Showing posts with label proportion. Show all posts
Showing posts with label proportion. Show all posts

17 April 2021

On Inequalities I

"The worst form of inequality is to try to make unequal things equal." (Aristotle)

"Among simple even numbers, some are superabundant, others are deficient: these two classes are as two extremes opposed to one another; as for those that occupy the middle position between the two, they are said to be perfect. And those which are said to be opposite to each other, the superabundant and the deficient, are divided in their condition, which is inequality, into the too much and the too little." (Nicomachus of Gerasa,"Introductio Arithmetica", cca. 100 AD)

"Inequality is the cause of all local movements. There is no rest without equality." (Leonardo da Vinci, Codex Atlanticus, 1478)

"It is from this absolute indifference and tranquility of the mind, that mathematical speculations derive some of their most considerable advantages; because there is nothing to interest the imagination; because the judgment sits free and unbiased to examine the point. All proportions, every arrangement of quantity, is alike to the understanding, because the same truths result to it from all; from greater from lesser, from equality and inequality. (Edmund Burke, "On the Sublime and Beautiful", 1757)

"Nature is unfair? So much the better, inequality is the only bearable thing, the monotony of equality can only lead us to boredom." (Francis Picabia, "Comoedia", 1922)

"The fundamental results of mathematics are often inequalities rather than equalities." Edwin Beckenbach & Richard Bellman, "An Introduction to Inequalities", 1961)

"There are three reasons for the study of inequalities: practical, theoretical and aesthetic. On the aesthetic aspects, as has been pointed out, beauty is in the eyes of the beholder. However, it is generally agreed that certain pieces of music, art, or mathematics are beautiful. There is an elegance to inequalities that makes them very attractive." (Richard E Bellman, 1978)

"Linear programming is concerned with the maximization or minimization of a linear objective function in many variables subject to linear equality and inequality constraints."  (George B Dantzig & Mukund N Thapa, "Linear Programming" Vol I, 1997)

"From the historical point of view, since inequalities are associated with order, they arose as soon as people started using numbers, making measurements, and later, finding approximations and bounds. Thus inequalities have a long and distinguished role in the evolution of mathematics." (Claudi Alsina & Roger B Nelsen, "When Less is More: Visualizing Basic Inequalities", 2009)

"Inequalities permeate mathematics, from the Elements of Euclid to operations research and financial mathematics. Yet too often. especially in secondary and collegiate mathematics. the emphasis is on things equal to one another rather than unequal. While equalities and identities are without doubti mportant, they do not possess the richness and variety that one finds with inequalities." (Claudi Alsina & Roger B Nelsen, "When Less is More: Visualizing Basic Inequalities", 2009)

12 October 2019

Mental Models XVII

"As infinite kinds of almost identical images arise continually from the innumerable atoms and flow out to us from the gods, so we should take the keenest pleasure in turning and bending our mind and reason to grasp these images, in order to understand the nature of these blessed and eternal beings." (Marcus TulliusCicero, "De Natura Deorum" ["On the Nature of the Gods"], 45 BC)

"The imagination is one of the highest prerogatives of man. By this faculty he unites, independently of the will, former images and ideas, and thus creates brilliant and novel results […] The value of the products of our imagination depends of course on the number, accuracy, and clearness of our impressions; on our judgment and taste in selecting or rejecting the involuntary combinations, and to a certain extent on our power of voluntarily combining them." (Charles Darwin, "The Descent of Man", 1874)

"That faculty which perceives and recognizes the noble proportions in what is given to the senses, and in other things situated outside itself, must be ascribed to the soul. It lies very close to the faculty which supplies formal schemata to the senses, or deeper still, and thus adjacent to the purely vital power of the soul, which does not think discursively […] Now it might be asked how this faculty of the soul, which does not engage in conceptual thinking, and can therefore have no proper knowledge of harmonic relations, should be capable of recognizing what is given in the outside world. For to recognize is to compare the sense perception outside with the original pictures inside, and to judge that it conforms to them.” (Johannes Kepler, “Harmonices Mundi” [“Harmony of the World”, 1619)

"The entire method consists in the order and arrangement of the things to which the mind's eye must turn so that we can discover some truth." (René Descartes, "Rules for the Direction of the Mind", 1628)

“[…] inner images are rather psychic manifestations of the archetypes which, however, would also have to put forth, create, condition anything lawlike in the behavior of the corporeal world. The laws of this world would then be the physical manifestations of the archetypes. […] Each law of nature should then have an inner correspondence and vice versa, even though this is not always directly visible today.” (Wolfgang Pauli, [letter to Markus Fierz] 1948)

“The process of understanding in nature, together with the joy that man feels in understanding, i.e., in becoming acquainted with new knowledge, seems therefore to rest upon a correspondence, a coming into congruence of preexistent internal images of the human psyche with external objects and their behavior. […] the place of clear concepts is taken by images of strongly emotional content, which are not thought but  are seen pictorially, as it were, before the minds eye.” (Wolfgang Pauli, “Der Einfluss archetypischer Vorstellungen auf die Bildung  naturwissenschaftlicher Theorien bei Kepler”, 1952)

“You cannot learn, through common sense, how things are you can only discover where they fit into the existing scheme of things.”  (Stuart Hall, 1977)

"Imagination is our means of interpreting the world, and it also is our means of forming images in the mind. The images themselves are not separate from our interpretations of the world; they are our way of thinking of the objects in the world. We see the forms in our mind’s eye and we see these very forms in the world. We could not do one of these things if we could not do the other" (Mary Warnock, "Imagination", 1978)

“[…] the human brain must work in models. The trick is to have your brain work better than the other person’s brain because it understands the most fundamental models: ones that will do most work per unit. If you get into the mental habit of relating what you’re reading to the basic structure of the underlying ideas being demonstrated, you gradually accumulate some wisdom."  (Charles T Munger, “Poor Charlie’s Almanack”, 2005)

“We know the world by a process of constantly transforming it into ourselves." (Alan Watts) 

20 March 2019

Geography and Mathematics

“I have myself always thought of a mathematician as in the first instance an observer, a man who gazes at a distant range of mountains and notes down his observations. His object is simply to distinguish clearly and notify to others as many different peaks as he can.” (Godfrey H Hardy, “Mathematical Proof”, Mind 38, 1929)

“The study of mathematics is like climbing up a steep and craggy mountain; when once you reach the top, it fully recompenses your trouble, by opening a fine, clear, and extensive prospect.” (Tyron Edwards, “The New Dictionary of Thoughts: A Cyclopedia of Quotations”, 1948)

“Creating a new theory is not like destroying an old barn and erecting a skyscraper in its place. It is rather like climbing a mountain, gaining new and wider views, discovering unexpected connections between our starting point and its rich environment. But the point from which we started out still exists and can be seen, although it appears smaller and forms a tiny part of our broad view gained by the mastery of the obstacles on our adventurous way up.” (Leopold Infeld, “The Evolution of Physics”, 1961)

“The tantalizing and compelling pursuit of mathematical problems offers mental absorption, peace of mind amid endless challenges, repose in activity, battle without conflict, ‘refuge from the goading urgency of contingent happenings’, and the sort of beauty changeless mountains present to senses tried by the present-day kaleidoscope of events.” (Morris Kline, “Mathematics in Western Culture”, 1964)

“Nature’s beauty dies. The day dawns when the nautilus is no more. The rainbow passes, the flower fades away, the mountain crumbles, the star grows cold. But the beauty in mathematics — the divine proportion, the golden rectangle, spira mirabilis — endures for evermore.” (Henry E Huntley, “The Divine Proportion: A Study in Mathematical Beauty”, 1970)

"Mathematicians get a different kind of pleasure from the illumination of solving a problem, when what was once mysterious and obscure is made plain. Revealing the hidden connections in a situation is delightful - like reaching the top of a mountain after a hard climb, and seeing the landscape spread out before you. All of a sudden, everything is clear! If the result is extremely simple, so much the better . To start with confusing complexity and transform it into revealing simplicity is a marvellous reward for hard work. It really does give the mathematician a 'kick'!" (David Wells, "You Are a Mathematician: A wise and witty introduction to the joy of numbers", 1995)

“There is a strong parallel between mountain climbing and mathematics research. When first attempts on a summit are made, the struggle is to find any route. Once on the top, other possible routes up may be discerned and sometimes a safer or shorter route can be chosen for the descent or for subsequent ascents. In mathematics the challenge is finding a proof in the first place. Once found, almost any competent mathematician can usually find an alternative often much better and shorter proof. At least in mountaineering we know that the mountain is there and that, if we can find a way up and reach the summit, we shall triumph. In mathematics we do not always know that there is a result, or if the proposition is only a figment of the imagination, let alone whether a proof can be found.” (Kathleen Ollerenshaw, “To talk of many things: An autobiography”, 2004)

“Where things get really interesting is when unexpected bridges emerge between parts of the mathematical world that were remote from each other in the mental picture that had been developed by previous generations of mathematicians. When this happens, one gets the feeling that a sudden wind has blown away the fog that was hiding parts of a beautiful landscape. In my own work this type of great surprise has come mostly from the interaction with physics.” (Alain Connes [in “The Princeton Companion to Mathematics” Ed. by Timothy Gowers et al, 2008])

“It may be permissible to compare mathematical research with the opening up of a mountain range. There will always be the people whose principal interest it will be to try their ability in advanced mountaineering. They will go for the most difficult summits. Others will see their aim in making the mountain range accessible as a whole, by building convenient roads along the valleys and across the passes. They will also reach the summits eventually, but mainly for the sake of the beautiful views, and, if possible, by cable car.” (Hans Hermes)

“My approach to research consists in looking to the mathematical landscape, taking notice of the things I like and judge interesting and of those I don’t care about, and then trying to imagine what should be next. If you see a bridge across a river, you try to imagine what lies on the other shore. If you see a mountain pass between two high mountains, you try to imagine what is in the valley you don’t see yet but secretly know must be there.” (Enrico Bombieri)

"The scientific life of mathematicians can be pictured as an exploration of the geography of the 'mathematical reality' which they unveil gradually in their own private mental frame." (Alain Connes)

22 December 2018

On Numbers: Perfect Numbers I

“A perfect number is that which is equal to the sum of its own parts.” (Euclid, “Elements”, cca. 300 BC)

If as many numbers as we please beginning from a unit be set out continuously in double proportion, until the sum of all becomes a prime, and if the sum multiplied into the last make some number, the product will be perfect.” (Euclid, “Elements”, cca 300 BC)

Among simple even numbers, some are superabundant, others are deficient: these two classes are as two extremes opposed to one another; as for those that occupy the middle position between the two, they are said to be perfect. And those which are said to be opposite to each other, the superabundant and the deficient, are divided in their condition, which is inequality, into the too much and the too little.” (Nicomachus of Gerasa, “Introductio Arithmetica”, cca. 100 AD)

"There exists an elegant and sure method of generating these numbers, which does not leave out any perfect numbers and which does not include any that are not; and which is done in the following way. First set out in order the powers of two in a line, starting from unity, and proceeding as far as you wish: 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096; and then they must be totalled each time there is a new term, and at each totaling examine the result, if you find that it is prime and non-composite, you must multiply it by the quantity of the last term that you added to the line, and the product will always be perfect. If, otherwise, it is composite and not prime, do not multiply it, but add on the next term, and again examine the result, and if it is composite leave it aside, without multiplying it, and add on the next term. If, on the other hand, it is prime, and non-composite, you must multiply it by the last term taken for its composition, and the number that results will be perfect, and so on as far as infinity." (Nicomachus of Gerasa, “Introductio Arithmetica”, cca. 100 AD)

"Six is a number perfect in itself, and not because God created all things in six days; rather, the converse is true. God created all things in six days because the number is perfect." (Saint Augustine, "The City of God", 426 AD)

“We should not leave unmentioned the principal numbers […] those which are called ‘perfect numbers’. These have parts which are neither larger nor smaller than the number itself, such as the number six, whose parts, three, two, and one, add up to exactly the same sum as the number itself. For the same reason twenty-eight, four hundred ninety-six, and eight thousand one hundred twenty-eight are called perfect numbers.” (Hrotsvit of Gandersheim, “Sapientia”, 10th century)

"[…] I think I am able to prove that there are no even numbers which are perfect apart from those of Euclid; and that there are no odd perfect numbers, unless they are composed of a single prime number, multiplied by a square whose root is composed of several other prime number. But I can see nothing which would prevent one from finding numbers of this sort. For example, if 22021 were prime, in multiplying it by 9018009 which is a square whose root is composed of the prime numbers 3, 7, 11, 13, one would have 198585576189, which would be a perfect number. But, whatever method one might use, it would require a great deal of time to look for these numbers […]" (René Descartes, [a letter to Marin Mersenne] 1638)

“The existence of an odd perfect number – its escape, so to say, from the complex web of conditions which hem it in on all sides – would be little short of a miracle.” (James J Sylvester)

Previous Post <<||>> Next Post

Resources:
Wikipedia (2018) List of perfect numbers [Online] Available from: https://en.wikipedia.org/wiki/List_of_perfect_numbers

On Numbers: Odd and Even Numbers

“I can show you that the art of computation has to do with odd and even numbers in their numerical relations to themselves and to each other.” (Plato, “Charmides”, cca. 5 century BC)

“Uneven numbers are the god’s delight” (Virgil, “The Eclogues”, cca. 40 BC)

“Why do we believe that in all matters the odd numbers are more powerful […]?” (Pliny the Elder, “Natural History”, cca. 77-79 AD)

“Numbers are called prime which can be divided by no number; they are seen to be not ‘divisible’ by the monad but ‘composed’ of it: take, for example, the numbers live, seven, eleven, thirteen, seventeen, and others like them. No number can divide these numbers into integers. So, they are called `prime,' since they arise from no number and are not divisible into equal proportions. Arising in themselves, they beget other numbers from themselves, since even numbers are begotten from odd numbers, but an odd number cannot be begotten from even numbers. Therefore, prime numbers must of necessity be regarded as beautiful.” (Martianus Capella, cca. 400 AD)

“Number is divided into even and odd. Even number is divided into the following: evenly even, evenly uneven, and unevenly uneven. Odd number is divided into the following: prime and incomposite, composite, and a third intermediate class (mediocris) which in a certain way is prime and incomposite but in another way secondary and composite.” (Isidore of Seville, Etymologies, Book III, cca. 600)

“There is divinity in odd numbers, either in nativity, chance, or death.” (William Shakespeare, “The Merry Wives of Windsor”, 1602)

"For any number there exists a corresponding even number which is its double. Hence the number of all numbers is not greater than the number of even numbers, that is, the whole is not greater than the part." (Gottfried W Leibniz, “De Arte Combinatoria”, 1666)

“We know that there is an infinite, and we know not its nature. As we know it to be false that numbers are finite, it is therefore true that there is a numerical infinity. But we know not of what kind; it is untrue that it is even, untrue that it is odd; for the addition of a unit does not change its nature; yet it is a number, and every number is odd or even (this certainly holds of every finite number). Thus, we may quite well know that there is a God without knowing what He is.” (Blaise Pascal, “Pensées”, 1670)

18 November 2018

The Music of Numbers

“Mathematical science […] has these divisions: arithmetic, music, geometry, astronomy. Arithmetic is the discipline of absolute numerable quantity. Music is the discipline which treats of numbers in their relation to those things which are found in sound.” (Cassiodorus, cca. 6th century)

“Music is fashioned wholly in the likeness of numbers. […] Whatever is delightful in song is brought about by number. Sounds pass quickly away, but numbers, which are obscured by the corporeal element in sounds and movements, remain.“ (Anon, "Scholia Enchiriadis", cca. 900)

“Sound is generated by motion, since it belongs to the class of successive things. For this reason, while it exists when it is made, it no longer exists once it has been made. […] All music, especially mensurable music, is founded in perfection, combining in itself number and sound." (Jean de Muris, “Ars novae musicae”, 1319)

“The length of strings is not the direct and immediate reason behind the forms [ratios] of musical intervals, nor is their tension, nor their thickness, but rather, the ratios of the numbers of vibrations and impacts of air waves that go to strike our eardrum.” (Galileo Galilei, "Two New Sciences", 1638)

“We must distinguish carefully the ratios that our ears really perceive from those that the sounds expressed as numbers include.“ (Leonhard Euler, "Conjecture into the reasons for some dissonances generally heard in music", 1760)

“Music is like geometric figures and numbers, which are the universal forms of all possible objects of experience.” (Friedrich Nietzsche, “Birth of Tragedy”, 1872)

“In addition to this it [mathematics] provides its disciples with pleasures similar to painting and music. They admire the delicate harmony of the numbers and the forms; they marvel when a new discovery opens up to them an unexpected vista; and does the joy that they feel not have an aesthetic character even if the senses are not involved at all? […] For this reason I do not hesitate to say that mathematics deserves to be cultivated for its own sake, and I mean the theories which cannot be applied to physics just as much as the others.” (Henri Poincaré, 1897)

“Architecture is geometry made visible in the same sense that music is number made audible.” (Claude F Bragdon, “The Beautiful Necessity: Seven Essays on Theosophy and Architecture”, 1910)

“Through and through the world is infected with quantity: To talk sense is to talk quantities. It is not use saying the nation is large - How large? It is no use saying the radium is scarce - How scarce? You cannot evade quantity. You may fly to poetry and music, and quantity and number will face you in your rhythms and your octaves.” (Alfred N Whitehead, “The Aims of Education and Other Essays”, 1917)

“It is not surprising that the greatest mathematicians have again and again appealed to the arts in order to find some analogy to their own work. They have indeed found it in the most varied arts, in poetry, in painting, and in sculpture, although it would certainly seem that it is in music, the most abstract of all the arts, the art of number and of time, that we find the closest analogy.” (Havelock Ellis, “The Dance of Life”, 1923)

See also:
Music and Mathematics
Music and Mathematics II
Music and Mathematics III

26 July 2018

On Topology III (Topology with a Twist)

"The connection of topology with physics is no passing interlude but rather represents a length affair." (Michael I Monastyrsky, "Riemann, Topology, and Physics", 1999)

"If mathematics is a language, then taking a topology course at the undergraduate level is cramming vocabulary and memorizing irregular verbs: a necessary, but not always exciting exercise one has to go through before one can read great works of literature in the original language, whose beauty eventually - in retrospect - compensates for all the drudgery." (Volker Runde, "A Taste of Topology", 2005)

"[…] geometry is the art of reasoning well from badly drawn figures; however, these figures, if they are not to deceive us, must satisfy certain conditions; the proportions may be grossly altered, but the relative positions of the different parts must not be upset." (Henri Poincaré, 1895)

"People who have a casual interest in mathematics may get the idea that a topologist is a mathematical playboy who spends his time making Möbius bands and other diverting topological models. If they were to open any recent textbook in topology, they would be surprised. They would find page after page of symbols, seldom relieved by a picture or diagram." (Martin Gardner, "Hexaflexagons and Other Mathematical Diversions", 1988)

"A child[’s …] first geometrical discoveries are topological…If you ask him to copy a square or a triangle, he draws a closed circle." (Jean Piaget)

"If you wear glasses, and you wake up in the morning and you’re not wearing your glasses, and everything is blurred together, that’s what the indiscrete topology is like." (Anonymous)

"In these days the angel of topology and the devil of abstract algebra fight for the soul of every individual discipline of mathematics." (Hermann Weyl)

"Point set topology is a disease from which the human race will soon recover." (Henri Poincaré)

"The true traditional doughnut has the topology of a sphere. It is a matter of taste whether one regards this as having separate internal and external surfaces. The important point is that the inner space should be filled with good raspberry jam. This is also a matter of taste." (Peter B Fellgett)

"Topology is the property of something that doesn't change when you bend it or stretch it as long as you don't break anything." (Edward Witten)

02 April 2018

5 Books 10 Quotes III: Beauty and Symmetry III

James R Newman, "The World of Mathematics Vol. I", 1956

"In the everyday sense symmetry carries the meaning of balance, proportion, harmony, regularity of form. Beauty is sometimes linked with symmetry, but the relationship is not very illuminating since beauty is an even vaguer quality than symmetry."

"Symmetry, as wide or as narrow as you may define its meaning, is one idea by which man through the ages has tried to comprehend and create order, beauty, and perfection." (Herman Weyl, "Symmetry")

James R Newman, "The World of Mathematics Vol. II", 1956

"Mathematicians study their problems on account of their intrinsic interest, and develop their theories on account of their beauty." (Karl Menger, "What Is Calculus of Variations and What Are Its Applications?")

"If we seek a cause wherever we perceive symmetry, it is not that we regard a symmetrical event as less possible than the others, but, since this event ought to be the effect of a regular cause or that of chance, the first of these suppositions is more probable than the second." (Pierre-Simon de Laplace, "Concerning Probability")

James R Newman, "The World of Mathematics Vol III", 1956

"Geometry, whatever others may think, is the study of different shapes, many of them very beautiful, having harmony, grace and symmetry. […] Most of us, if we can play chess at all, are content to play it on a board with wooden chess pieces; but there are some who play the game blindfolded and without touching the board. It might be a fair analogy to say that abstract geometry is like blindfold chess – it is a game played without concrete objects." (Edward Kasner & James R Newman, "New Names for Old")

"The world of ideas which it discloses or illuminates, the contemplation of divine beauty and order which it induces, the harmonious connexion of its parts, the infinite hierarchy and absolute evidence of the truths with which it is concerned, these, and such like, are the surest grounds of the title of mathematics to human regard, and would remain unimpeached and unimpaired were the plan of the universe unrolled like a map at our feet, and the mind of man qualified to take in the whole scheme of creation at a glance." (James J Sylvester, "The Study That Knows Nothing of Observation")

James R Newman, "The World of Mathematics Vol IV", 1956

"[...] what are the mathematic entities to which we attribute this character of beauty and elegance, and which are capable of developing in us a sort of esthetic emotion? They are those whose elements are harmoniously disposed so that the mind without effort can embrace their totality while realizing the details. This harmony 'is at once a satisfaction of our esthetic needs and an aid to the mind, sustaining and guiding." (Henri Poincare, "Mathematical Creation")

"When, for instance, I see a symmetrical object, I feel its pleasurable quality, but do not need to assert explicitly to myself, ‘How symmetrical!’. This characteristic feature may be explained as follows. In the course of individual experience it is found generally that symmetrical objects possess exceptional and desirable qualities. Thus our own bodies are not regarded as perfectly formed unless they are symmetrical. Furthermore, the visual and tactual technique by which we perceive the symmetry of various objects is uniform, highly developed, and almost instantaneously applied. It is this technique which forms the associative 'pointer.' In consequence of it, the perception of any symmetrical object is accompanied by an intuitive aesthetic feeling of positive tone." (George D Birkhoff, "Mathematics of Aesthetics")

K C Cole, "The Universe and the Teacup: The Mathematics of Truth and Beauty", 1997

"Math has its own inherent logic, its own internal truth. Its beauty lies in its ability to distill the essence of truth without the messy interference of the real world. It’s clean, neat, above it all. It lives in an ideal universe built on the geometer’s perfect circles and polygons, the number theorist’s perfect sets. It matters not that these objects don’t exist in the real world. They are articles of faith."

"How deep truths can be defined as invariants – things that do not change no matter what; how invariants are defined by symmetries, which in turn define which properties of nature are conserved, no matter what. These are the selfsame symmetries that appeal to the senses in art and music and natural forms like snowflakes and galaxies. The fundamental truths are based on symmetry, and there’s a deep kind of beauty in that."

Previous Post <<||>> Next Post

09 December 2017

On Symmetry VII (Nature)

"Nature builds up by her refined and invisible architecture, with a delicacy eluding our conception, yet with a symmetry and beauty which we are never weary of admiring." (Sir John F W Herschel, "The Cabinet of Natural Philosophy", 1831)

"[…] the lifeless symmetry of architecture, however beautiful the design and proportion, no man would be so mad as to put in competition with the animated charms of nature." (Fanny Burney, "Evelina", 1909)

"The essential vision of reality presents us not with fugitive appearances but with felt patterns of order which have coherence and meaning for the eye and for the mind. Symmetry, balance and rhythmic sequences express characteristics of natural phenomena: the connectedness of nature - the order, the logic, the living process. Here art and science meet on common ground." (Gyorgy Kepes, "The New Landscape: In Art and Science", 1956)

"[…] nature, at the fundamental level, does not just prefer symmetry in a physical theory; nature demands it." (Jennifer T Thompson, "Beyond Einstein: The Cosmic Quest for the Theory of the Universe", 1987)

"The quantum world is in a constant process of change and transformation. On the face of it, all possible processes and transformations could take place, but nature’s symmetry principles place limits on arbitrary transformation. Only those processes that do not violate certain very fundamental symmetry principles are allowed in the natural world." (F David Peat, "From Certainty to Uncertainty", 2002)

"[…] in all things that live there are certain irregularities and deficiencies which are not only signs of life, but sources of beauty. No human face is exactly the same in its lines on each side, no leaf perfect in its lobes, no branch in its symmetry. All admit irregularity as they imply change; […]" (John Ruskin, "The Stones of Venice: The Sea Stories", 2013)

"We find, therefore, under this orderly arrangement, a wonderful symmetry in the universe, and a definite relation of harmony in the motion and magnitude of the orbs, of a kind that is not possible to obtain in any other way." (Johannes Kepler)

"Nature builds up her refined and invisible architecture, with a delicacy eluding our conception, yet with a symmetry and beauty which we are never weary of admiring." (John Herschel)

"The most general law in nature is equity-the principle of balance and symmetry which guides the growth of forms along the lines of the greatest structural efficiency." (Herbert Read)

"The secret of nature is symmetry. When searching for new and more fundamental laws of nature, we should search for new symmetries." (David Gross)

"The universe is built on a plan the profound symmetry of which is somehow present in the inner structure of our intellect." (Paul Valéry)

On Symmetry VI (Symmetry and Perception)

“Symmetry is a characteristic of the human mind.” (Alexander Pushkin, 1825)

“Symmetry is what we see at a glance; based on the fact that there is no reason for any difference, and based also on the face of man; whence it happens that symmetry is only wanted in breadth, not in height or depth.” (Blaise Pascal, “Pensées”, 1670)

"It is the harmony of the diverse parts, their symmetry, their happy balance; in a word it is all that introduces order, all that gives unity, that permits us to see clearly and to comprehend at once both the ensemble and the details." (Henri Poincaré, “The Future of Mathematics”, Monist, Vol. 20)

“[…] admiration for elegant symmetry never dies […]” (Robert Kaplan & Ellen Kaplan, „The Art of the Infinite: The Pleasures of Mathematics”, 2003)

“The word ‘symmetry’ conjures to mind objects which are well balanced, with perfect proportions. Such objects capture a sense of beauty and form. The human mind is constantly drawn to anything that embodies some aspect of symmetry. Our brain seems programmed to notice and search for order and structure. Artwork, architecture and music from ancient times to the present day play on the idea of things which mirror each other in interesting ways. Symmetry is about connections between different parts of the same object. It sets up a natural internal dialogue in the shape.” (Marcus du Sautoy, “Symmetry: A Journey into the Patterns of Nature”, 2008)

“Symmetry is the means by which shape is converted into memory.” (Michael Leyton, “Symmetry, Causality, Mind”, 1992)

“The desire for symmetry, for balance, for rhythm in form as well as in sound, is one of the most inveterate of human instincts.” (Edith Wharton)

On Symmetry V (Symmetry vs. Asymmetry I)

“Symmetry may have its appeal but it is inherently stale. Some kind of imbalance is behind every transformation.” (Marcelo Gleiser, “A Tear at the Edge of Creation: A Radical New Vision for Life in an Imperfect Universe”, 2010)

“Rut seldom is asymmetry merely the absence of symmetry. Even in asymmetric designs one feels symmetry as the norm from which one deviates under the influence of forces of non-formal character.” (Hermann Weyl, “Symmetry”, 1952)

“[…] in all things that live there are certain irregularities and deficiencies which are not only signs of life, but sources of beauty. No human face is exactly the same in its lines on each side, no leaf perfect in its lobes, no branch in its symmetry. All admit irregularity as they imply change; […]” (John Ruskin, “The Stones of Venice: The Sea Stories”, 2013)

“Nature is never perfectly symmetric. Nature's circles always have tiny dents and bumps. There are always tiny fluctuations, such as the thermal vibration of molecules. These tiny imperfections load Nature's dice in favour of one or other of the set of possible effects that the mathematics of perfect symmetry considers to be equally possible.” (Ian Stewart & Martin Golubitsky, “Fearful Symmetry: Is God a Geometer?”, 1992)

“In every symmetrical system every deformation that tends to destroy the symmetry is complemented by an equal and opposite deformation that tends to restore it. […] One condition, therefore, though not an absolutely sufficient one, that a maximum or minimum of work corresponds to the form of equilibrium, is thus applied by symmetry.” (Ernst Mach, “The Science of Mechanics: A Critical and Historical Account of Its Development”, 1893)

“Symmetry is a fundamental organizing principle of shape. It helps in classifying and understanding patterns in mathematics, nature, art, and, of course, poetry. And often the counterpoint to symmetry — the breaking or interruption of symmetry - is just as important in creative endeavors.” (Marcia Birken & Anne C. Coon, “Discovering Patterns in Mathematics and Poetry”, 2008)

“An asymmetry in the present is understood as having originated from a past symmetry.” (Michael Leyton, “Symmetry, Causality, Mind”, 1992)

“Approximate symmetry is a softening of the hard dichotomy between symmetry and asymmetry. The extent of deviation from exact symmetry that can still be considered approximate symmetry will depend on the context and the application and could very well be a matter of personal taste.” (Joe Rosen, “Symmetry Rules: How Science and Nature Are Founded on Symmetry”, 2008)

“[…] asymmetry can be defined only relative to symmetry, and vice versa. Asymmetric elements in paintings or buildings are most effective when superimposed against a background of symmetry.” (Alan Lightman, “The Accidental Universe: The World You Thought You Knew”, 2014)

“Chaos demonstrates that deterministic causes can have random effects […] There's a similar surprise regarding symmetry: symmetric causes can have asymmetric effects. […] This paradox, that symmetry can get lost between cause and effect, is called symmetry-breaking. […] From the smallest scales to the largest, many of nature's patterns are a result of broken symmetry; […]” (Ian Stewart & Martin Golubitsky, “Fearful Symmetry: Is God a Geometer?”, 1992)

On Symmetry II (Beauty and Symmetry I)

“Beauty is rather a light that plays over the symmetry of things than that symmetry itself.” (Plotinus)

“Proportion, or symmetry, is the basis of beauty; propriety, of grace.” (Henry Fuseli)

"Symmetry, as wide or as narrow as you may define its meaning, is one idea by which man through the ages has tried to comprehend and create order, beauty and perfection." (Hermann Weyl, “Symmetry”, 1952)

“Beauty had been born, not, as we so often conceive it nowadays, as an ideal of humanity, but as measure, as the reduction of the chaos of appearances to the precision of linear symbols. Symmetry, balance, harmonic division, mated and mensurated intervals – such were its abstract characteristics.” (Herbert Read, “Icon and Idea: The Function of Art in the Development of Human Consciousness”, 1955)

“The fact is that the beautiful, humanly speaking, is merely form considered in its simplest aspect, in its most perfect symmetry, in its most entire harmony with our make-up.” (Victor Hugo, “Cromwell”, 1909)

“Whereas symmetry can create beauty, its breaking does not necessarily destroy beauty; instead, it may even create another kind of beauty.” (Guozhen Wu, “Nonlinearity and Chaos in Molecular Vibrations”, 2005)

“In the nonmathematical sense, symmetry is associated with regularity in form, pleasing proportions, periodicity, or a harmonious arrangement; thus it is frequently associated with a sense of beauty. In the geometric sense, symmetry may be more precisely analyzed. We may have, for example, an axis of symmetry, a center of symmetry, or a plane of symmetry, which define respectively the line, point, or plane about which a figure or body is symmetrical. The presence of these symmetry elements, usually in combinations, is responsible for giving form to many compositions; the reproduction of a motif by application of symmetry operations can produce a pattern that is pleasing to the senses.” (Hans H Jaffé & ‎Milton Orchin, “Symmetry in Chemistry”, 2002)

“Beauty is our weapon against nature; by it we make objects, giving them limit, symmetry, proportion. Beauty halts and freezes the melting flux of nature.” (Camille Paglia)

“Symmetry creates harmony and beauty in an object.” (Aleksandr P Dubrov, “Symmetry of Biorhythms and Reactivity”, 1989)

“To a considerable degree science consists in originating the maximum amount of information with the minimum expenditure of energy. Beauty is the cleanness of line in such formulations along with symmetry, surprise, and congruence with other prevailing beliefs.” (Edward O Wilson, “Biophilia”, 1984)

On Symmetry I

“Symmetry is what we see at a glance; based on the fact that there is no reason for any difference, and based also on the face of man; whence it happens that symmetry is only wanted in breadth, not in height or depth.” (Blaise Pascal, “Pensées”, 1670)

“Symmetry is evidently a kind of unity in variety, where a whole is determined by the rhythmic repetition of similar.” (George Santayana, “The Sense of Beauty”, 1896)

“By the word symmetry […] one thinks of an external relationship between pleasing parts of a whole; mostly the word is used to refer to parts arranged regularly against one another around a centre. We have […] observed [these parts] one after the other, not always like following like, but rather a raising up from below, a strength out of weakness, a beauty out of ordinariness.” (Goethe)

“In everyday language, the words 'pattern' and 'symmetry' are used almost interchangeably, to indicate a property possessed by a regular arrangement of more-or-less identical units […]” (Ian Stewart & Martin Golubitsky, “Fearful Symmetry: Is God a Geometer?”, 1992)

“In the one sense symmetric means something like well-proportioned, well-balanced, and symmetry denotes that sort of concordance of several parts by which they integrate into a whole. Beauty is bound up with symmetry.” (Hermann Weyl, “Symmetry”, 1952)

“A thing is symmetrical if there is something you can do to it so that after you have finished doing it, it looks the same as before.” (Hermann Weyl, “Symmetry”, 1952)

“[…] a symmetry isn't a thing; it's a transformation. Not any old transformation, though: a symmetry of an object is a transformation that leaves it apparently unchanged.” (Ian Stewart & Martin Golubitsky, “Fearful Symmetry: Is God a Geometer?”, 1992)

“A symmetry is a set of transformations applied to a structure, such that the transformations preserve the properties of the structure.” (Philip Dorrell, “What is Music?: Solving a Scientific Mystery”, 2004)

“Symmetry is the representation of two or more equivalent or balanced elements with respect to a common origin, position, or axis.” (David Smith, “The Symmetry Solution: A Modern View of Biblical Prophecy”, 2009)

“Symmetry is basically a geometrical concept. Mathematically it can be defined as the invariance of geometrical patterns under certain operations. But when abstracted, the concept applies to all sorts of situations. It is one of the ways by which the human mind recognizes order in nature. In this sense symmetry need not be perfect to be meaningful. Even an approximate symmetry attracts one's attention, and makes one wonder if there is some deep reason behind it.” (Eguchi Tohru & ‎K Nishijima , “Broken Symmetry: Selected Papers Of Y Nambu”, 1995)

20 August 2017

On Beauty: Beauty and Mathematics (-1899)

“The chief forms of beauty are order and symmetry and definiteness, which the mathematical sciences demonstrate in a special degree. And since these (e.g. order and definiteness) are obviously causes of many things, evidently these sciences must treat this sort of causative principle also (i.e. the beautiful) as in some sense a cause.” (Aristotle, "Metaphysica", cca. 350 BC)

"Thus, of all the honorable arts, which are carried out either naturally or proceed in imitation of nature, geometry takes the skill of reasoning as its field. It is hard at the beginning and difficult of access, delightful in its order, full of beauty, unsurpassable in its effect. For with its clear processes of reasoning it illuminates the field of rational thinking, so that it may be understood that geometry belongs to the arts or that the arts are from geometry." (Agennius Urbicus, "Controversies about Fields", cca. 4 century BC)

"Wherever there is number, there is beauty."  (Proclus)

"Mathematics make the mind attentive to the objects which it considers. This they do by entertaining it with a great variety of truths, which are delightful and evident, but not obvious. Truth is the same thing to the understanding as music to the ear and beauty to the eye. The pursuit of it does really as much gratify a natural faculty implanted in us by our wise Creator as the pleasing of our senses: only in the former case, as the object and faculty are more spiritual, the delight is more pure, free from regret, turpitude, lassitude, and intemperance that commonly attend sensual pleasures." (John Arbuthnot, "An Essay on the Usefulness of Mathematical Learning", 1701)

"By the word symmetry […] one thinks of an external relationship between pleasing parts of a whole; mostly the word is used to refer to parts arranged regularly against one another around a centre. We have […] observed [these parts] one after the other, not always like following like, but rather a raising up from below, a strength out of weakness, a beauty out of ordinariness." (Johann Wolfgang von Goethe)

"The most distinct and beautiful statement of any truth [in science] must take at last the mathematical form. We might so simplify the rules of moral philosophy, as well as of arithmetic, that one formula would express them both." (Henry Thoreau, "A Week on the Concord and Merrimack Rivers", 1873) 

"As for everything else, so for a mathematical theory: beauty can be perceived but not explained." (Arthur Cayley, [President’s address] 1883)
Related Posts Plugin for WordPress, Blogger...

On Leonhard Euler

"I have been able to solve a few problems of mathematical physics on which the greatest mathematicians since Euler have struggled in va...