Showing posts with label structure. Show all posts
Showing posts with label structure. Show all posts

11 December 2023

Richard Bandler - Collected Quotes

"Deletion is a process by which we selectively pay attention to certain dimensions of our experience and exclude others. Take, for example, the ability that people have to filter out or exclude all other sound in a room full of people talking in order to listen to one particular person's voice. Using the same process, people are able to block themselves from hearing messages of caring from other people who are important to them. [...] Deletion reduces the world to proportions which we feel capable of handling. The reduction may be useful in some contexts and yet be the source of pain for us in others." (Richard Bandler & John Grinder, "The Structure of Magic", 1975)

"Distortion is the process which allows us to make shifts in our experience of sensory data. Fantasy, for example, allows us to prepare for experiences which we may have before they occur. People will distort present reality when rehearsing a speech which they will later present. It is this process which has made possible all the artistic creations which we as humans have produced." (Richard Bandler & John Grinder, "The Structure of Magic", 1975)

"Generalization is the process by which elements or pieces of a person's model become detached from their original experience and come to represent the entire category of which the experience is an example. bur ability to generalize is essential to coping with the world." (Richard Bandler & John Grinder, "The Structure of Magic", 1975)

"Generalization may impoverish the client's model by causing loss of the detail and richness of their original experiences. Thus, generalization prevents them from making distinctions which would give them a fuller set of choices in coping with any particular situation. At the same time, the generalization expands the specific painful experience to the level of being persecuted by the universe (an insurmountable obstacle to coping)." (Richard Bandler & John Grinder, "The Structure of Magic", 1975)

"Models are not intended to either reflect or construct a single objective reality. Rather, their purpose is to simulate some aspect of a possible reality. In NLP, for instance, it is not important whether or not a model is 'true' , but rather that it is 'useful' . In fact, all models can be perceived as symbolic or metaphoric, as opposed to reflective of reality. Whether the description being used is metaphorical or literal, the usefulness of a model depends on the degree to which it allows us to move effectively to the next step in the sequence of transformations connecting deeper structures and surface structures. Instead of 'constructing' reality, models establish a set of functions that serve as a tool or a bridge between deep structures and surface structures. It is this bridge that forms our 'understanding' of reality and allows us to generate new experiences and expressions of reality." (Richard Bandler & John Grinder, "The Structure of Magic", 1975)

"The most pervasive paradox of the human condition which we see is that the processes which allow us to survive, grow, change, and experience joy are the same processes which allow us to maintain an impoverished model of the world - our ability to manipulate symbols, that is, to create models. So the processes which allow us to accomplish the most extraordinary and unique human activities are the same processes which block our further growth if we commit the error of mistaking the model of the world for reality." (Richard Bandler & John Grinder, "The Structure of Magic", 1975)

"[…] there is an irreducible difference between the world and our experience of it. We as human beings do not operate directly on the world. Each of us creates a representation of the world in which we live - that is, we create a map or model which we use to generate our behavior. Our representation of the world determines to a large degree what our experience of the world will be, how we will perceive the world, what choices we will see available to us as we live in the world." (Richard Bandler & John Grinder, "The Structure of Magic", 1975)

"To say that our communication, our language, is a system is to say that it has structure, that there is some set of rules which identify. I which sequences of words will make sense, will represent a model of our experience. In other words, our behavior when creating a I representation or when communicating is rule-governed behavior. Even though we are not normally aware of the structure in the process of representation and communication, that structure, the structure of language, can be understood in terms of regular patterns." (Richard Bandler & John Grinder, "The Structure of Magic", 1975)

"We are almost never conscious of the way in which we order and structure the words we select. Language so fills our world that we move through it as a fish swims through water. Although we have little or no consciousness of the way in which we form our communication, our activity - the process of using language - is highly structured." (Richard Bandler & John Grinder, "The Structure of Magic", 1975)

10 February 2022

On Structure: Structure in Mathematics I

"[…] the major mathematical research acquires an organization and orientation similar to the poetical function which, adjusting by means of metaphor disjunctive elements, displays a structure identical to the sensitive universe. Similarly, by means of its axiomatic or theoretical foundation, mathematics assimilates various doctrines and serves the instructive purpose, the one set up by the unifying moral universe of concepts." (Dan Barbilian, "The Autobiography of the Scientist", 1940)

"One expects a mathematical theorem or a mathematical theory not only to describe and to classify in a simple and elegant way numerous and a priori disparate special cases. One also expects ‘elegance’ in its ‘architectural’ structural makeup." (John von Neumann, "The Mathematician" [in "Works of the Mind" Vol. I (1), 1947]) 

"The constructions of the mathematical mind are at the same time free and necessary. The individual mathematician feels free to define his notions and set up his axioms as he pleases. But the question is will he get his fellow-mathematician interested in the constructs of his imagination. We cannot help the feeling that certain mathematical structures which have evolved through the combined efforts of the mathematical community bear the stamp of a necessity not affected by the accidents of their historical birth. Everybody who looks at the spectacle of modern algebra will be struck by this complementarity of freedom and necessity." (Hermann Weyl, "A Half-Century of Mathematics", The American Mathematical Monthly, 1951)

"Mathematics, springing from the soil of basic human experience with numbers and data and space and motion, builds up a far-flung architectural structure composed of theorems which reveal insights into the reasons behind appearances and of concepts which relate totally disparate concrete ideas." (Saunders MacLane, "Of Course and Courses"The American Mathematical Monthly, Vol 61, No 3, 1954)

"The structures of mathematics and the propositions about them are ways for the imagination to travel and the wings, or legs, or vehicles to take you where you want to go." (Scott Buchanan, "Poetry and Mathematics", 1962)

"The structures with which mathematics deals are more like lace, the leaves of trees, and the play of light and shadow on a human face, than they are like buildings and machines, the least of their representatives. The best proofs in mathematics are short and crisp like epigrams, and the longest have swings and rhythms that are like music. The structures of mathematics and the propositions about them are ways for the imagination to travel and the wings, or legs, or vehicles to take you where you want to go." (Scott Buchanan, "Poetry and Mathematics", 1975)

"One cannot ‘invent’ the structure of an object. The most we can do is to patiently bring it to the light of day, with humility - in making it known, it is ‘discovered’. If there is some sort of inventiveness in this work, and if it happens that we find ourselves the maker or indefatigable builder, we are in no sense ‘making’ or ’building’ these ‘structures’. They have not waited for us to find them in order to exist, exactly as they are! But it is in order to express, as faithfully as possible, the things that we have been detecting or discovering, the reticent structure which we are trying to grasp at, perhaps with a language no better than babbling. Thereby are we constantly driven to ‘invent’ the language most appropriate to express, with increasing refinement, the intimate structure of the mathematical object, and to ‘construct’ with the help of this language, bit by bit, those ‘theories’ which claim to give a fair account of what has been apprehended and seen. There is a continual coming and going, uninterrupted, between the apprehension of things, and the means of expressing them by a language in constant state improvement [...].The sole thing that constitutes the true inventiveness and imagination of the researcher is the quality of his attention as he listens to the voices of things." (Alexander Grothendieck, "Récoltes et semailles –Rélexions et témoignage sur un passé de mathématicien", 1985)

"The bottom line for mathematicians is that the architecture has to be right. In all the mathematics that I did, the essential point was to find the right architecture. It's like building a bridge. Once the main lines of the structure are right, then the details miraculously fit. The problem is the overall design." (Freeman J Dyson, [interview] 1994)

"In abstract mathematics, special attention is given to particular properties of numbers. Then those properties are taken in a very pure (and primitive) form. Those properties in pure form are then assigned to a given set. Therefore, by studying in details the internal mathematical structure of a set, we should be able to clarify the meaning of original properties of the objects. Likewise, in set theory, numbers disappear and only the concept of sets and characteristic properties of sets remain." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"In mathematics, beauty is a very important ingredient. Beauty exists in mathematics as in architecture and other things. It is a difficult thing to define but it is something you recognise when you see it. It certainly has to have elegance, simplicity, structure and form. All sorts of things make up real beauty. There are many different kinds of beauty and the same is true of mathematical theorems. Beauty is an important criterion in mathematics because basically there is a lot of choice in what you can do in mathematics and science. It determines what you regard as important and what is not." (Michael Atiyah, 2009)

09 February 2022

On Structure: Structure in Knowledge (2000-2009)

"[...] information feedback about the real world not only alters our decisions within the context of existing frames and decision rules but also feeds back to alter our mental models. As our mental models change we change the structure of our systems, creating different decision rules and new strategies. The same information, processed and interpreted by a different decision rule, now yields a different decision. Altering the structure of our systems then alters their patterns of behavior. The development of systems thinking is a double-loop learning process in which we replace a reductionist, narrow, short-run, static view of the world with a holistic, broad, long-term, dynamic view and then redesign our policies and institutions accordingly." (John D Sterman, "Business dynamics: Systems thinking and modeling for a complex world", 2000)

"Deep change in mental models, or double-loop learning, arises when evidence not only alters our decisions within the context of existing frames, but also feeds back to alter our mental models. As our mental models change, we change the structure of our systems, creating different decision rules and new strategies. The same information, interpreted by a different model, now yields a different decision. Systems thinking is an iterative learning process in which we replace a reductionist, narrow, short-run, static view of the world with a holistic, broad, long-term, dynamic view, reinventing our policies and institutions accordingly." (John D Sterman, "Learning in and about complex systems", Systems Thinking Vol. 3 2003)

"A mental model is conceived […] as a knowledge structure possessing slots that can be filled not only with empirically gained information but also with ‘default assumptions’ resulting from prior experience. These default assumptions can be substituted by updated information so that inferences based on the model can be corrected without abandoning the model as a whole. Information is assimilated to the slots of a mental model in the form of ‘frames’ which are understood here as ‘chunks’ of knowledge with a well-defined meaning anchored in a given body of shared knowledge." (Jürgen Renn, "Before the Riemann Tensor: The Emergence of Einstein’s Double Strategy", 2005)

"Representations of real or imaginary structure in the human mind enabling orientation as well as goal orientated actions and movements" (Ralf Wagner, "Customizing Multimedia with Multi-Trees" [in "Encyclopedia of Multimedia Technology and Networking" 2nd Ed.], 2009)

On Structure: Structure in Knowledge (1990-1999)

"A mental model is a knowledge structure that incorporates both declarative knowledge (e.g., device models) and procedural knowledge (e.g., procedures for determining distributions of voltages within a circuit), and a control structure that determines how the procedural and declarative knowledge are used in solving problems (e.g., mentally simulating the behavior of a circuit)." (Barbara Y White & John R Frederiksen, "Causal Model Progressions as a Foundation for Intelligent Learning Environments", Artificial Intelligence 42, 1990)

"The essential idea of semantic networks is that the graph-theoretic structure of relations and abstractions can be used for inference as well as understanding. […] A semantic network is a discrete structure as is any linguistic description. Representation of the continuous 'outside world' with such a structure is necessarily incomplete, and requires decisions as to which information is kept and which is lost." (Fritz Lehman, "Semantic Networks",  Computers & Mathematics with Applications Vol. 23 (2-5), 1992)

"The great organizing principle of thought is abstraction. By assigning particular things to abstract categories we are able to dispense with irrelevant detail and yet instantly draw copious conclusions about a thing due to its membership in various categories. Semantic networks specify the structure of interrelated abstract categories and use this structure to draw conclusions." (Fritz Lehman, "Semantic Networks",  Computers & Mathematics with Applications Vol. 23 (2-5), 1992)

"A mental model is not normally based on formal definitions but rather on concrete properties that have been drawn from life experience. Mental models are typically analogs, and they comprise specific contents, but this does not necessarily restrict their power to deal with abstract concepts, as we will see. The important thing about mental models, especially in the context of mathematics, is the relations they represent. […]  The essence of understanding a concept is to have a mental representation or mental model that faithfully reflects the structure of that concept. (Lyn D. English & Graeme S. Halford, "Mathematics Education: Models and Processes", 1995)

"The term mental model refers to knowledge structures utilized in the solving of problems. Mental models are causal and thus may be functionally defined in the sense that they allow a problem solver to engage in description, explanation, and prediction. Mental models may also be defined in a structural sense as consisting of objects, states that those objects exist in, and processes that are responsible for those objects’ changing states." (Robert Hafner & Jim Stewart, "Revising Explanatory Models to Accommodate Anomalous Genetic Phenomena: Problem Solving in the ‘Context of Discovery’", Science Education 79 (2), 1995)

"All systems evolve, although the rates of evolution may vary over time both between and within systems. The rate of evolution is a function of both the inherent stability of the system and changing environmental circumstances. But no system can be stabilized forever. For the universe as a whole, an isolated system, time’s arrow points toward greater and greater breakdown, leading to complete molecular chaos, maximum entropy, and heat death. For open systems, including the living systems that are of major interest to us and that interchange matter and energy with their external environments, time’s arrow points to evolution toward greater and greater complexity. Thus, the universe consists of islands of increasing order in a sea of decreasing order. Open systems evolve and maintain structure by exporting entropy to their external environments." (L Douglas Kiel, "Chaos Theory in the Social Sciences: Foundations and Applications", 1996)

"Ideas about organization are always based on implicit images or metaphors that persuade us to see, understand, and manage situations in a particular way. Metaphors create insight. But they also distort. They have strengths. But they also have limitations. In creating ways of seeing, they create ways of not seeing. There can be no single theory or metaphor that gives an all-purpose point of view, and there can be no simple 'correct theory' for structuring everything we do." (Gareth Morgan, "Imaginization", 1997)

"[Schemata are] knowledge structures that represent objects or events and provide default assumptions about their characteristics, relationships, and entailments under conditions of incomplete information." (Paul J DiMaggio, "Culture and Cognition", Annual Review of Sociology No. 23, 1997)

"[A mental model] is a relatively enduring and accessible, but limited, internal conceptual representation of an external system (historical, existing, or projected) [italics in original] whose structure is analogous to the perceived structure of that system." (James K Doyle & David N Ford, "Mental models concepts revisited: Some clarifications and a reply to Lane", System Dynamics Review 15 (4), 1999)

"[…] philosophical theories are structured by conceptual metaphors that constrain which inferences can be drawn within that philosophical theory. The (typically unconscious) conceptual metaphors that are constitutive of a philosophical theory have the causal effect of constraining how you can reason within that philosophical framework." (George Lakoff, "Philosophy in the Flesh: The Embodied Mind and its Challenge to Western Thought", 1999)

"What it means for a mental model to be a structural analog is that it embodies a representation of the spatial and temporal relations among, and the causal structures connecting the events and entities depicted and whatever other information that is relevant to the problem-solving talks. […] The essential points are that a mental model can be nonlinguistic in form and the mental mechanisms are such that they can satisfy the model-building and simulative constraints necessary for the activity of mental modeling." (Nancy J Nersessian, "Model-based reasoning in conceptual change", 1999)

On Structure: Structure in Knowledge (1980-1989)

"A schema, then is a data structure for representing the generic concepts stored in memory. There are schemata representing our knowledge about all concepts; those underlying objects, situations, events, sequences of events, actions and sequences of actions. A schema contains, as part of its specification, the network of interrelations that is believed to normally hold among the constituents of the concept in question. A schema theory embodies a prototype theory of meaning. That is, inasmuch as a schema underlying a concept stored in memory corresponds to the meaning of that concept, meanings are encoded in terms of the typical or normal situations or events that instantiate that concept." (David E Rumelhart, "Schemata: The building blocks of cognition", 1980)

"These organizational processes result in our perceptions being structured into units corresponding to objects and properties of objects. It is these larger units that may be stored and later assembled into images that are experienced as quasi-pictorial, spatial entities resembling those evoked during perception itself [...] It is erroneous to equate image representations with mental photographs, since this would overlook the fact that images are composed from highly processed perceptual encodings." (Stephen Kosslyn, "Image and Mind", 1980)

"Facts and theories are different things, not rungs in a hierarchy of increasing certainty. Facts are the world's data. Theories are structures of ideas that explain and interpret facts. Facts do not go away while scientists debate rival theories for explaining them." (Stephen J Gould "Evolution as Fact and Theory", 1981)

"At present, no complete account can be given - one may as well ask for an inventory of the entire products of the human imagination - and indeed such an account would be premature, since mental models are supposed to be in people's heads, and their exact constitution is an empirical question. Nevertheless, there are three immediate constraints on possible models. […] 1. The principle of computability: Mental models, and the machinery for constructing and interpreting them, are computable. […] 2. The principle of finitism: A mental model must be finite in size and cannot directly represent an infinite domain. […] 3. The principle of constructivism: A mental model is constructed from tokens arranged in a particular structure to represent a state of affairs." (Philip Johnson-Laird, "Mental Models" 1983)

"Myth is the system of basic metaphors, images, and stories that in-forms the perceptions, memories, and aspirations of a people; provides the rationale for its institutions, rituals and power structure; and gives a map of the purpose and stages of life." (Sam Keen, "The Passionate Life", 1983)

"A mental model is a cognitive construct that describes a person's understanding of a particular content domain in the world." (John Sown, "Conceptual Structures: Information Processing in Mind and Machine", 1984)

"Curiously, the unexpected complexity that has been discovered in nature has not led to a slowdown in the progress of science, but on the contrary to the emergence of new conceptual structures that now appear as essential to our understanding of the physical world - the world that includes us. (Isabelle Stengers, "Order Out of Chaos", 1984)

"We define a semantic network as 'the collection of all the relationships that concepts have to other concepts, to percepts, to procedures, and to motor mechanisms' of the knowledge." (John F Sowa, "Conceptual Structures", 1984)

"The basic idea is that schemata are data structures for representing the generic concepts stored in memory. There are schemata for generalized concepts underlying objects, situations, events, sequences of events, actions, and sequences of actions. Roughly, schemata are like models of the outside world. To process information with the use of a schema is to determine which model best fits the incoming information. Ultimately, consistent configurations of schemata are discovered which, in concert, offer the best account for the input. This configuration of schemata together constitutes the interpretation of the input." (David E Rumelhart, Paul Smolensky, James L McClelland & Geoffrey E Hinton, "Schemata and sequential thought processes in PDP models", 1986)

"A mental model is a data structure, in a computational system, that represents a part of the real world or of a fictitious world. It is assumed that there can be mental models of abstract realms, such as that of mathematics, but little more will be said about them. A model-theoretic semanticist is free to think of the entities in his model as actual items in the world.[...] Mental model is an appropriate term for the mental representations that underlie everyday reasoning about the world. To understand the everyday world is to have a theory of how it works." (Alan Granham, "Mental Models as Representations of Discourse and Text", 1987)

"Metaphor [is] a pervasive mode of understanding by which we project patterns from one domain of experience in order to structure another domain of a different kind. So conceived metaphor is not merely a linguistic mode of expression; rather, it is one of the chief cognitive structures by which we are able to have coherent, ordered experiences that we can reason about and make sense of. Through metaphor, we make use of patterns that obtain in our physical experience to organise our more abstract understanding." (Mark Johnson, "The Body in the Mind", 1987)

"The mapping from linguistic inputs to mental models is not a one-one mapping. So semantic properties of sentences may not be recoverable from a mental model. Reading or listening is typically for content not for form. People want to know what is being said to them, not how it is being said. [...] A mental model is a representation of the content of a text that need bear no resemblance to any of the text's linguistic representations. Its structure is similar to the situation described by the text." (Alan Granham, "Mental Models as Representations of Discourse and Text", 1987)

"[…] a mental model is a mapping from a domain into a mental representation which contains the main characteristics of the domain; a model can be ‘run’ to generate explanations and expectations with respect to potential states. Mental models have been proposed in particular as the kind of knowledge structures that people use to understand a specific domain […]" (Helmut Jungermann, Holger Schütz & Manfred Thuering, "Mental models in risk assessment: Informing people about drugs", Risk Analysis 8 (1), 1988)

"Model is used as a theory. It becomes theory when the purpose of building a model is to understand the mechanisms involved in the developmental process. Hence as theory, model does not carve up or change the world, but it explains how change takes place and in what way or manner. This leads to build change in the structures." (Laxmi K Patnaik, "Model Building in Political Science", The Indian Journal of Political Science Vol. 50 (2), 1989)

On Structure: Structure in Knowledge (1970-1979)

"In general, one might define a complex of semantic components connected by logical constants as a concept. The dictionary of a language is then a system of concepts in which a phonological form and certain syntactic and morphological characteristics are assigned to each concept. This system of concepts is structured by several types of relations. It is supplemented, furthermore, by redundancy or implicational rules […] representing general properties of the whole system of concepts. […] At least a relevant part of these general rules is not bound to particular languages, but represents presumably universal structures of natural languages. They are not learned, but are rather a part of the human ability to acquire an arbitrary natural language." (Manfred Bierwisch, "Semantics", 1970)

"Mental models are fuzzy, incomplete, and imprecisely stated. Furthermore, within a single individual, mental models change with time, even during the flow of a single conversation. The human mind assembles a few relationships to fit the context of a discussion. As debate shifts, so do the mental models. Even when only a single topic is being discussed, each participant in a conversation employs a different mental model to interpret the subject. Fundamental assumptions differ but are never brought into the open. […] A mental model may be correct in structure and assumptions but, even so, the human mind - either individually or as a group consensus - is apt to draw the wrong implications for the future." (Jay W Forrester, "Counterintuitive Behaviour of Social Systems", Technology Review, 1971)

"The essential functions of the mind consist in understanding and in inventing, in other words, in building up structures by structuring reality." (Jean Piaget, 1971)

"A person is changed by the contingencies of reinforcement under which he behaves; he does not store the contingencies. In particular, he does not store copies of the stimuli which have played a part in the contingencies. There are no 'iconic representations' in his mind; there are no 'data structures stored in his memory'; he has no 'cognitive map' of the world in which he has lived. He has simply been changed in such a way that stimuli now control particular kinds of perceptual behavior." (Burrhus F Skinner, "About behaviorism", 1974)

"Models are not intended to either reflect or construct a single objective reality. Rather, their purpose is to simulate some aspect of a possible reality. In NLP, for instance, it is not important whether or not a model is 'true' , but rather that it is 'useful' . In fact, all models can be perceived as symbolic or metaphoric, as opposed to reflective of reality. Whether the description being used is metaphorical or literal, the usefulness of a model depends on the degree to which it allows us to move effectively to the next step in the sequence of transformations connecting deeper structures and surface structures. Instead of 'constructing' reality, models establish a set of functions that serve as a tool or a bridge between deep structures and surface structures. It is this bridge that forms our 'understanding' of reality and allows us to generate new experiences and expressions of reality." (Richard Bandler & John Grinder, "The Structure of Magic", 1975)

"The conception of the mental construction which is the fully analysed proof as being an infinite structure must, of course, be interpreted in the light of the intuitionist view that all infinity is potential infinity: the mental construction consists of a grasp of general principles according to which any finite segment of the proof could be explicitly constructed." (Michael Dummett, "The philosophical basis of intuitionistic logic", 1975)

"A cognitive map is a specific way of representing a person's assertions about some limited domain, such as a policy problem. It is designed to capture the structure of the person's causal assertions and to generate the consequences that follow front this structure. […]  a person might use his cognitive map to derive explanations of the past, make predictions for the future, and choose policies in the present." (Robert M Axelrod, "Structure of Decision: The cognitive maps of political elites", 1976)

"Owing to his lack of knowledge, the ordinary man cannot attempt to resolve conflicting theories of conflicting advice into a single organized structure. He is likely to assume the information available to him is on the order of what we might think of as a few pieces of an enormous jigsaw puzzle. If a given piece fails to fit, it is not because it is fraudulent; more likely the contradictions and inconsistencies within his information are due to his lack of understanding and to the fact that he possesses only a few pieces of the puzzle. Differing statements about the nature of things […] are to be collected eagerly and be made a part of the individual's collection of puzzle pieces. Ultimately, after many lifetimes, the pieces will fit together and the individual will attain clear and certain knowledge." (Alan R Beals, "Strategies of Resort to Curers in South India" [contributed in Charles M. Leslie (ed.), "Asian Medical Systems: A Comparative Study", 1976]) 

"The cognitive map is not a picture or image which 'looks like' what it represents; rather, it is an information structure from which map-like images can be reconstructed and from which behaviour dependent upon place information can be generated." (John O'Keefe & Lynn Nadel, "The Hippocampus as a Cognitive Map", 1978)

"The evolutionary vision is agnostic in regard to systems in the universe of greater complexity than those of which human beings have clear knowledge. It recognizes aesthetic, moral, and religious ideas and experiences as a species, in this case of mental structures or of images, which clearly interacts with other species in the world's great' ecosystem." (Kenneth Boulding," Ecodynamics: A New Theory of Societal Evolution", 1978)

"The use of metaphor is one of many devices available to the scientific community to accomplish the task of accommodation of language to the causal structure of the world." (Richard Boyd, "Metaphor and theory change: what is ‘metaphor’ a metaphor for?", 1979)

On Structure: Structure in Knowledge (1960-1969)

"Intuition implies the act of grasping the meaning or significance or structure of a problem without explicit reliance on the analytical apparatus of one’s craft. It is the intuitive mode that yields hypotheses quickly, that produces interesting combinations of ideas before their worth is known. It precedes proof: indeed, it is what the techniques of analysis and proof are designed to test and check. It is founded on a kind of combinatorial playfulness that is only possible when the consequences of error are not overpowering or sinful." (Jerome S Bruner, "On Learning Mathematics", Mathematics Teacher Vol. 53, 1960)

"For Science in its totality, the ultimate goal is the creation of a monistic system in which - on the symbolic level and in terms of the inferred components of invisibility and intangibly fine structure - the world’s enormous multiplicity is reduced to something like unity, and the endless successions of unique events of a great many different kinds get tidied and simplified into a single rational order. Whether this goal will ever be reached remains to be seen. Meanwhile we have the various sciences, each with its own system coordinating concepts, its own criterion of explanation." (Aldous Huxley, "Literature and Science", 1963)

"This other world is the so-called physical world image; it is merely an intellectual structure. To a certain extent it is arbitrary. It is a kind of model or idealization created in order to avoid the inaccuracy inherent in every measurement and to facilitate exact definition." (Max Planck, "The Philosophy of Physics", 1963)

"[...] 'information' is not a substance or concrete entity but rather a relationship between sets or ensembles of structured variety." (Walter F Buckley, "Sociology and modern systems theory", 1967)

"It [knowledge] is clearly related to information, which we can now measure; and an economist especially is tempted to regard knowledge as a kind of capital structure, corresponding to information as an income flow. Knowledge, that is to say, is some kind of improbable structure or stock made up essentially of patterns - that is, improbable arrangements, and the more improbable the arrangements, we might suppose, the more knowledge there is." (Kenneth E Boulding, "Beyond Economics: Essays on Society", 1968)

"Knowing reality means constructing systems of transformations that correspond, more or less adequately, to reality. They are more or less isomorphic to transformations of reality. The transformational structures of which knowledge consists are not copies of the transformations in reality; they are simply possible isomorphic models among which experience can enable us to choose. Knowledge, then, is a system of transformations that become progressively adequate." (Jean Piaget, "Genetic Epistemology", 1968)

"The idea of knowledge as an improbable structure is still a good place to start. Knowledge, however, has a dimension which goes beyond that of mere information or improbability. This is a dimension of significance which is very hard to reduce to quantitative form. Two knowledge structures might be equally improbable but one might be much more significant than the other." (Kenneth E Boulding, "Beyond Economics: Essays on Society", 1968)

"Modern science is characterized by its ever-increasing specialization, necessitated by the enormous amount of data, the complexity of techniques and of theoretical structures within every field. Thus science is split into innumerable disciplines continually generating new subdisciplines. In consequence, the physicist, the biologist, the psychologist and the social scientist are, so to speak, encapusulated in their private universes, and it is difficult to get word from one cocoon to the other." (Ludwig von Bertalanffy, "General System Theory", 1968)

"Visual thinking calls, more broadly, for the ability to see visual shapes as images of the patterns of forces that underlie our existence - the functioning of minds, of bodies or machines, the structure of societies or ideas." (Rudolf Arnheim, "Visual Thinking", 1969)

30 January 2022

On Synergy II

"The constructive process inheres in all forms of synergy, and the cooperation of antithetical forces in nature always results in making, that is, in creating something that did not exist before. But in the organic world this character of structure becomes the leading feature, and we have synthetic products consisting of tissues and organs serving definite purposes, which we call functions." (Lester F Ward, "Pure Sociology", 1903)

"[...] there is a universal principle, operating in every department of nature and at every stage of evolution, which is conservative, creative and constructive. [...] I have at last fixed upon the word synergy, as the term best adapted to express its twofold character of ‘energy’ and ‘mutuality’ or the systematic and organic ‘working together’ of the antithetical forces of nature. [...] Synergy is a synthesis of work, or synthetic work, and this is what is everywhere taking place. It may be said to begin with the primary atomic collision in which mass, motion, time, and space are involved, and to find its simplest expression in the formula for force, which implies a plurality of elements, and signifies an interaction of these elements." (Lester F Ward, "Pure Sociology", 1903)

"This compromise among the contending forces of nature was effected through organization and the formation of chemical systems, which are so many reservoirs of power, this power being represented by what we call the properties of matter. These systems store up energy and expend it in work, but the work is always a collaboration or cooperation of all the competing forces involved. It is synergy." (Lester F Ward, "Pure Sociology", 1903)

"Social equilibration under the principle of social synergy, while it involves a perpetual and vigorous struggle among the antagonistic social forces, still works out social structures and conserves them, and these structures perform their prescribed functions. Upon the perfection of these structures and the consequent success with which they perform their functions depends the degree of social efficiency. In the organic world the struggle has the appearance of a struggle for existence. The weaker species go to the wall and the stronger persist. There is a constant elimination of the defective and survival of the fittest. On the social plane it is the same, and weak races succumb in the struggle while strong races persist. But in both cases it is the best structures that survive." (James Q Dealey & Lester F Ward, "A Text-book of Sociology", 1905)

"Social structures are the products of social synergy, i.e., of the interaction of different social forces, all of which, in and of themselves, are destructive, but whose combined effect, mutually checking, constraining, and equilibrating one another, is to produce structures. The entire drift is toward economy, conservatism, and the prevention of waste. Social structures are mechanisms for the production of results, and the results cannot be secured without them. They are reservoirs of power." (James Q Dealey & Lester F Ward, "A Text-book of Sociology", 1905)

"The true nature of the universal principle of synergy pervading all nature and creating all the different kinds of structure that we observe to exist, must now be made clearer. Primarily and essentially it is a process of equilibration, i.e., the several forces are first brought into a state of partial equilibrium. It begins in collision, conflict, antagonism, and opposition, and then we have the milder phases of antithesis, competition, and interaction, passing next into a modus vivendi, or compromise, and ending in collaboration and cooperation." (James Q Dealey & Lester F Ward, "A Text-book of Sociology", 1905)

"Synergy is the principle that explains all organization and creates all structures. The products of cosmic synergy are found in all fields of phenomena. Celestial structures are worlds and world systems; chemical structures are atoms, molecules, and substances; biotic structures are protoplasm, cells, tissues, organs, and organisms. There are also psychic structures - feelings, emotions, passions, volitions, perceptions, cognitions, memory, imagination, reason, thought, and all the acts of consciousness. And then there are social structures […]. These are the products of the social forces acting under the principle of social synergy." (James Q Dealey & Lester F Ward, "A Text-book of Sociology", 1905)

"[...] synergy is the consequence of the energy expended in creating order. It is locked up in the viable system created, be it an organism or a social system. It is at the level of the system. It is not discernible at the level of the system. It is not discernible at the level of the system’s components. Whenever the system is dismembered to examine its components, this binding energy dissipates." (J-C Spender, "Organizational Knowledge, Collective Practice and Penrose Rents", 1999)

[synergy:] "Measure describing how one agent or system increases the satisfaction of other agents or systems." (Carlos Gershenson, "Design and Control of Self-organizing Systems", 2007)

"To develop a Control, the designer should find aspect systems, subsystems, or constraints that will prevent the negative interferences between elements (friction) and promote positive interferences (synergy). In other words, the designer should search for ways of minimizing frictions that will result in maximization of the global satisfaction" (Carlos Gershenson, "Design and Control of Self-organizing Systems", 2007)

06 August 2021

On Homology

"Speaking roughly, a homology theory assigns groups to topological spaces and homomorphisms to continuous maps of one space into another. To each array of spaces and maps is assigned an array of groups and homomorphisms. In this way, a homology theory is an algebraic image of topology. The domain of a homology theory is the topologist’s field of study. Its range is the field of study of the algebraist. Topological problems are converted into algebraic problems." (Samuel Eilenberg &Norman E Steenrod, "Foundations of Algebraic Topology", 1952)

"The philosophical emphasis here is: to solve a geometrical problem of a global nature, one first reduces it to a homotopy theory problem; this is in turn reduced to an algebraic problem and is solved as such. This path has historically been the most fruitful one in algebraic topology. (Brayton Gray, "Homotopy Theory", Pure and Applied Mathematics Vol. 64, 1975)

"The various homology and cohomology theories appear as complicated machines, the end product of which is an assignment of a graded group to a topological space, through a series of processes which look so arbitrary that one wonders why they succeed at all." (Jean Dieudonné, "A History of Algebraic and Differential Topology, 1900 - 1960", 1989)

"Homology theory introduces a new connection between invariants of manifolds. Continuing the "physical" analogy, we say that a homology theory studies the intrinsic structure of a manifold by breaking it into a system of portions arranged simply, or, more precisely, in a standard way. Then, given certain rules for glueing the portions together, the theory obtains the whole manifold. The main problem consists in proving the resultant geometric quantities that are independent of the decomposition and glueing (i.e., proving the topological invariance of the characteristics)." (Michael IMonastyrsky, "Topology of Gauge Fields and Condensed Matter", 1993)

"Homology theory studies properties of manifolds by decomposing them into simpler parts. The structure of these parts can be investigated easily by introducing algebraic characteristics associated with these decompositions. The main difficulty lies in proving that the corresponding characteristics of the decomposition, in fact, do not depend on the particular choice of the decomposition but are rather a topological invariant of the manifold itself." (Michael I Monastyrsky, "Riemann, Topology, and Physics", 1999)

"Although it is not difficult to count the holes in a real pretzel in your hand, prior to eating it, when a surface pops out of an abstract mathematical construction it can be very difficult to figure out its properties, such as how many holes it has. The cohomology groups can help us to do so." (Avner Ash & Robert Gross, "Fearless Symmetry: Exposing the hidden patterns of numbers", 2006)

"Topology is a child of twentieth century mathematical thinking. It allows us to consider the shape and structure of an object without being wedded to its size or to the distances between its component parts. Knot theory, homotopy theory, homology theory, and shape theory are all part of basic topology. It is often quipped that a topologist does not know the difference between his coffee cup and his donut - because each has the same abstract 'shape' without looking at all alike." (Steven G Krantz, "Essentials of Topology with Applications”, 2009)

"At first, topology can seem like an unusually imprecise branch of mathematics. It’s the study of squishy play-dough shapes capable of bending, stretching and compressing without limit. But topologists do have some restrictions: They cannot create or destroy holes within shapes. […] While this might seem like a far cry from the rigors of algebra, a powerful idea called homology helps mathematicians connect these two worlds. […] homology infers an object’s holes from its boundaries, a more precise mathematical concept. To study the holes in an object, mathematicians only need information about its boundaries." (Kelsey Houston-Edwards, "How Mathematicians Use Homology to Make Sense of Topology", Quanta Magazine, 2021)

"Homology translates this world of vague shapes into the rigorous world of algebra, a branch of mathematics that studies particular numerical structures and symmetries. Mathematicians study the properties of these algebraic structures in a field known as homological algebra. From the algebra they indirectly learn information about the original topological shape of the data. Homology comes in many varieties, all of which connect with algebra." (Kelsey Houston-Edwards, "How Mathematicians Use Homology to Make Sense of Topology", Quanta Magazine, 2021)

"Mathematicians extract a shape’s homology from its chain complex, which provides structured data about the shape’s component parts and their boundaries - exactly what you need to describe holes in every dimension. […] The definition of homology is rigid enough that a computer can use it to find and count holes, which helps establish the rigor typically required in mathematics. It also allows researchers to use homology for an increasingly popular pursuit: analyzing data." (Kelsey Houston-Edwards, "How Mathematicians Use Homology to Make Sense of Topology", Quanta Magazine, 2021)

02 August 2021

On Complex Numbers XVIII

"I consider it as one of the most important steps made by Analysis in the last period, that of not being bothered any more by imaginary quantities, and to be able to submit them to calculus, in the same way as the real ones." (Joseph-Louis de Lagrange, [letter to Antonio Lorgna] 1777)

"What should one understand by ∫ ϕx · dx for x = a + bi? Obviously, if we want to start from clear concepts, we have to assume that x passes from the value for which the integral has to be 0 to x = a + bi through infinitely small increments (each of the form x = a + bi), and then to sum all the ϕx · dx. Thereby the meaning is completely determined. However, the passage can take placein infinitely many ways: Just like the realm of all real magnitudes can be conceived as an infinite straight line, so can the realm of all magnitudes, real and imaginary, be made meaningful by an infinite plane, in which every point, determined by abscissa = a and ordinate = b, represents the quantity a+bi. The continuous passage from one value of x to another a+bi then happens along a curve and is therefore possible in infinitely many ways. I claim now that after two different passages the integral ∫ ϕx · dx acquires the same value when ϕx never becomes equal to ∞ in the region enclosed by the two curves representing the two passages."(Carl F Gauss, [letter to Bessel] 1811)

"Without doubt one of the most characteristic features of mathematics in the last century is the systematic and universal use of the complex variable. Most of its great theories received invaluable aid from it, and many owe their very existence to it." (James Pierpont, "History of Mathematics in the Nineteenth Century", Congress of Arts and Sciences Vol. 1, 1905)

"There is thus a possibility that the ancient dream of philosophers to connect all Nature with the properties of whole numbers will some day be realized. To do so physics will have to develop a long way to establish the details of how the correspondence is to be made. One hint for this development seems pretty obvious, namely, the study of whole numbers in modern mathematics is inextricably bound up with the theory of functions of a complex variable, which theory we have already seen has a good chance of forming the basis of the physics of the future. The working out of this idea would lead to a connection between atomic theory and cosmology." (Paul A M Dirac, [Lecture delivered on presentation of the James Scott prize] 1939)

"The real numbers are one of the most audacious idealizations made by the human mind, but they were used happily for centuries before anybody worried about the logic behind them. Paradoxically, people worried a great deal about the next enlargement of the number system, even though it was entirely harmless. That was the introduction of square roots for negative numbers, and it led to the 'imaginary' and 'complex' numbers. A professional mathematican should never leave home without them […]" (Ian Stewart, "Nature's Numbers: The unreal reality of mathematics", 1995)

"Beyond the theory of complex numbers, there is the much greater and grander theory of the functions of a complex variable, as when the complex plane is mapped to the complex plane, complex numbers linking themselves to other complex numbers. It is here that complex differentiation and integration are defined. Every mathematician in his education studies this theory and surrenders to it completely. The experience is like first love." (David Berlinski, "Infinite Ascent: A short history of mathematics", 2005)

"Algebraic geometry uses the geometric intuition which arises from looking at varieties over the complex and real case to deduce important results in arithmetic algebraic geometry where the complex number field is replaced by the field of rational numbers or various finite number fields." (Raymond O Wells Jr, "Differential and Complex Geometry: Origins, Abstractions and Embeddings", 2017)

"The primary aspects of the theory of complex manifolds are the geometric structure itself, its topological structure, coordinate systems, etc., and holomorphic functions and mappings and their properties. Algebraic geometry over the complex number field uses polynomial and rational functions of complex variables as the primary tools, but the underlying topological structures are similar to those that appear in complex manifold theory, and the nature of singularities in both the analytic and algebraic settings is also structurally very similar." (Raymond O Wells Jr, "Differential and Complex Geometry: Origins, Abstractions and Embeddings", 2017)

"The very idea of raising a number to an imaginary power may well have seemed to most of the era’s mathematicians like asking the ghost of a late amphibian to jump up on a harpsichord and play a minuet." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"Today it’s easy to see the beauty of i, thanks, among other things, to its prominence in mathematics’ most beautiful equation. Thus, it may seem strange that it was once regarded as akin to a small waddling gargoyle. Indeed, the simplicity of its definition suggests unpretentious elegance: i is just the square root of −1. But as with many definitions in mathematics, i’s is fraught with provocative implications, and the ones that made it a star in mathematics weren’t apparent until long after it first came on the scene." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

06 July 2021

On Algorithms I

"Mathematics is an aspect of culture as well as a collection of algorithms." (Carl B Boyer, "The History of the Calculus and Its Conceptual Development", 1959)

"An algorithm must be seen to be believed, and the best way to learn what an algorithm is all about is to try it." (Donald E Knuth, The Art of Computer Programming Vol. I, 1968)

"Scientific laws give algorithms, or procedures, for determining how systems behave. The computer program is a medium in which the algorithms can be expressed and applied. Physical objects and mathematical structures can be represented as numbers and symbols in a computer, and a program can be written to manipulate them according to the algorithms. When the computer program is executed, it causes the numbers and symbols to be modified in the way specified by the scientific laws. It thereby allows the consequences of the laws to be deduced." (Stephen Wolfram, "Computer Software in Science and Mathematics", 1984)

"Algorithmic complexity theory and nonlinear dynamics together establish the fact that determinism reigns only over a quite finite domain; outside this small haven of order lies a largely uncharted, vast wasteland of chaos." (Joseph Ford, "Progress in Chaotic Dynamics: Essays in Honor of Joseph Ford's 60th Birthday", 1988)

"On this view, we recognize science to be the search for algorithmic compressions. We list sequences of observed data. We try to formulate algorithms that compactly represent the information content of those sequences. Then we test the correctness of our hypothetical abbreviations by using them to predict the next terms in the string. These predictions can then be compared with the future direction of the data sequence. Without the development of algorithmic compressions of data all science would be replaced by mindless stamp collecting - the indiscriminate accumulation of every available fact. Science is predicated upon the belief that the Universe is algorithmically compressible and the modern search for a Theory of Everything is the ultimate expression of that belief, a belief that there is an abbreviated representation of the logic behind the Universe's properties that can be written down in finite form by human beings." (John D Barrow, New Theories of Everything", 1991)

"Algorithms are a set of procedures to generate the answer to a problem." (Stuart Kauffman, "At Home in the Universe: The Search for Laws of Complexity", 1995)

"Let us regard a proof of an assertion as a purely mechanical procedure using precise rules of inference starting with a few unassailable axioms. This means that an algorithm can be devised for testing the validity of an alleged proof simply by checking the successive steps of the argument; the rules of inference constitute an algorithm for generating all the statements that can be deduced in a finite number of steps from the axioms." (Edward Beltrami, "What is Random?: Chaos and Order in Mathematics and Life", 1999)

"Heuristics are rules of thumb that help constrain the problem in certain ways (in other words they help you to avoid falling back on blind trial and error), but they don't guarantee that you will find a solution. Heuristics are often contrasted with algorithms that will guarantee that you find a solution - it may take forever, but if the problem is algorithmic you will get there. However, heuristics are also algorithms." (S Ian Robertson, "Problem Solving", 2001)

"An algorithm is a simple rule, or elementary task, that is repeated over and over again. In this way algorithms can produce structures of astounding complexity." (F David Peat, "From Certainty to Uncertainty", 2002)

"Many people have strong intuitions about whether they would rather have a vital decision about them made by algorithms or humans. Some people are touchingly impressed by the capabilities of the algorithms; others have far too much faith in human judgment. The truth is that sometimes the algorithms will do better than the humans, and sometimes they won’t. If we want to avoid the problems and unlock the promise of big data, we’re going to need to assess the performance of the algorithms on a case-by-case basis. All too often, this is much harder than it should be. […] So the problem is not the algorithms, or the big datasets. The problem is a lack of scrutiny, transparency, and debate." (Tim Harford, "The Data Detective: Ten easy rules to make sense of statistics", 2020)

17 June 2021

On Knowledge (2000-2009)

"Storytelling is the art of unfolding knowledge in a way that makes each piece contribute to a larger truth." (Philip Gerard, "Writing a Book That Makes a Difference", 2000)

"There is a strong tendency today to narrow specialization. Because of the exponential growth of information, we can afford (in terms of both economics and time) preparation of specialists in extremely narrow fields, the various branches of science and engineering having their own particular realms. As the knowledge in these fields grows deeper and broader, the individual's field of expertise has necessarily become narrower. One result is that handling information has become more difficult and even ineffective." (Semyon D Savransky, "Engineering of Creativity", 2000)

"All human knowledge - including statistics - is created  through people's actions; everything we know is shaped by our language, culture, and society. Sociologists call this the social construction of knowledge. Saying that knowledge is socially constructed does not mean that all we know is somehow fanciful, arbitrary, flawed, or wrong. For example, scientific knowledge can be remarkably accurate, so accurate that we may forget the people and social processes that produced it." (Joel Best, "Damned Lies and Statistics: Untangling Numbers from the Media, Politicians, and Activists", 2001)

"Defined from a societal standpoint, information may be seen as an entity which reduces maladjustment between system and environment. In order to survive as a thermodynamic entity, all social systems are dependent upon an information flow. This explanation is derived from the parallel between entropy and information where the latter is regarded as negative entropy (negentropy). In more common terms information is a form of processed data or facts about objects, events or persons, which are meaningful for the receiver, inasmuch as an increase in knowledge reduces uncertainty." (Lars Skyttner, "General Systems Theory: Ideas and Applications", 2001)

"Knowledge is factual when evidence supports it and we have great confidence in its accuracy. What we call 'hard fact' is information supported by  strong, convincing evidence; this means evidence that, so far as we know, we cannot deny, however we examine or test it. Facts always can be questioned, but they hold up under questioning. How did people come by this information? How did they interpret it? Are other interpretations possible? The more satisfactory the answers to such questions, the 'harder' the facts."(Joel Best, Damned Lies and Statistics: Untangling Numbers from the Media, Politicians, and Activists, 2001)

"Knowledge maps are node-link representations in which ideas are located in nodes and connected to other related ideas through a series of labeled links. They differ from other similar representations such as mind maps, concept maps, and graphic organizers in the deliberate use of a common set of labeled links that connect ideas. Some links are domain specific (e.g., function is very useful for some topic domains...) whereas other links (e.g., part) are more broadly used. Links have arrowheads to indicate the direction of the relationship between ideas." (Angela M. O’Donnell et al, "Knowledge Maps as Scaffolds for Cognitive Processing", Educational Psychology Review Vol. 14 (1), 2002) 

"Knowledge is encoded in models. Models are synthetic sets of rules, and pictures, and algorithms providing us with useful representations of the world of our perceptions and of their patterns." (Didier Sornette, "Why Stock Markets Crash - Critical Events in Complex Systems", 2003)

"The networked world continuously refines, reinvents, and reinterprets knowledge, often in an autonomic manner." (Donald M Morris et al, "A revolution in knowledge sharing", 2003) 

"A mental model is conceived […] as a knowledge structure possessing slots that can be filled not only with empirically gained information but also with ‘default assumptions’ resulting from prior experience. These default assumptions can be substituted by updated information so that inferences based on the model can be corrected without abandoning the model as a whole. Information is assimilated to the slots of a mental model in the form of ‘frames’ which are understood here as ‘chunks’ of knowledge with a well-defined meaning anchored in a given body of shared knowledge." (Jürgen Renn, "Before the Riemann Tensor: The Emergence of Einstein’s Double Strategy", 2005)

"Evolution moves towards greater complexity, greater elegance, greater knowledge, greater intelligence, greater beauty, greater creativity, and greater levels of subtle attributes such as love. […] Of course, even the accelerating growth of evolution never achieves an infinite level, but as it explodes exponentially it certainly moves rapidly in that direction." (Ray Kurzweil, "The Singularity is Near", 2005)

“It makes no sense to seek a single best way to represent knowledge - because each particular form of expression also brings its particular limitations. For example, logic-based systems are very precise, but they make it hard to do reasoning with analogies. Similarly, statistical systems are useful for making predictions, but do not serve well to represent the reasons why those predictions are sometimes correct.” (Marvin Minsky, "The Emotion Machine: Commonsense Thinking, Artificial Intelligence, and the Future of the Human Mind", 2006)

"Information is just bits of data. Knowledge is putting them together. Wisdom is transcending them." (Ram Dass, "One-Liners: A Mini-Manual for a Spiritual Life (ed. Harmony", 2007)

"Science is not only the enterprise of harnessing nature to serve the practical needs of humankind. It is also part of man’s unending search for knowledge about the universe and his place within it." (Henry P Stapp, "Mindful Universe: Quantum Mechanics and the Participating Observer", 2007)

"Critical thinking is essentially a questioning, challenging approach to knowledge and perceived wisdom. It involves ideas and information from an objective position and then questioning this information in the light of our own values, attitudes and personal philosophy." Brenda Judge et al, "Critical Thinking Skills for Education Students", 2009)

"Equations seem like treasures, spotted in the rough by some discerning individual, plucked and examined, placed in the grand storehouse of knowledge, passed on from generation to generation. This is so convenient a way to present scientific discovery, and so useful for textbooks, that it can be called the treasure-hunt picture of knowledge." (Robert P Crease, "The Great Equations", 2009)

"Traditional statistics is strong in devising ways of describing data and inferring distributional parameters from sample. Causal inference requires two additional ingredients: a science-friendly language for articulating causal knowledge, and a mathematical machinery for processing that knowledge, combining it with data and drawing new causal conclusions about a phenomenon."(Judea Pearl, "Causal inference in statistics: An overview", Statistics Surveys 3, 2009)

On Knowledge (1960-1969)

"Any pattern of activity in a network, regarded as consistent by some observer, is a system, Certain groups of observers, who share a common body of knowledge, and subscribe to a particular discipline, like 'physics' or 'biology' (in terms of which they pose hypotheses about the network), will pick out substantially the same systems. On the other hand, observers belonging to different groups will not agree about the activity which is a system." (Gordon Pask, "The Natural History of Networks", 1960)

"The most important maxim for data analysis to heed, and one which many statisticians seem to have shunned is this: ‘Far better an approximate answer to the right question, which is often vague, than an exact answer to the wrong question, which can always be made precise.’ Data analysis must progress by approximate answers, at best, since its knowledge of what the problem really is will at best be approximate." (John W Tukey, "The Future of Data Analysis", Annals of Mathematical Statistics, Vol. 33, No. 1, 1962)

"Incomplete knowledge must be considered as perfectly normal in probability theory; we might even say that, if we knew all the circumstances of a phenomenon, there would be no place for probability, and we would know the outcome with certainty." (Félix E Borel, Probability and Certainty", 1963)

"When a science approaches the frontiers of its knowledge, it seeks refuge in allegory or in analogy." (Erwin Chargaff, "Essays on Nucleic Acids", 1963)

"In its efforts to learn as much as possible about nature, modem physics has found that certain things can never be ‘known’ with certainty. Much of our knowledge must always remain uncertain. The most we can know is in terms of probabilities." (Richard P Feynman, "The Feynman Lectures on Physics", 1964)

"A model is a useful (and often indispensable) framework on which to organize our knowledge about a phenomenon. […] It must not be overlooked that the quantitative consequences of any model can be no more reliable than the a priori agreement between the assumptions of the model and the known facts about the real phenomenon. When the model is known to diverge significantly from the facts, it is self-deceiving to claim quantitative usefulness for it by appeal to agreement between a prediction of the model and observation." (John R Philip, 1966)

"It is a commonplace of modern technology that there is a high measure of certainty that problems have solutions before there is knowledge of how they are to be solved." (John K Galbraith, "The New Industrial State", 1967)

"The aim of science is not so much to search for truth, or even truths, as to classify our knowledge and to establish relations between observable phenomena in order to be able to predict the future in a certain measure and to explain the sequence of phenomena in relation to ourselves." (Pierre L du Noüy, "Between Knowing and Believing", 1967)

"It [knowledge] is clearly related to information, which we can now measure; and an economist especially is tempted to regard knowledge as a kind of capital structure, corresponding to information as an income flow. Knowledge, that is to say, is some kind of improbable structure or stock made up essentially of patterns - that is, improbable arrangements, and the more improbable the arrangements, we might suppose, the more knowledge there is." (Kenneth E Boulding, "Beyond Economics: Essays on Society", 1968)

"Knowing reality means constructing systems of transformations that correspond, more or less adequately, to reality. They are more or less isomorphic to transformations of reality. The transformational structures of which knowledge consists are not copies of the transformations in reality; they are simply possible isomorphic models among which experience can enable us to choose. Knowledge, then, is a system of transformations that become progressively adequate." (Jean Piaget, "Genetic Epistemology", 1968)

"Scientific knowledge is not created solely by the piecemeal mining of discrete facts by uniformly accurate and reliable individual scientific investigations. The process of criticism and evaluation, of analysis and synthesis, are essential to the whole system. It is impossible for each one of us to be continually aware of all that is going on around us, so that we can immediately decide the significance of every new paper that is published. The job of making such judgments must therefore be delegated to the best and wisest among us, who speak, not with their own personal voices, but on behalf of the whole community of Science. […] It is impossible for the consensus - public knowledge - to be voiced at all, unless it is channeled through the minds of selected persons, and restated in their words for all to hear." (John M Ziman, "Public Knowledge: An Essay Concerning the Social Dimension of Science", 1968)

"The idea of knowledge as an improbable structure is still a good place to start. Knowledge, however, has a dimension which goes beyond that of mere information or improbability. This is a dimension of significance which is very hard to reduce to quantitative form. Two knowledge structures might be equally improbable but one might be much more significant than the other." (Kenneth E Boulding, "Beyond Economics: Essays on Society", 1968)

"Discovery always carries an honorific connotation. It is the stamp of approval on a finding of lasting value. Many laws and theories have come and gone in the history of science, but they are not spoken of as discoveries. […] Theories are especially precarious, as this century profoundly testifies. World views can and do often change. Despite these difficulties, it is still true that to count as a discovery a finding must be of at least relatively permanent value, as shown by its inclusion in the generally accepted body of scientific knowledge." (Richard J. Blackwell, "Discovery in the Physical Sciences", 1969)

"It is not enough to observe, experiment, theorize, calculate and communicate; we must also argue, criticize, debate, expound, summarize, and otherwise transform the information that we have obtained individually into reliable, well established, public knowledge." (John M Ziman, "Information, Communication, Knowledge", Nature Vol. 224 (5217), 1969)

"Models constitute a framework or a skeleton and the flesh and blood will have to be added by a lot of common sense and knowledge of details."(Jan Tinbergen, "The Use of Models: Experience," 1969)

"The 'flow of information' through human communication channels is enormous. So far no theory exists, to our knowledge, which attributes any sort of unambiguous measure to this 'flow'." (Anatol Rapoport, "Modern Systems Research for the Behavioral Scientist", 1969)

15 June 2021

On Real Numbers I

"Because all conceivable numbers are either greater than zero or less than 0 or equal to 0, then it is clear that the square roots of negative numbers cannot be included among the possible numbers [real numbers]. Consequently we must say that these are impossible numbers. And this circumstance leads us to the concept of such numbers, which by their nature are impossible, and ordinarily are called imaginary or fancied numbers, because they exist only in the imagination." (Leonhard Euler, "Vollständige Anleitung zur Algebra", 1768-69)

"[…] with few exceptions all the operations and concepts that occur in the case of real numbers can indeed be carried over unchanged to complex ones. However, the concept of being greater cannot very well be applied to complex numbers. In the case of integration, too, there appear differences which rest on the multplicity of possible paths of integration when we are dealing with complex variables. Nevertheless, the large extent to which imaginary forms conform to the same laws as real ones justifies the introduction of imaginary forms into geometry." (Gottlob Frege, "On a Geometrical Representation of Imaginary forms in the Plane", 1873)

"Mathematics is a study which, when we start from its most familiar portions, may be pursued in either of two opposite directions. The more familiar direction is constructive, towards gradually increasing complexity: from integers to fractions, real numbers, complex numbers; from addition and multiplication to differentiation and integration, and on to higher mathematics. The other direction, which is less familiar, proceeds, by analyzing, to greater and greater abstractness and logical simplicity." (Bertrand Russell, "Introduction to Mathematical Philosophy", 1919)

"There is more to the calculation of π to a large number of decimal places than just the challenge involved. One reason for doing it is to secure statistical information concerning the 'normalcy' of π. A real number is said to be simply normal if in its decimal expansion all digits occur with equal frequency, and it is said to be normal if all blocks of digits of the same length occur with equal frequency. It is not known if π (or even √2, for that matter) is normal or even simply normal." (Howard Eves, "Mathematical Circles Revisited", 1971)

"Surreal numbers are an astonishing feat of legerdemain. An empty hat rests on a table made of a few axioms of standard set theory. Conway waves two simple rules in the air, then reaches into almost nothing and pulls out an infinitely rich tapestry of numbers that form a real and closed field. Every real number is surrounded by a host of new numbers that lie closer to it than any other 'real' value does. The system is truly 'surreal.'" (Martin Gardner, "Mathematical Magic Show", 1977)

"If explaining minds seems harder than explaining songs, we should remember that sometimes enlarging problems makes them simpler! The theory of the roots of equations seemed hard for centuries within its little world of real numbers, but it suddenly seemed simple once Gauss exposed the larger world of so-called complex numbers. Similarly, music should make more sense once seen through listeners' minds." (Marvin Minsky, "Music, Mind, and Meaning", 1981)

“The letter ‘i’ originally was meant to suggest the imaginary nature of this number, but with the greater abstraction of mathematics, it came to be realized that it was no more imaginary than many other mathematical constructs. True, it is not suitable for measuring quantities, but it obeys the same laws of arithmetic as do the real numbers, and, surprisingly enough, it makes the statement of various physical laws very natural.” (John A Paulos, “Beyond Numeracy”, 1991)

"A real number that satisfies (is a solution of) a polynomial equation with integer coefficients is called algebraic. […] A real number that is not algebraic is called transcendental. There is nothing mystic about this word; it merely indicates that these numbers transcend (go beyond) the realm of algebraic numbers."  (Eli Maor, "e: The Story of a Number", 1994)

"The real numbers are one of the most audacious idealizations made by the human mind, but they were used happily for centuries before anybody worried about the logic behind them. Paradoxically, people worried a great deal about the next enlargement of the number system, even though it was entirely harmless. That was the introduction of square roots for negative numbers, and it led to the 'imaginary' and 'complex' numbers. A professional mathematican should never leave home without them […]" (Ian Stewart, "Nature's Numbers: The unreal reality of mathematics", 1995)

11 June 2021

On Equilibrium (1900-1919)

"When we study the structure of the atom, we shall arrive at the conclusion that it is an immense reservoir of energy solely constituted by a system of imponderable elements maintained in equilibrium by the rotations, attractions and repulsions of its component parts." (Gustave Le Bon, "The Evolution of Matter", 1907)

"All thinking is of disturbance, dynamical, a state of unrest tending towards equilibrium. It is all a mode of classifying and of criticising with a view of knowing whether it gives us, or is likely to give us, pleasure or no." (Samuel Butler, "Thinking - The Note-Books of Samuel Butler", 1912)

"The network of ideas remains and forms as it were a moving cobweb in which repose wriggles and tosses, incapable of finding a stable equilibrium." (Jean H Fabre, "The Life of the Fly", 1913)

"We rise from the conception of form to an understanding of the forces which gave rise to it [...] in the representation of form we see a diagram of forces in equilibrium, and in the comparison of kindred forms we discern the magnitude and the direction of the forces which have sufficed to convert the one form into the other." (D'Arcy Wentworth Thompson, "On Growth and Form" Vol. 2, 1917)

"A society in stable equilibrium is - by definition - one that has no history and wants no historians." (Henry Adams, "The Degradation of the Democratic Dogma", 1919)

"All biologic phenomena act to adjust: there are no biologic actions other than adjustments. Adjustment is another name for Equilibrium. Equilibrium is the Universal, or that which has nothing external to derange it." (Charles Fort, The Book of the Damned, 1919)

08 June 2021

On Patterns (1960-1969)

"Any pattern of activity in a network, regarded as consistent by some observer, is a system, Certain groups of observers, who share a common body of knowledge, and subscribe to a particular discipline, like 'physics' or 'biology' (in terms of which they pose hypotheses about the network), will pick out substantially the same systems. On the other hand, observers belonging to different groups will not agree about the activity which is a system." (Gordon Pask, The Natural History of Networks, 1960)

"It is of our very nature to see the universe as a place that we can talk about. In particular, you will remember, the brain tends to compute by organizing all of its input into certain general patterns. It is natural for us, therefore, to try to make these grand abstractions, to seek for one formula, one model, one God, around which we can organize all our communication and the whole business of living." (John Z Young, "Doubt and Certainty in Science: A Biologist’s Reflections on the Brain", 1960)

"How can a modern anthropologist embark upon a generalization with any hope of arriving at a satisfactory conclusion? By thinking of the organizational ideas that are present in any society as a mathematical pattern." (Edmund R Leach, "Rethinking Anthropology", 1961)

"Mathematics is a creation of the mind. To begin with, there is a collection of things, which exist only in the mind, assumed to be distinguishable from one another; and there is a collection of statements about these things, which are taken for granted. Starting with the assumed statements concerning these invented or imagined things, the mathematician discovers other statements, called theorems, and proves them as necessary consequences. This, in brief, is the pattern of mathematics. The mathematician is an artist whose medium is the mind and whose creations are ideas." (Hubert S Wall, "Creative Mathematics", 1963)

"The mark of our time is its revulsion against imposed patterns." (Marshall McLuhan, "Understanding Media", 1964)

"The 'message' of any medium or technology is the change of scale or pace or pattern that it introduces into human affairs." (Marshall McLuhan, "Understanding Media", 1964)

"Without the hard little bits of marble which are called 'facts' or 'data' one cannot compose a mosaic; what matters, however, are not so much the individual bits, but the successive patterns into which you arrange them, then break them up and rearrange them." (Arthur Koestler, "The Act of Creation", 1964)

"The notion of a fuzzy set provides a convenient point of departure for the construction of a conceptual framework which parallels in many respects the framework used in the case of ordinary sets, but is more general than the latter and, potentially, may prove to have a much wider scope of applicability, particularly in the fields of pattern classification and information processing. Essentially, such a framework provides a natural way of dealing with problems in which the source of imprecision is the absence of sharply denned criteria of class membership rather than the presence of random variables." (Lotfi A Zadeh, "Fuzzy Sets", 1965)

"As perceivers we select from all the stimuli falling on our senses only those which interest us, and our interests are governed by a pattern-making tendency, sometimes called a schema. In a chaos of shifting impressions each of us constructs a stable world in which objects have recognisable shapes, are located in depth and have permanence." (Mary Douglas, "Purity and Danger", 1966)

"System theory is basically concerned with problems of relationships, of structure, and of interdependence rather than with the constant attributes of objects. In general approach it resembles field theory except that its dynamics deal with temporal as well as spatial patterns. Older formulations of system constructs dealt with the closed systems of the physical sciences, in which relatively self-contained structures could be treated successfully as if they were independent of external forces. But living systems, whether biological organisms or social organizations, are acutely dependent on their external environment and so must be conceived of as open systems." (Daniel Katz, "The Social Psychology of Organizations", 1966)

"[…] there is perhaps a difference between the ideas which are associated in the sense of their patterns being tired to the original one and available in connexion with it, and being actually associated or aroused. Our mental modelling of the outer world may imitate it and its sequences from moment to moment, but only that which is fairly frequent, or fits into other patterns, will remain for long, and of that only a portion will arise in response to other ideas. " (Kenneth J W Craik, "The Nature of Psychology", 1966)

"It [knowledge] is clearly related to information, which we can now measure; and an economist especially is tempted to regard knowledge as a kind of capital structure, corresponding to information as an income flow. Knowledge, that is to say, is some kind of improbable structure or stock made up essentially of patterns - that is, improbable arrangements, and the more improbable the arrangements, we might suppose, the more knowledge there is." (Kenneth Boulding, "Beyond Economics: Essays on Society", 1968)

"The central task of a natural science is to make the wonderful commonplace: to show that complexity, correctly viewed, is only a mask for simplicity; to find pattern hidden in apparent chaos. […] This is the task of natural science: to show that the wonderful is not incomprehensible, to show how it can be comprehended - but not to destroy wonder. For when we have explained the wonderful, unmasked the hidden pattern, a new wonder arises at how complexity was woven out of simplicity. The aesthetics of natural science and mathematics is at one with the aesthetics of music and painting - both inhere in the discovery of a partially concealed pattern." (Herbert A Simon, "The Sciences of the Artificial", 1968)

"Faced with information overload, we have no alternative but pattern-recognition."(Marshall McLuhan, "Counterblast", 1969) 

"The central task of a natural science is to make the wonderful commonplace: to show that complexity, correctly viewed, is only a mask for simplicity; to find pattern hidden in apparent chaos." (Herbert A Simon, "The Sciences of the Artificial", 1969)

"Visual thinking calls, more broadly, for the ability to see visual shapes as images of the patterns of forces that underlie our existence - the functioning of minds, of bodies or machines, the structure of societies or ideas." (Rudolf Arnheim, "Visual Thinking", 1969)

06 June 2021

String Theory III

"String theory promises to take a further step beyond that taken by Einstein's picture of force subsumed within curved space and time geometry. Indeed, string theory contains Einstein's theory of gravitation within itself. Loops of string behave like the exchange particles of the gravitational forces, or 'gravitons' as they are called in the point-particle picture of things. But it has been argued that it must be possible to extract even the geometry of space and time from the characteristics of the strings and their topological properties. At present, it is not known how to do this and we merely content ourselves with understanding how strings behave when they sit in a background universe of space and time." (John D. Barrow, "Theories of Everything: The Quest for Ultimate Explanation", 1991)

"A five-dimensional space is not a strange deformation of ordinary space, one that only mathematicians can see, but a place where numbers are collected in ordered sets. When string theorists talk of the eleven dimensions required by their latest theory, they are not encouraging one another to search for eight otherwise familiar spatial dimensions that have somehow become lost. They are saying only that for their purposes, eleven numbers are needed to specify points. Where they are is no one’s business." (David Berlinski, "Infinite Ascent: A short history of mathematics", 2005) 

"One could also question whether we are looking for a single overarching mathematical structure or a combination of different complementary points of view. Does a fundamental theory of Nature have a global definition, or do we have to work with a series of local definitions, like the charts and maps of a manifold, that describe physics in various 'duality frames'. At present string theory is very much formulated in the last kind of way." (Robbert Dijkgraaf, "Mathematical Structures", 2005)

"Quantum physics, in particular particle and string theory, has proven to be a remarkable fruitful source of inspiration for new topological invariants of knots and manifolds. With hindsight this should perhaps not come as a complete surprise. Roughly one can say that quantum theory takes a geometric object (a manifold, a knot, a map) and associates to it a (complex) number, that represents the probability amplitude for a certain physical process represented by the object." (Robbert Dijkgraaf, "Mathematical Structures", 2005)

"String theory was not invented to describe gravity; instead it originated in an attempt to describe the strong interactions, wherein mesons can be thought of as open strings with quarks at their ends. The fact that the theory automatically described closed strings as well, and that closed strings invariably produced gravitons and gravity, and that the resulting quantum theory of gravity was finite and consistent is one of the most appealing aspects of the theory." (David Gross, "Einstein and the Search for Unification", 2005)

"Like many a maturing beauty, string theory has gotten rich in relationships, complicated, hard to handle and widely influential. Its tentacles have reached so deeply into so many areas in theoretical physics, it’s become almost unrecognizable, even to string theorists." (K C Cole, "The Strange Second Life of String Theory", Quanta Magazine", 2016) [source

"String theory today looks almost fractal. The more closely people explore any one corner, the more structure they find. Some dig deep into particular crevices; others zoom out to try to make sense of grander patterns. The upshot is that string theory today includes much that no longer seems stringy. Those tiny loops of string whose harmonics were thought to breathe form into every particle and force known to nature (including elusive gravity) hardly even appear anymore on chalkboards at conferences." (K C Cole, "The Strange Second Life of String Theory", Quanta Magazine", 2016) [source]

03 June 2021

On Differential Equations IV

"Problems relative to the uniform propagation, or to the varied movements of heat in the interior of solids, are reduced […] to problems of pure analysis, and the progress of this part of physics will depend in consequence upon the advance which may be made in the art of analysis. The differential equations […] contain the chief results of the theory; they express, in the most general and concise manner, the necessary relations of numerical analysis to a very extensive class of phenomena; and they connect forever with mathematical science one of the most important branches of natural  philosophy." (Jean-Baptiste-Joseph Fourier, "The Analytical Theory of Heat", 1822)

"It is well known that the central problem of the whole of modern mathematics is the study of the transcendental functions defined by differential equations." (Felix Klein, "Lectures on Mathematics", 1911)

"Men have fallen in love with statues and pictures. I find it easier to imagine a man falling in love with a differential equation, and I am inclined to think that some mathematicians have done so. Even in a nonmathematician like myself, some differential equations evoke fairly violent physical sensations to those described by Sappho and Catallus when viewing their mistresses. Personally, I obtain an even greater 'kick' from finite difference equations, which are perhaps more like those which an up-to-date materialist would use to describe human behavior." (John B S Haldane, "The Inequality of Man and Other Essays", 1932)

"The method of successive approximations is often applied to proving existence of solutions to various classes of functional equations; moreover, the proof of convergence of these approximations leans on the fact that the equation under study may be majorised by another equation of a simple kind. Similar proofs may be encountered in the theory of infinitely many simultaneous linear equations and in the theory of integral and differential equations. Consideration of semiordered spaces and operations between them enables us to easily develop a complete theory of such functional equations in abstract form." (Leonid V Kantorovich, "On one class of functional equations", 1936)

"The emphasis on mathematical methods seems to be shifted more towards combinatorics and set theory - and away from the algorithm of differential equations which dominates mathematical physics." (John von Neumann & Oskar Morgenstern, "Theory of Games and Economic Behavior", 1944)

"The study of changes in the qualitative structure of the flow of a differential equation as parameters are varied is called bifurcation theory. At a given parameter value, a differential equation is said to have stable orbit structure if the qualitative structure of the flow does not change for sufficiently small variations of the parameter. A parameter value for which the flow does not have stable orbit structure is called a bifurcation value, and the equation is said to be at a bifurcation point." (Jack K Hale & Hüseyin Kocak, "Dynamics and Bifurcations", 1991)

"Dynamical systems that vary in discrete steps […] are technically known as mappings. The mathematical tool for handling a mapping is the difference equation. A system of difference equations amounts to a set of formulas that together express the values of all of the variables at the next step in terms of the values at the current step. […] For mappings, the difference equations directly express future states in terms of present ones, and obtaining chronological sequences of points poses no problems. For flows, the differential equations must first be solved. General solutions of equations whose particular solutions are chaotic cannot ordinarily be found, and approximations to the latter are usually determined by numerical methods." (Edward N Lorenz, "The Essence of Chaos", 1993)

"Faced with the overwhelming complexity of the real world, time pressure, and limited cognitive capabilities, we are forced to fall back on rote procedures, habits, rules of thumb, and simple mental models to make decisions. Though we sometimes strive to make the best decisions we can, bounded rationality means we often systematically fall short, limiting our ability to learn from experience." (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)

"Following the traditional classification in the field of control systems, a system that describes the input-output behavior in a way similar to a mathematical mapping without involving a differential operator or equation is called a static system. In contrast, a system described by a differential operator or equation is called a dynamic system." (Guanrong Chen & Trung Tat Pham, "Introduction to Fuzzy Sets, Fuzzy Logic, and Fuzzy Control Systems", 2001)

"The standard view among most theoretical physicists, engineers and economists is that mathematical models are syntactic (linguistic) items, identified with particular systems of equations or relational statements. From this perspective, the process of solving a designated system of (algebraic, difference, differential, stochastic, etc.) equations of the target system, and interpreting the particular solutions directly in the context of predictions and explanations are primary, while the mathematical structures of associated state and orbit spaces, and quantity algebras – although conceptually important, are secondary." (Zoltan Domotor, "Mathematical Models in Philosophy of Science" [Mathematics of Complexity and Dynamical Systems, 2012])

Previous Post <<||>> Next Post

On Tensors I

"The conception of tensors is possible owing to the circumstance that the transition from one co-ordinate system to another expresses itself as a linear transformation in the differentials. One here uses the exceedingly fruitful mathematical device of making a problem 'linear' by reverting to infinitely small quantities." (Hermann Weyl, "Space - Time - Matter", 1922)

"The field equation may [...] be given a geometrical foundation, at least to a first approximation, by replacing it with the requirement that the mean curvature of the space vanish at any point at which no heat is being applied to the medium - in complete analogy with […] the general theory of relativity by which classical field equations are replaced by the requirement that the Ricci contracted curvature tensor vanish." (Howard P Robertson, "Geometry as a Branch of Physics", 1949)

"The physicist who states a law of nature with the aid of a mathematical formula is abstracting a real feature of a real material world, even if he has to speak of numbers, vectors, tensors, state-functions, or whatever to make the abstraction." (Hilary Putnam, "Mathematics, matter, and method", 1975)

"Maxwell's equations […] originally consisted of eight equations. These equations are not 'beautiful'. They do not possess much symmetry. In their original form, they are ugly. […] However, when rewritten using time as the fourth dimension, this rather awkward set of eight equations collapses into a single tensor equation. This is what a physicist calls 'beauty', because both criteria are now satisfied.  (Michio Kaku, "Hyperspace", 1995)

 "(…) the bottom line is that if you believe in an external reality independent of humans, then you must also believe that our physical reality is a mathematical structure. Nothing else has a baggage-free description. In other words, we all live in a gigantic mathematical object - one that’s more elaborate than a dodecahedron, and probably also more complex than objects with intimidating names such as Calabi-Yau manifolds, tensor bundles and Hilbert spaces, which appear in today’s most advanced physics theories. Everything in our world is purely mathematical - including you." (Max Tegmark, "Our Mathematical Universe: My Quest for the Ultimate Nature of Reality", 2014)

"Curvature is a central concept in differential geometry. There are conceptually different ways to define it, associated with different mathematical objects, the metric tensor, and the affine connection. In our case, however, the affine connection may be derived from the metric. The 'affine curvature' is associated with the notion of parallel transport of vectors as introduced by Levi-Civita. This is most simply illustrated in the case of a two- dimensional surface embedded in three- dimensional space. Let us take a closed curve on that surface and attach to a point on that curve a vector tangent to the surface. Let us now transport that vector along the curve, keeping it parallel to itself. When it comes back to its original position, it will coincide with the original vector if the surface is flat or deviate from it by a certain angle if the surface is curved. If one takes a small curve around a point on the surface, then the ratio of the angle between the original and the final vector and the area enclosed by the curve is the curvature at that point. The curvature at a point on a two-dimensional surface is a pure number." (Hanoch Gutfreund, "The Road to Relativity", 2015) 

"In geometric and physical applications, it always turns out that a quantity is characterized not only by its tensor order, but also by symmetry." (Hermann Weyl, 1925)

"Ultra-modern physicists [are tempted to believe] that Nature in all her infinite variety needs nothing but mathematical clothing [and are] strangely reluctant to contemplate Nature unclad. Clothing she must have. At the least she must wear a matrix, with here and there a tensor to hold the queer garment together." (Sydney Evershed)

Related Posts Plugin for WordPress, Blogger...

On Leonhard Euler

"I have been able to solve a few problems of mathematical physics on which the greatest mathematicians since Euler have struggled in va...