) to increase, does not in any way forbid local order from arising through various mechanisms of self-organization, which can turn accidents into frozen ones producing extensive regularities. Again, such mechanisms are not restricted to complex adaptive systems." (Murray Gell-Mann, "What is Complexity?", Complexity Vol 1 (1), 1995)

"Emergent self-organization in multi-agent systems appears to contradict the second law of thermodynamics. This paradox has been explained in terms of a coupling between the macro level that hosts self-organization (and an apparent reduction in entropy), and the micro level (where random processes greatly increase entropy). Metaphorically, the micro level serves as an entropy 'sink', permitting overall system entropy to increase while sequestering this increase from the interactions where self-organization is desired." (H Van Dyke Parunak & Sven Brueckner, "Entropy and Self-Organization in Multi-Agent Systems", Proceedings of the International Conference on Autonomous Agents, 2001)

"The second law of thermodynamics states that in an isolated system, entropy can only increase, not decrease. Such systems evolve to their state of maximum entropy, or thermodynamic equilibrium. Therefore, physical self-organizing systems cannot be isolated: they require a constant input of matter or energy with low entropy, getting rid of the internally generated entropy through the output of heat ('dissipation'). This allows them to produce ‘dissipative structures’ which maintain far from thermodynamic equilibrium. Life is a clear example of order far from thermodynamic equilibrium." (Carlos Gershenson, "Design and Control of Self-organizing Systems", 2007)

"Thermodynamics is about those properties of systems that are true independent of their mechanism. This is why there is a fundamental asymmetry in the relationship between mechanistic descriptions of systems and thermodynamic descriptions of systems. From the mechanistic information we can deduce all the thermodynamic properties of that system. However, given only thermodynamic information we can deduce nothing about mechanism. This is in spite of the fact that thermodynamics makes it possible for us to reject classes of models such as perpetual motion machines." (Carlos Gershenson, “Design and Control of Self-organizing Systems”, 2007)

"Second Law of thermodynamics is not an equality, but an inequality, asserting merely that a certain quantity referred to as the entropy of an isolated system - which is a measure of the system’s disorder, or ‘randomness’ - is greater (or at least not smaller) at later times than it was at earlier times." (Roger Penrose, "Cycles of Time: An Extraordinary New View of the Universe", 2010)

"The laws of thermodynamics tell us something quite different. Economic activity is merely borrowing low-entropy energy inputs from the environment and transforming them into temporary products and services of value. In the transformation process, often more energy is expended and lost to the environment than is embedded in the particular good or service being produced." (Jeremy Rifkin, "The Third Industrial Revolution", 2011)

"The reactions that break down large molecules into small ones do not require an input of energy, but the reactions that build up large molecules require and input of energy. This is consistent with the laws of thermodynamics, which say that large, orderly molecules tend to break down into small, disorderly molecules." (Stanley A Rice, "Life of Earth: Portrait of a Beautiful, Middle-aged Stressed-out World", 2011)

"The Second Law of Thermodynamics states that in an isolated system (one that is not taking in energy), entropy never decreases. (The First Law is that energy is conserved; the Third, that a temperature of absolute zero is unreachable.) Closed systems inexorably become less structured, less organized, less able to accomplish interesting and useful outcomes, until they slide into an equilibrium of gray, tepid, homogeneous monotony and stay there." (Steven Pinker, "The Second Law of Thermodynamics", 2017)

20 January 2021

Peter M Senge - Collected Quotes

"’Mental models’ are deeply ingrained assumptions, generalizations, or even pictures or images that influence how we understand the world and how we take action. Very often, we are not consciously aware of our mental models or the effects they have on our behavior. […] Mental models focus on the openness needed to unearth shortcomings in our present ways of seeing the world. [...] Mental models are deeply held internal images of how the world works, images that limit us to familiar ways of thinking and acting. Very often, we are not consciously aware of our mental models or the effects they have on our behavior." (Peter M Senge, "The Fifth Discipline", 1990)

"Mental models are the images, assumptions, and stories which we carry in our minds of ourselves, other people, institutions, and every aspect of the world. Like a pane of glass framing and subtly distorting our vision, mental models determine what we see. Human beings cannot navigate through the complex environments of our world without cognitive ‘mental maps’; and all of these mental maps, by definition, are flawed in some way." (Peter M Senge, "The Fifth Discipline Fieldbook: Strategies and Tools for Building a Learning Organization", 1994)

"[…] new insights fail to get put into practice because they conflict with deeply held internal images of how the world works [...] images that limit us to familiar ways of thinking and acting. That is why the discipline of managing mental models - surfacing, testing, and improving our internal pictures of how the world works - promises to be a major breakthrough for learning organizations." (Peter M Senge, "The Fifth Discipline: The Art and Practice of the Learning Organization", 1990)

"Systems thinking is a discipline for seeing the 'structures' that underlie complex situations, and for discerning high from low leverage change. That is, by seeing wholes we learn how to foster health. To do so, systems thinking offers a language that begins by restructuring how we think." (Peter M Senge, "The Fifth Discipline: The Art and Practice of the Learning Organization", 1990)

"Systems thinking is a discipline for seeing wholes. It is a framework for seeing interrelationships rather than things, for seeing patterns of change rather than static 'snapshots'. It is a set of general principles- distilled over the course of the twentieth century, spanning fields as diverse as the physical and social sciences, engineering, and management. [...] During the last thirty years, these tools have been applied to understand a wide range of corporate, urban, regional, economic, political, ecological, and even psychological systems. And systems thinking is a sensibility for the subtle interconnectedness that gives living systems their unique character." (Peter M Senge, "The Fifth Discipline: The Art and Practice of the Learning Organization", 1990)

"Systems thinking is a framework for seeing interrelationships rather than things, for seeing patterns rather than static snapshots. It is a set of general principles spanning fields as diverse as physical and social sciences, engineering and management." (Peter M Senge, "The Fifth Discipline: The Art and Practice of the Learning Organization", 1990)

"The problem with mental models lie not in whether they are right or wrong - by definition, all models are simplifications. The problem with mental models arise when they become implicit - when they exist below the level of our awareness. […] models, if unexamined, limit an organization's range of actions to what is familiar and comfortable. [...] Each person's mental model focuses on different parts of the system. Each emphasizes different cause-effect chains. This makes it virtually impossible for a shared picture of the system as a whole to emerge in normal conversation." (Peter M Senge, "The Fifth Discipline: The Art and Practice of the Learning Organization", 1990)

21 December 2020

On Nonlinearity IV (Organizations)

"In strategic thinking, one first seeks a clear understanding of the particular character of each element of a situation and then makes the fullest possible use of human brainpower to restructure the elements in the most advantageous way. Phenomena and events in the real word do not always fit a linear model. Hence the most reliable means of dissecting a situation into its constituent parts and reassembling then in the desired pattern is not a step-by-step methodology such as systems analysis. Rather, it is that ultimate nonlinear thinking tool, the human brain. True strategic thinking thus contrasts sharply with the conventional mechanical systems approach based on linear thinking. But it also contrasts with the approach that stakes everything on intuition, reaching conclusions without any real breakdown or analysis. [...] No matter how difficult or unprecedented the problem, a breakthrough to the best possible solution can come only from a combination of rational analysis, based on the real nature of things, and imaginative reintegration of all the different items into a new pattern, using nonlinear brainpower. This is always the most effective approach to devising strategies for dealing successfully with challenges and opportunities, in the market arena as on the battlefield." (Kenichi Ohmae, "The Mind Of The Strategist", 1982)

"So we pour in data from the past to fuel the decision-making mechanisms created by our models, be they linear or nonlinear. But therein lies the logician's trap: past data from real life constitute a sequence of events rather than a set of independent observations, which is what the laws of probability demand.[...] It is in those outliers and imperfections that the wildness lurks." (Peter L Bernstein, "Against the Gods: The Remarkable Story of Risk", 1996)

"In a linear world of equilibrium and predictability, the sparse research into an evidence base for management prescriptions and the confused findings it produces would be a sign of incompetence; it would not make much sense. Nevertheless, if organizations are actually patterns of nonlinear interaction between people; if small changes could produce widespread major consequences; if local interaction produces emergent global pattern; then it will not be possible to provide a reliable evidence base. In such a world, it makes no sense to conduct studies looking for simple causal relationships between an action and an outcome. I suggest that the story of the last few years strongly indicates that human action is nonlinear, that time and place matter a great deal, and that since this precludes simple evidence bases we do need to rethink the nature of organizations and the roles of managers and leaders in them." (Ralph D Stacey, "Complexity and Organizational Reality", 2000)

"The world is nonlinear. Trying to make it linear for our mathematical or administrative convenience is not usually a good idea even when feasible, and it is rarely feasible." (Donella H Meadow, "Thinking in Systems: A Primer", 2008)

"Complexity theory shows that great changes can emerge from small actions. Change involves a belief in the possible, even the 'impossible'. Moreover, social innovators don’t follow a linear pathway of change; there are ups and downs, roller-coaster rides along cascades of dynamic interactions, unexpected and unanticipated divergences, tipping points and critical mass momentum shifts. Indeed, things often get worse before they get better as systems change creates resistance to and pushback against the new. Traditional evaluation approaches are not well suited for such turbulence. Traditional evaluation aims to control and predict, to bring order to chaos. Developmental evaluation accepts such turbulence as the way the world of social innovation unfolds in the face of complexity. Developmental evaluation adapts to the realities of complex nonlinear dynamics rather than trying to impose order and certainty on a disorderly and uncertain world." (Michael Q Patton, "Developmental Evaluation", 2010)

"Internal friction is exacerbated by the fact that in business as in war, we are operating in a nonlinear, semi-chaotic environment in which our endeavors will collide and possibly clash with the actions of other independent wills (customers, suppliers, competitors, regulators, lobbyists, and so on). The internal and external worlds are in constant contact and the effects of our actions are the result of their reciprocal interaction. Friction gives rise to three gaps: the knowledge gap, the alignment gap, and the effects gap. To execute effectively, we must address all three. Our instinctive reaction to the three gaps is to demand more detail. We gather more data in order to craft more detailed plans, issue more detailed instructions, and exercise more detailed control. This not only fails to solve the problem, it usually makes it worse. We need to think about the problem differently and adopt a systemic approach to solving it." (Stephen Bungay, "The Art of Action: How Leaders Close the Gaps between Plans, Actions, and Results", 2010)

"Motivation is a fine example of social complexity. It is nonlinear and sometimes unpredictable. It cannot be defined or modeled with a single diagram." (Jurgen Appelo, "Management 3.0: Leading Agile Developers, Developing Agile Leaders", 2010)

"We have minds that are equipped for certainty, linearity and short-term decisions, that must instead make long-term decisions in a non-linear, probabilistic world. (Paul Gibbons, "The Science of Successful Organizational Change", 2015)

20 December 2020

On Randomness XII (Chaos I)

"Chaos is but unperceived order; it is a word indicating the limitations of the human mind and the paucity of observational facts. The words ‘chaos’, ‘accidental’, ‘chance’, ‘unpredictable’ are conveniences behind which we hide our ignorance." (Harlow Shapley, "Of Stars and Men: Human Response to an Expanding Universe", 1958)

"The term ‘chaos’ currently has a variety of accepted meanings, but here we shall use it to mean deterministically, or nearly deterministically, governed behavior that nevertheless looks rather random. Upon closer inspection, chaotic behavior will generally appear more systematic, but not so much so that it will repeat itself at regular intervals, as do, for example, the oceanic tides." (Edward N Lorenz, "Chaos, spontaneous climatic variations and detection of the greenhouse effect", 1991)

"The term chaos is used in a specific sense where it is an inherently random pattern of behaviour generated by fixed inputs into deterministic (that is fixed) rules (relationships). The rules take the form of non-linear feedback loops. Although the specific path followed by the behaviour so generated is random and hence unpredictable in the long-term, it always has an underlying pattern to it, a 'hidden' pattern, a global pattern or rhythm. That pattern is self-similarity, that is a constant degree of variation, consistent variability, regular irregularity, or more precisely, a constant fractal dimension. Chaos is therefore order (a pattern) within disorder (random behaviour)." (Ralph D Stacey, "The Chaos Frontier: Creative Strategic Control for Business", 1991)

"In nonlinear systems - and the economy is most certainly nonlinear - chaos theory tells you that the slightest uncertainty in your knowledge of the initial conditions will often grow inexorably. After a while, your predictions are nonsense." (M Mitchell Waldrop, "Complexity: The Emerging Science at the Edge of Order and Chaos", 1992)

"Intriguingly, the mathematics of randomness, chaos, and order also furnishes what may be a vital escape from absolute certainty - an opportunity to exercise free will in a deterministic universe. Indeed, in the interplay of order and disorder that makes life interesting, we appear perpetually poised in a state of enticingly precarious perplexity. The universe is neither so crazy that we can’t understand it at all nor so predictable that there’s nothing left for us to discover." (Ivars Peterson, "The Jungles of Randomness: A Mathematical Safari", 1997)

"When we look at the world around us, we find that we are not thrown into chaos and randomness but are part of a great order, a grand symphony of life. Every molecule in our body was once a part of previous bodies-living or nonliving-and will be a part of future bodies. In this sense, our body will not die but will live on, again and again, because life lives on. We share not only life's molecules but also its basic principles of organization with the rest of the living world. Arid since our mind, too, is embodied, our concepts and metaphors are embedded in the web of life together with our bodies and brains. We belong to the universe, we are at home in it, and this experience of belonging can make our lives profoundly meaningful." (Fritjof Capra, "The Hidden Connections", 2002)

"[…] we would like to observe that the butterfly effect lies at the root of many events which we call random. The final result of throwing a dice depends on the position of the hand throwing it, on the air resistance, on the base that the die falls on, and on many other factors. The result appears random because we are not able to take into account all of these factors with sufficient accuracy. Even the tiniest bump on the table and the most imperceptible move of the wrist affect the position in which the die finally lands. It would be reasonable to assume that chaos lies at the root of all random phenomena." (Iwo Białynicki-Birula & Iwona Białynicka-Birula, "Modeling Reality: How Computers Mirror Life", 2004) 

"Although the potential for chaos resides in every system, chaos, when it emerges, frequently stays within the bounds of its attractor(s): No point or pattern of points is ever repeated, but some form of patterning emerges, rather than randomness. Life scientists in different areas have noticed that life seems able to balance order and chaos at a place of balance known as the edge of chaos. Observations from both nature and artificial life suggest that the edge of chaos favors evolutionary adaptation." (Terry Cooke-Davies et al, "Exploring the Complexity of Projects", 2009)

"Most systems in nature are inherently nonlinear and can only be described by nonlinear equations, which are difficult to solve in a closed form. Non-linear systems give rise to interesting phenomena such as chaos, complexity, emergence and self-organization. One of the characteristics of non-linear systems is that a small change in the initial conditions can give rise to complex and significant changes throughout the system." (Robert K Logan, "The Poetry of Physics and The Physics of Poetry", 2010)

"A system in which a few things interacting produce tremendously divergent behavior; deterministic chaos; it looks random but its not." (Christopher Langton) 

19 December 2020

On Randomness III (Random-Walks)

"To every event defined for the original random walk there corresponds an event of equal probability in the dual random walk, and in this way almost every probability relation has its dual." (William Feller, "An Introduction To Probability Theory And Its Applications", 1950)

"I suspect that even if the random walkers announced a perfect mathematic proof of randomness I would go on believing that in the long run future earnings influence present value, and that in the short run the dominant factor is the elusive Australopithecus, the temper of the crowd." (Adam Smith, "The Money Game", 1968)

"A weakness of the random-walk model lies in its assumption of instantaneous adjustment, whereas the information impelling a stock market toward its 'intrinsic value' gradually becomes disseminated throughout the market place." (Richard A Epstein, The Theory of Gambling and Statistical Logic, 1977)

"However, random walk theory also tells us that the chance that the balance never returns to zero - that is, that H stays in the lead for ever - is 0. This is the sense in which the 'law of averages' is true. If you wait long enough, then almost surely the numbers of heads and tails will even out. But this fact carries no implications about improving your chances of winning, if you're betting on whether H or T turns up. The probabilities are unchanged, and you don't know how long the 'long run' is going to be. Usually it is very long indeed." (Ian Stewart, The Magical Maze: Seeing the world through mathematical eyes", 1997)

"In everyday language, a fair coin is called random, but not a coin that shows head more often than tail. A coin that keeps a memory of its own record of heads and tails is viewed as even less random. This mental picture is present in the term random walk, especially as used in finance." (Benoit B Mandelbrot, "Fractals and Scaling in Finance: Discontinuity, concentration, risk", 1997)

"The 'law of averages' asserts itself not by removing imbalances, but by swamping them. Random walk theory tells us that if you wait long enough - on average, infinitely long - then eventually the numbers will balance out. If you stop at that very instant, then you may imagine that your intuition about a 'law of averages' is justified. But you're cheating: you stopped when you got the answer you wanted. Random walk theory also tells us that if you carry on for long enough, you will reach a situation where the number of H's is a billion more than the number of T's." (Ian Stewart, The Magical Maze: Seeing the world through mathematical eyes", 1997)

"A random walk is one in which future steps or directions cannot be predicted on the basis of past history. When the term is applied to the stock market, it means that short-run changes in stock prices are unpredictable. Investment advisory services, earnings forecasts, and chart patterns are useless. [...] What are often called 'persistent patterns' in the stock market occur no more frequently than the runs of luck in the fortunes of any gambler playing a game of chance. This is what economists mean when they say that stock prices behave very much like a random walk." (Burton G Malkiel, "A Random Walk Down Wall Street", 1999)

"[...] an accurate statement of the 'weak' form of the random-walk hypothesis goes as follows: The history of stock price movements contains no useful information that will enable an investor consistently to outperform a buy-and-hold strategy in managing a portfolio. [...] Moreover, new fundamental information about a company [...] is also unpredictable. It will occur randomly over time. Indeed, successive appearances of news items must be random. If an item of news were not random, that is, if it were dependent on an earlier item of news, then it wouldn't be news at all. The weak form of the random-walk theory says only that stock prices cannot be predicted on the basis of past stock prices. [...] the weak form of the efficient-market hypothesis (the random-walk notion) says simply that the technical analysis of past price patterns to forecast the future is useless because any information from such an analysis will already have been incorporated in current market prices." (Burton G Malkiel, "A Random Walk Down Wall Street", 1999)

"Perhaps the most common complaint about the weakness of the random-walk theory is based on a distrust of mathematics and a misconception of what the theory means. 'The market isn't random', the complaint goes, 'and no mathematician is going to convince me it is'. [...] But, even if markets were dominated during certain periods by irrational crowd behavior, the stock market might still well be approximated by a random walk. The original illustrative analogy of a random walk concerned a drunken man staggering around an empty field. He is not rational, but he's not predictable either." (Burton G Malkiel, "A Random Walk Down Wall Street", 1999)

"The random-walk theory does not, as some critics have proclaimed, state that stock prices move aimlessly and erratically and are insensitive to changes in fundamental information. On the contrary, the point of the random-walk theory is just the opposite: The market is so efficient - prices move so quickly when new information does arise, that no one can consistently buy or sell quickly enough to benefit.(Burton G Malkiel, "A Random Walk Down Wall Street", 1999)

"The concept of a random walk is simple but rich for its many applications, not only in finance but also in physics and the description of natural phenomena. It is arguably one of the most founding concepts in modern physics as well as in finance, as it underlies the theories of elementary particles, which are the building blocks of our universe, as well as those describing the complex organization of matter around us." (Didier Sornette, "Why Stock Markets Crash: Critical Events in Complex Systems", 2003)

"The most important prediction of the random walk model is that the square of the fluctuations of its position should increase in proportion to the time scale. This is equivalent to saying that the typical amplitude of its position is proportional to the square root of the time scale. (Didier Sornette, "Why Stock Markets Crash: Critical events in complex financial systems", 2003)

"Just by looking at accelerating complexification of the Universe of which we are an integral part, we can conclude that we are not subjected to a random walk of evolution, nor are we subjected to a deterministic script of Nature, the truth lies somewhere in between – we are part of teleological evolution." (Alex M Vikoulov, "The Syntellect Hypothesis: Five Paradigms of the Mind's Evolution", 2019)

28 November 2020

Alexander A Bogdanov - Collected Quotes

"All scientific experience persuades us that the possibility and probability of the successful resolution of problems increases, when they are stated in general form. […] Generalization is at the same time simplification. The problem is reduced to the minimum number of the most recurrent elements; numerous complicating points are extracted and discarded; certainly, the task is thus facilitated; and, constructed in this form, transition to the more specific task is carried out by the reverse inclusion of discarded particular data." (Alexander Bogdanov, "Tektology: The Universal Organizational Science" Vol. I, 1913)

"For thought raised on specialization the most potent objection to the possibility of a universal organizational science is precisely its universality. Is it ever possible that the same laws be applicable to the combination of astronomic worlds and those of biological cells, of living people and the waves of the ether, of scientific ideas and quanta of energy? .. Mathematics provide a resolute and irrefutable answer: yes, it is undoubtedly possible, for such is indeed the case. Two and two homogenous separate elements amount to four such elements, be they astronomic systems or mental images, electrons or workers; numerical structures are indifferent to any element, there is no place here for specificity." (Alexander Bogdanov, "Tektology: The Universal Organizational Science" Vol. I, 1913)

"It should therewith be remembered that as mathematics studies neutral complexes, mathematical thinking is an organizational process and hence its methods, as well as the methods of all other sciences and those of any practice, fall within the province of a general tektology. Tektology is a unique science which must not only work out its own methods by itself but must study them as well; therefore it is the completion of the cycle of sciences." (Alexander Bogdanov, "Tektology: The Universal Organizational Science" Vol. I, 1913)

"Mathematics abstracts from all the particular properties of the elements hidden behind its schemata. This is achieved by mathematics with the help of indifferent symbols, like numbers or letters. Tektology must do likewise. Its generalizations should abstract from the concreteness of elements whose organizational relationships they express, and conceal this concreteness behind indifferent symbols." (Alexander Bogdanov, "Tektology: The Universal Organizational Science" Vol. I, 1913)

"Tektology must discover what modes of organization are observed in nature and human activities; then generalize and systemize these modes; further it should explain them, that is, elaborate abstract schemes of their tendencies and regularities; finally, based on these schemes it must determine the directions of organizational modes development and elucidate their role in the economy of world processes. This general plan is similar to the plan of any other science but the object studied differs essentially. Tektology deals with the organizational experience not of some particular branch but with that of all of them in the aggregate; to put it in other words, tektology embraces the material of all the other sciences, as well as of all the vital practices from which those sciences arose, but considers this material only in respect of methods, i.e. everywhere it takes an interest in the mode of the organization of this material."  (Alexander Bogdanov, "Tektology: The Universal Organizational Science" Vol. I, 1913)

"Theoretical philosophy aimed to discover the unity of experience, namely, in the form of some universal explanation. It strived to yield a world picture, one which is harmoniously integral and completely understandable." (Alexander Bogdanov, "Tektology: The Universal Organizational Science" Vol. I, 1913)

"The symbols organized by knowledge, or concepts, themselves belong to social nature as its ideological elements. Therefore, by operating upon them, knowledge is able to expand its organizing function much more broadly than labour in its technological operation of real things; and as we have already seen that many things, which are not organized in practice, can be organized by knowledge, i.e. in symbols: where the ingression of things is absent, the ingression of their concepts is still possible. Here ingression becomes universal, all-embracing." (Alexander Bogdanov, "Tektology: The Universal Organizational Science" Vol. I, 1913)

"[…] there is a special relationship, a profound affinity between mathematics and tektology. Mathematical laws do not refer to a particular area of natural phenomena, as the laws of the other, special, sciences do, but to each and all phenomena, considered merely in their quantitative aspect; mathematics is in its own way universal, like tektology."  (Alexander Bogdanov, "Tektology: The Universal Organizational Science" Vol. I, 1913)

"Two divisions are distinguished in all natural sciences - 'statics' which deals with forms in equilibrium, and 'dynamics' which deals with the same forms, as well as their motion, in the process of change. […] Statics always evolves earlier than dynamics, the former being then reconstructed under the influence of the latter. The relationship between mathematics and tektology is seen to be similar: one represents the standpoint of organizational statics and the other - that of organizational dynamics. The latter standpoint is the more general, for equilibrium is only a particular case of motion, and in essence, is just an ideal case resulting from changes which are completely equal but quite opposite in direction." (Alexander Bogdanov, "Tektology: The Universal Organizational Science" Vol. I, 1913)

"We shall call this universal organizational science the 'Tektology'. The literal translation of this word from the Greek is 'the theory of construction'. 'Construction' is the most generaI and suitable synonym for the modern concept of 'organization'. [...] The aim of tektology is to systematize organizational experience; this science is clearly empirical and should draw its conclusions by way of induction." (Alexander Bogdanov, "Tektology: The Universal Organizational Science" Vol. I, 1913)

"Would it be possible for a 'mental image' , perception or idea, to correspond to a 'physical object', if the parts of the former were not combined in the same order as the parts of the latter? […] The more fully the similarity of two mental images is 'recognized' , i.e., the more elements of both images are brought to identity in the consciousness, the greater the extent they are associated 'by similarity'." (Alexander Bogdanov, "Tektology: The Universal Organizational Science" Vol. I, 1913)

"For tektology the unity of experience is not 'discovered', but actively created by organizational means: ‘philosophers wanted to explain the world, but the main point is it change it’ said the greater precursor of organizational science, Karl Marx. The explanation of organizational forms and methods by tektology is directed not to a contemplation of their unity, but to a practical mastery over them." (Alexander Bogdanov, "Tektology: The Universal Organizational Science", 1922)

"Tektology must clarify the modes of organization that are perceived to exist in nature and human activity; then it must generalize and systematize these modes; further it must explain them, that is, propose abstract schemes of their tendencies and laws; finally, based on these schemes, determine the direction of organizational methods and their role in the universal process. This general plan is similar to the plan of any natural science; but the objective of tektology is basically different. Tektology deals with organizational experiences not of this or that specialized field, but of all these fields together. In other words, tektology embraces the subject matter of all the other sciences and of all the human experience giving rise to these sciences, but only from the aspect of method, that is, it is interested only in the modes of organization of this subject matter." (Alexander Bogdanov, "Tektology: The Universal Organizational Science", 1922)

"The strength of an organization lies in precise coordination of its parts, in strict correspondence of various mutually connected functions. This coordination is maintained through constant growth in tektological variety, but not without bounds […] there comes a moment when the parts of the whole become too differentiated in their organization and their resistance to the surrounding environment weakens. This leads sooner or later to disorganization." (Alexander Bogdanov, "Tektology: The Universal Organizational Science", 1922)

"Tektology is concerned only with activities, but activities are characterized by the fact that they produce changes. From this point of view it is out of the question to think about a simple and pure 'preservation' of forms, one that would constitute a real absence of changes. Preservation is always only a result of immediately equilibrating each of the appearing changes by another opposing change; it Is a dynamic equilibrium of changes."(Alexander Bogdanov) 

Living Systems Theory I

"A vital phenomenon can only be regarded as explained if it has been proven that it appears as the result of the material components of living organisms interacting according to the laws which those same components follow in their interactions outside of living systems." (Adolf E Fick, "Gesammelte Schriften" Vol. 3, 1904)

"Since the fundamental character of the living thing is its organization, the customary investigation of the single parts and processes cannot provide a complete explanation of the vital phenomena. This investigation gives us no information about the coordination of parts and processes. Thus, the chief task of biology must be to discover the laws of biological systems (at all levels of organization). We believe that the attempts to find a foundation for theoretical biology point at a fundamental change in the world picture. This view, considered as a method of investigation, we shall call ‘organismic biology’ and, as an attempt at an explanation, ‘the system theory of the organism’." (Ludwig von Bertalanffy, “Kritische Theorie der Formbildung”, 1928)

"[…] to the scientific mind the living and the non-living form one continuous series of systems of differing degrees of complexity […], while to the philosophic mind the whole universe, itself perhaps an organism, is composed of a vast number of interlacing organisms of all sizes." (James G Needham, "Developments in Philosophy of Biology", Quarterly Review of Biology Vol. 3 (1), 1928)

"General systems theory is a series of related definitions, assumptions, and postulates about all levels of systems from atomic particles through atoms, molecules, crystals, viruses, cells, organs, individuals, small groups, societies, planets, solar systems, and galaxies. General behavior systems theory is a subcategory of such theory, dealing with living systems, extending roughly from viruses through societies. A significant fact about living things is that they are open systems, with important inputs and outputs. Laws which apply to them differ from those applying to relatively closed systems." (James G Miller, "General behavior systems theory and summary", Journal of Counseling Psychology 3 (2), 1956)

"A system is primarily a living system, and the process which defines it is the maintenance of an organization which we know as life." (Ralph W Gerard, "Units and Concepts of Biology", 1958)

"System theory is basically concerned with problems of relationships, of structure, and of interdependence rather than with the constant attributes of objects. In general approach it resembles field theory except that its dynamics deal with temporal as well as spatial patterns. Older formulations of system constructs dealt with the closed systems of the physical sciences, in which relatively self-contained structures could be treated successfully as if they were independent of external forces. But living systems, whether biological organisms or social organizations, are acutely dependent on their external environment and so must be conceived of as open systems." (Daniel Katz, "The Social Psychology of Organizations", 1966)

"The homeostatic principle does not apply literally to the functioning of all complex living systems, in that in counteracting entropy they move toward growth and expansion." (Daniel Katz, "The Social Psychology of Organizations", 1966) 

"Conventional physics deals only with closed systems, i.e. systems which are considered to be isolated from their environment. [...] However, we find systems which by their very nature and definition are not closed systems. Every living organism is essentially an open system. It maintains itself in a continuous inflow and outflow, a building up and breaking down of components, never being, so long as it is alive, in a state of chemical and thermodynamic equilibrium but maintained in a so-called steady state which is distinct from the latter." (Ludwig von Bertalanffy, "General System Theory", 1968)

"My analysis of living systems uses concepts of thermodynamics, information theory, cybernetics, and systems engineering, as well as the classical concepts appropriate to each level. The purpose is to produce a description of living structure and process in terms of input and output, flows through systems, steady states, and feedbacks, which will clarify and unify the facts of life." (James G Miller, "Living Systems: Basic Concepts", 1969)

General Systems Theory I

"General Systems Theory is a name which has come into use to describe a level of theoretical model-building which lies somewhere between the highly generalized constructions of pure mathematics and the specific theories of the specialized disciplines. Mathematics attempts to organize highly general relationships into a coherent system, a system however which does not have any necessary connections with the 'real' world around us. It studies all thinkable relationships abstracted from any concrete situation or body of empirical knowledge." (Kenneth E Boulding, "General Systems Theory - The Skeleton of Science", Management Science Vol. 2 (3), 1956)

"Two possible approaches to the organization of general systems theory suggest themselves, which are to be thought of as complementary rather than competitive, or at least as two roads each of which is worth exploring. The first approach is to look over the empirical universe and to pick out certain general phenomena which are found in many different disciplines, and to seek to build up general theoretical models relevant to these phenomena. The second approach is to arrange the empirical fields in a hierarchy of complexity of organization of their basic "individual" or unit of behavior, and to try to develop a level of abstraction appropriate to each." (Kenneth E. Boulding, General Systems Theory - The Skeleton of Science, Management Science Vol. 2 (3), 1956)

"In a general way it may be said that to think in terms of systems seems the most appropriate conceptual response so far available when the phenomena under study - at any level and in any domain--display the character of being organized, and when understanding the nature of the interdependencies constitutes the research task. In the behavioral sciences, the first steps in building a systems theory were taken in connection with the analysis of internal processes in organisms, or organizations, when the parts had to be related to the whole." (Fred Emery, "The Causal Texture of Organizational Environments", 1963)

"System theory is basically concerned with problems of relationships, of structure, and of interdependence rather than with the constant attributes of objects. In general approach it resembles field theory except that its dynamics deal with temporal as well as spatial patterns. Older formulations of system constructs dealt with the closed systems of the physical sciences, in which relatively self-contained structures could be treated successfully as if they were independent of external forces. But living systems, whether biological organisms or social organizations, are acutely dependent on their external environment and so must be conceived of as open systems." (Daniel Katz, "The Social Psychology of Organizations", 1966)

"General systems theory (in the narrow sense of the term) is a discipline concerned with the general properties and laws of 'systems' . A system is defined as a complex of components in interaction, or by some similar proposition. Systems theory tries to develop those principles that apply to systems in general, irrespective of the nature of the system, of their components, and of the relations or 'forces' between them. The system components need not even be material, as, for example, in the system analysis of a commercial enterprise where components such as buildings, machines, personnel, money and 'good will' of customers enter." (Ludwig von Bertalanffy, "Robots, Men and Minds", 1967)

"General systems theory is the scientific exploration of 'wholes' and 'wholeness' which, not so long ago, were considered metaphysical notions transcending the boundaries of science. Hierarchic structure, stability, teleology, differentiation, approach to and maintenance of steady states, goal-directedness - these are a few of such general system properties." (Ervin László, "Introduction to Systems Philosophy", 1972)

"General systems theory deals with the most fundamental concepts and aspects of systems. Many theories dealing with more specific types of systems (e. g., dynamical systems, automata, control systems, game-theoretic systems, among many others) have been under development for quite some time. General systems theory is concerned with the basic issues common to all these specialized treatments. Also, for truly complex phenomena, such as those found predominantly in the social and biological sciences, the specialized descriptions used in classical theories (which are based on special mathematical structures such as differential or difference equations, numerical or abstract algebras, etc.) do not adequately and properly represent the actual events. Either because of this inadequate match between the events and types of descriptions available or because of the pure lack of knowledge, for many truly complex problems one can give only the most general statements, which are qualitative and too often even only verbal. General systems theory is aimed at providing a description and explanation for such complex phenomena." (Mihajlo D. Mesarovic & Yasuhiko Takahare, "General Systems Theory: Mathematical foundations", 1975)

"No matter how abstractly formulated are a general theory of systems, a general theory of evolution and a general theory of communication, all three theoretical components are necessary for the specifically sociological theory of society. They are mutually interdependent." (Niklas Luhmann, "The Differentiation of Society", 1982)

"Systems theory pursues the scientific exploration and understanding of systems that exist in the various realms of experience, in order to arrive at a general theory of systems: an organized expressing of sets of interrelated concepts and principles that apply to all systems." (Béla H Bánáthy, "Systems Design of Education", 1991)

"With the subsequent strong support from cybernetics, the concepts of systems thinking and systems theory became integral parts of the established scientific language, and led to numerous new methodologies and applications - systems engineering, systems analysis, systems dynamics, and so on." (Fritjof Capra, "The Web of Life", 1996)

15 November 2020

On Machines III (Systems vs Machine)

"Systems in many respects resemble machines. A machine is a little system, created to perform, as well as to connect together, in reality, those different movements and effects which the artist has occasion for.  A system is an imaginary machine invented to connect together in the fancy those different movements and effects which are already in reality performed. […] The machines that are first invented to perform any particular movement are always the most complex, and succeeding artists generally discover that, with fewer wheels, with fewer principles of motion, than had originally been employed, the fame effects may be more easily produced. The first systems, in the fame manner, are always the most complex, and a particular connecting chain, or principle, is generally thought necessary to unite every two seemingly disjointed appearances: but it often happens, that one great connecting principle is afterwards found to be sufficient to bind together all the discordant phænomena that occur in a whole species of things." (Adam Smith, "The Wealth of Nations", 1776)

"Since a given system can never of its own accord go over into another equally probable state but into a more probable one, it is likewise impossible to construct a system of bodies that after traversing various states returns periodically to its original state, that is a perpetual motion machine." (Ludwig Boltzmann, "'The Second Law of Thermodynamics", [Address to a Formal meeting of the Imperial Academy of Science], 1886)

"[...] the mystery of mysteries is to view machines making machines [...]" (Benjamin Disraeli, "Coningsby", 1911)

"Physics is not a machine one can take apart; one cannot try each piece in isolation and wait, to adjust it, until its solidity has been minutely checked. Physical science is a system that must be taken as a whole. It is an organism no part of which can be made to function without the remotest parts coming into play, some more, some less, but all in some degree." (Pierre-Maurice-Marie Duhem, 1914)

"The relations that define a system as a unity, and determine the dynamics of interaction and transformations which it may undergo as such a unity constitute the organization of the machine."(Humberto Maturana, “Autopoiesis and cognition: The realization of the living”, 1980)

"The worldview of the classical sciences conceptualized nature as a giant machine composed of intricate but replaceable machine-like parts. The new systems sciences look at nature as an organism endowed with irreplaceable elements and an innate but non-deterministic purpose for choice, for flow, for spontaneity." (Ervin László, "The systems view of the world", 1996) 

"Every system that we build will surprise us with new kinds of flaws until those machines become clever enough to conceal their faults from us." (Marvin Minsky, "The Emotion Machine: Commonsense Thinking, Artificial Intelligence, and the Future of the Human Mind", 2006)

08 October 2020

Systems Thinking I

"Tektology must clarify the modes of organization that are perceived to exist in nature and human activity; then it must generalize and systematize these modes; further it must explain them, that is, propose abstract schemes of their tendencies and laws; finally, based on these schemes, determine the direction of organizational methods and their role in the universal process. This general plan is similar to the plan of any natural science; but the objective of tektology is basically different. Tektology deals with organizational experiences not of this or that specialized field, but of all these fields together. In other words, tektology embraces the subject matter of all the other sciences and of all the human experience giving rise to these sciences, but only from the aspect of method, that is, it is interested only in the modes of organization of this subject matter." (Alexander Bogdanov, "Tektologia: Vseobshchaya Organizatsionnaya Nauka" ["Tektology: The Universal Organizational Science"], 1922)

"Creative evolution synthesises from the parts a new entity not only different from them, but quite transcending them. That is the essence of a whole. It is always transcendent to its parts, and its character cannot be inferred from the characters of its parts." (Jan Smuts, "Holism and Evolution", 1926)

"[Holism is] the tendency in nature to form wholes that are greater than the sum of the parts through creative evolution […]" (Jan Smuts, "Holism and Evolution", 1926)

"An ecological approach to public administration builds, then, quite literally from the ground up; from the elements of a place - soils, climate, location, for example - to the people who live there - their numbers and ages and knowledge, and the ways of physical and social technology by which from the place and in relationships with one another, they get their living. It is within this setting that their instruments and practices of public housekeeping should be studied so that they may better understand what they are doing, and appraise reasonably how they are doing it. Such an approach is of particular interest to us as students seeking to co-operate in our studies; for it invites - indeed is dependent upon - careful observation by many people in different environments of the roots of government functions, civic attitudes, and operating problems." (John Merriman Gaus, "Reflections on public administration", 1947)

"A systems approach begins when first you see the world through the eyes of another." (C West Churchman, "The Systems Approach", 1968)

"The parallelism of general conceptions or even special laws in different fields therefore is a consequence of the fact that these are concerned with 'systems' and that certain general principles apply to systems irrespective of their nature. Hence principles such as those of wholeness and sum, mechanization, hierarchic order, approached to steady states, equifinality, etc., may appear in quite different disciplines. The isomorphism found in different realms is based of the existence of general system principles, of a more or less well-developed ‘general system theory’." (Ludwig von Bertalanffy, "General System Theory", 1968)

"We may state as characteristic of modern science that this scheme of isolable units acting in one-way causality has proven to be insufficient. Hence the appearance, in all fields of science, of notions like wholeness, holistic, organismic, gestalt, etc., which all signify that, in the last resort, we must think in terms of systems of elements in mutual interaction […]." (Ludwig von Bertalanffy, "General System Theory", 1968)

"In the selection of papers for this volume, two problems have arisen, namely what constitutes systems thinking and what systems thinking is relevant to the thinking required for organizational management. The first problem is obviously critical. Unless there were a meaningful answer there would be no sense in producing a volume of readings in systems thinking in any subject. A great many writers have manifestly believed that there is a way of considering phenomena which is sufficiently different from the well-established modes of scientific analysis to deserve the particular title of systems thinking." (Frederick E Emery (ed.),"Systems thinking: selected readings", 1969)

"There are different levels of organization in the occurrence of events. You cannot explain the events of one level in terms of the events of another. For example, you cannot explain life in terms of mechanical concepts, nor society in terms of individual psychology. Analysis can only take you down the scale of organization. It cannot reveal the workings of things on a higher level. To some extent the holistic philosophers are right." (Anatol Rapoport, "General Systems" Vol. 14, 1969) 

Related Posts Plugin for WordPress, Blogger...

On Leonhard Euler

"I have been able to solve a few problems of mathematical physics on which the greatest mathematicians since Euler have struggled in va...