Showing posts with label truth. Show all posts
Showing posts with label truth. Show all posts

29 June 2025

On Idealization: Truth

"There is a logic of language and a logic of mathematics. The former is supple and lifelike, it follows our experience. The latter is abstract and rigid, more ideal. The latter is perfectly necessary, perfectly reliable: the former is only sometimes reliable and hardly ever systematic. But the logic of mathematics achieves necessity at the expense of living truth, it is less real than the other, although more certain. It achieves certainty by a flight from the concrete into abstraction." (Thomas Merton, "The Secular Journal of Thomas Merton", 1959)

"The idea of approximation to the truth is, in my view, one of the most important ideas in the theory of science. [...] The idea of approximation to the truth - like the idea of truth as are gulative principle - presupposes a realistic view of the world. It does not presuppose that reality is as our scientific theories describe it; but it does presuppose that there is a reality and that we and our theories - which are ideas we have ourselves created and are therefore always idealizations - can draw closer and closer to an adequate description of reality, if we employ the four-stage method of trial and error." (Karl R Popper, "The Logic and Evolution of Scientific Theory", [in "All Life is Problem Solving", 1999] 1972)

"The introduction and gradual acceptance of concepts that have no immediate counterparts in the real world certainly forced the recognition that mathematics is a human, somewhat arbitrary creation, rather than an idealization of the realities in nature, derived solely from nature. But accompanying this recognition and indeed propelling its acceptance was a more profound discovery - mathematics is not a body of truths about nature." (Morris Kline, "Mathematical Thought from Ancient to Modern Times" Vol. III, 1972)

"The assumption of rationality has a favored position in economics. It is accorded all the methodological privileges of a self-evident truth, a reasonable idealization, a tautology, and a null hypothesis. Each of these interpretations either puts the hypothesis of rational action beyond question or places the burden of proof squarely on any alternative analysis of belief and choice. The advantage of the rational model is compounded because no other theory of judgment and decision can ever match it in scope, power, and simplicity." (Amos Tversky & Daniel Kahneman, "Rational Choice and the Framing of Decisions", The Journal of Business Vol. 59 (4), 1986)

"The reason why a 'crude', experimental approach is not adequate for determining mathematical truth lies in the nature of what mathematics is and is intended to be. Though its roots lie in the physical world, mathematics is a precise and idealized discipline. The 'points', 'lines', 'planes', and other ideal constructs of mathematics have no exact counterpart in reality. What the mathematician does is to take a totally abstract, idealized view of the world, and reason with his abstractions in an entirely precise and rigorous fashion." (Keith Devlin, "Mathematics: The New Golden Age", 1998)

29 October 2023

On Truth: Scientific Truth (1900-)

"The man who discovers a new scientific truth has previously had to smash to atoms almost everything he had learnt, and arrives at the new truth with hands blood stained from the slaughter of a thousand platitudes." (Jose Ortega y Gasset, "The Revolt of the Masses", 1930)

"The belief in science has replaced in large measure, the belief in God. Even where religion was regarded as compatible with science, it was modified by the mentality of the believer in scientific truth." (Hans Reichenbach, "The Rise of Scientific Philosophy", 1951)

"Uncertainty is introduced, however, by the impossibility of making generalizations, most of the time, which happens to all members of a class. Even scientific truth is a matter of probability and the degree of probability stops somewhere short of certainty." (Wayne C Minnick,"The Art of Persuasion", 1957)

"The only solid piece of scientific truth about which I feel totally confident is that we are profoundly ignorant about nature." (Lewis Thomas, "The Medusa and the Snail: More Notes of a Biology Watcher", 1979)

"Modern philosophy of science has gone far beyond the naive belief that science reveals the truth. Even if it could, we would have no means of proving it. Certainty seems unattainable. All scientific statements remain open to doubt. […] We cannot reach the absolute at least as far as science is concerned; we have to content ourselves with the relative." (Rolf Sattler, "Biophilosophy", 1986)

"Science doesn't purvey absolute truth. Science is a mechanism. It's a way of trying to improve your knowledge of nature. It's a system for testing your thoughts against the universe and seeing whether they match. And this works, not just for the ordinary aspects of science, but for all of life. I should think people would want to know that what they know is truly what the universe is like, or at least as close as they can get to it." (Isaac Asimov, [Interview by Bill Moyers] 1988)

"The principle of science, the definition, almost, is the following: The test of all knowledge is experiment. Experiment is the sole judge of scientific ‘truth’." (Richard Feynman, "Six Easy Pieces", 1994)

"What is the basis of this interest in beauty? Is it the same in both mathematics and science? Is it rational, in either case, to expect or demand that the products of the discipline satisfy such a criterion? Is there an underlying assumption that the proper business of mathematics and science is to discover what can be discovered about reality and that truth - mathematical and physical - when seen as clearly as possible, must be beautiful? If the demand for beauty stems from some such assumption, is the assumption itself an article of blind faith? If such an assumption is not its basis, what is?" (Raymond S Nickerson, "Mathematical Reasoning:  Patterns, Problems, Conjectures, and Proofs", 2010)

On Truth: Scientific Truth (-1899)

"The foundations of chemical philosophy are observation, experiment, and analogy. By observation, facts are distinctly and minutely impressed on the mind. By analogy, similar facts are connected. By experiment, new facts are discovered; and, in the progression of knowledge, observation, guided by analogy, lends to experiment, and analogy confirmed by experiment, becomes scientific truth." (Sir Humphry Davy, "Elements of Chemical Philosophy" Vol. 4, 1812)

"Scientific truth is marvellous, but moral truth is divine; and whoever breathes its air and walks by its light has found the lost paradise." (Horace Mann, "A Few Thoughts for a Young Man", Monthly Literary Miscellany, 1851)

"A mere inference or theory must give way to a truth revealed; but a scientific truth must be maintained, however contradictory it may appear to the most cherished doctrines of religion." (David Brewster, "More Worlds Than One: The Creed of the Philosopher and the Hope of the Christian", 1856)

"Science has fulfilled her function when she has ascertained and enunciated truth."  (Thomas H Huxley, "Man's Place in Nature.", 1863)

"[...] the time has come when scientific truth must cease to be the property of the few, when it must be woven into the common life of the world; for we have reached the point where the results of science touch the very problem of existence, and all men listen for the solving of that mystery." (Jean L R Agassiz, "Methods of Study in Natural History", 1863)

"[...] Scientific truth should be presented in different forms, and should be regarded as equally scientific whether it appears in the robust form and the vivid colouring of a physical illustration, or in the tenuity and paleness of a symbolic expression." (James C Maxwell, [address] 1870)

"It sounds paradoxical to say the attainment of scientific truth has been effected, to a great extent, by the help of scientific errors." (Thomas H Huxley, "The Progress of Science", 1887)

"The scientific spirit is of more value than its products, and irrationally held truths may be more harmful than reasoned errors." (Thomas H Huxley, "Darwiniana", 1893–94)

"By observation, facts are distinctly and minutely impressed in the mind; by analogy, similar facts are connected ; by experiment, new facts are discovered ; and, in the progression of knowledge, observation, guided by analogy, leads to experiment, and analogy, confirmed by experiment, becomes scientific truth." (Sir Humphry Davy)

On Truth: Universal Truth

"So poetry is something more philosophical and more worthy of serious attention than history, for while poetry is concerned with universal truth, history treats of particular facts [...]" (Aristotle, "Poetics", cca. 350 BC)

"The most useful truths are always universal, and unconnected with accidents and customs." (Samuel Johnson, The Idler, 1767)

"When an induction, based on observations, is made, it is not intended that it shall be accepted as a universal truth, but it is advanced as a hypothesis for further study. Additional observations are then made and the results compared with the results expected from the hypothesis. If there is more deviation between the experimental results and the computed results than can be expected from the inaccuracies of observation and measurement, the scientist discards the' hypothesis and tries to formulate another." (Mayme I Logsdon, "A Mathematician Explains", 1935)

"Scientific truth is universal, because it is only discovered by the human brain and not made by it, as art is." (Konrad Lorenz, "On Aggression", 1963)

"While the equations represent the discernment of eternal and universal truths, however, the manner in which they are written is strictly, provincially human. That is what makes them so much like poems, wonderfully artful attempts to make infinite realities comprehensible to finite beings." (Michael Guillen, "Five Equations That Changed the World", 1995)

"Every truth - if it really is truth - presents itself as universal, even if it is not the whole truth. If something is true, then it must be true for all people and at all times." (Pope John Paul II, "Encyclical Fides et Ratio", 1998)

"The passion and beauty and joy of science is that we humans have invented a process to understand the universe in a way that is true for everyone. We are finding universal truths." (Bill Nye, 2000)

On Truth: Absolute Truth I

"The existence of infinite sets, at least with non-actual members, is something which I now regard as sufficiently proved and defended; as also, that the set of all absolute truths is an infinite set." (Bernard Bolzano, "Paradoxien des Unedlichen" ["Paradoxes of the Infinite"], 1851)

"The great truths with which it [mathematics] deals, are clothed with austere grandeur, far above all purposes of immediate convenience or profit. It is in them that our limited understandings approach nearest to the conception of that   absolute and infinite, towards which in most other things they aspire in vain. In the pure mathematics we contemplate absolute truths, which existed in the divine mind before the morning stars sang together, and which will continue to exist there, when the last of their radiant host shall have fallen from heaven." (Edward Everett, "Orations and Speeches" Vol. 8, 1870)

"Words are but symbols for the relations of things to one another and to us; nowhere do they touch upon absolute truth." (Friedrich Nietzsche, "Philosophy in the Tragic Age of the Greeks", 1873)

"In abstract mathematical theorems the approximation to absolute truth is perfect, because we can treat of infinitesimals. In physical science, on the contrary, we treat of the least quantities which are perceptible." (William S Jevons, "The Principles of Science: A Treatise on Logic and Scientific Method", 1874)

"It may be impossible for human intelligence to comprehend absolute truth, but it is possible to observe Nature with an unbiased mind and to bear truthful testimony of things seen." (Sir Richard A Gregory, "Discovery, Or, The Spirit and Service of Science", 1916)

"The axioms and provable theorems (i.e. the formulas that arise in this alternating game [namely formal deduction and the adjunction of new axioms]) are images of the thoughts that make up the usual procedure of traditional mathematics; but they are not themselves the truths in the absolute sense. Rather, the absolute truths are the insights (Einsichten) that my proof theory furnishes into the provability and the consistency of these formal systems." (David Hilbert; "Die logischen Grundlagen der Mathematik." Mathematische Annalen 88 (1), 1923)

 "Science makes no pretension to eternal truth or absolute truth; some of its rivals do." (Eric T Bell, "Mathematics: Queen and Servant of Science", 1951)

"The picture of scientific method drafted by modern philosophy is very different from traditional conceptions. Gone is the ideal of a universe whose course follows strict rules, a predetermined cosmos that unwinds itself like an unwinding clock. Gone is the ideal of the scientist who knows the absolute truth. The happenings of nature are like rolling dice rather than like revolving stars; they are controlled by probability laws, not by causality, and the scientist resembles a gambler more than a prophet. He can tell you only his best posits - he never knows beforehand whether they will come true. He is a better gambler, though, than the man at the green table, because his statistical methods are superior. And his goal is staked higher - the goal of foretelling the rolling dice of the cosmos. If he is asked why he follows his methods, with what title he makes his predictions, he cannot answer that he has an irrefutable knowledge of the future; he can only lay his best bets. But he can prove that they are best bets, that making them is the best he can do - and if a man does his best, what else can you ask of him?" (Hans Reichenbach, "The Rise of Scientific Philosophy", 1951)

On Truth: Absolute Truth II

"We can never achieve absolute truth but we can live hopefully by a system of calculated probabilities. The law of probability gives to natural and human sciences - to human experience as a whole - the unity of life we seek." (Agnes E Meyer, "Education for a New Morality", 1957)

"It will never be possible by pure reason to arrive at some absolute truth." (Werner K Heisenberg, "Physics and Philosophy: The revolution in modern science", 1958)

"Mathematics is neither a description of nature nor an explanation of its operation; it is not concerned with physical motion or with the metaphysical generation of quantities. It is merely the symbolic logic of possible relations, and as such is concerned with neither approximate nor absolute truth, but only with hypothetical truth. That is, mathematics determines what conclusions will follow logically from given premises. The conjunction of mathematics and philosophy, or of mathematics and science is frequently of great service in suggesting new problems and points of view." (Carl B Boyer, "The History of the Calculus and Its Conceptual Development", 1959)

"All views are only probable, and a doctrine of probability which is not bound to a truth dissolves into thin air. In order to describe the probable, you must have a firm hold on the true. Therefore, before there can be any truth whatsoever, there must be absolute truth." (Jean-Paul Sartre, "The Philosophy of Existentialism", 1965)

"The laws of nature 'discovered' by science are merely mathematical or mechanical models that describe how nature behaves, not why, nor what nature 'actually' is. Science strives to find representations that accurately describe nature, not absolute truths. This fact distinguishes science from religion." (George O Abell, "Exploration of the Universe", 1969)

"Science, since people must do it, is a socially embedded activity. It progresses by hunch, vision, and intuition. Much of its change through time does not record a closer approach to absolute truth, but the alteration of cultural contexts that influence it so strongly. Facts are not pure and unsullied bits of information; culture also influences what we see and how we see it. Theories, moreover, are not inexorable inductions from facts. The most creative theories are often imaginative visions imposed upon facts; the source of imagination is also strongly cultural." (Stephen J Gould, "The Mismeasure of Man", 1980)

"Science does not promise absolute truth, nor does it consider that such a thing necessarily exists. Science does not even promise that everything in the Universe is amenable to the scientific process."(Isaac Asimov, "'X' Stands for Unknown", 1984)

"Science doesn't purvey absolute truth. Science is a mechanism. It's a way of trying to improve your knowledge of nature. It's a system for testing your thoughts against the universe and seeing whether they match. And this works, not just for the ordinary aspects of science, but for all of life. I should think people would want to know that what they know is truly what the universe is like, or at least as close as they can get to it." (Isaac Asimov, [Interview by Bill Moyers] 1988)

"The absolutist view of mathematical knowledge is that it consists of certain and unchallengeable truths. According to this view, mathematical knowledge is made up of absolute truths, and represents the unique realm of certain knowledge, apart from logic and statements true by virtue of the meanings of terms […]" (Paul Ernest, "The Philosophy of Mathematics Education", 1991)

"Mathematicians are the ultimate scientists, discovering absolute truths not just about this physical universe but about any possible universe." (George Lakoff & Rafael E Nuñez, "Where Mathematics Come From: How the Embodied Mind Brings Mathematics into Being, 2000)

"Mathematics is not placid, static and eternal. […] Most mathematicians are happy to make use of those axioms in their proofs, although others do not, exploring instead so-called intuitionist logic or constructivist mathematics. Mathematics is not a single monolithic structure of absolute truth!" (Gregory J Chaitin, "A century of controversy over the foundations of mathematics", 2000)

"The danger arises when a culture takes its own story as the absolute truth, and seeks to impose this truth on others as the yardstick of all knowledge and belief." (F David Peat, "From Certainty to Uncertainty", 2002)

"'There is an old debate', Erdos liked to say, 'about whether you create mathematics or just discover it. In other words, are the truths already there, even if we don't yet know them?' Erdos had a clear answer to this question: Mathematical truths are there among the list of absolute truths, and we just rediscover them. Random graph theory, so elegant and simple, seemed to him to belong to the eternal truths. Yet today we know that random networks played little role in assembling our universe. Instead, nature resorted to a few fundamental laws, which will be revealed in the coming chapters. Erdos himself created mathematical truths and an alternative view of our world by developing random graph theory." (Albert-László Barabási, "Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life", 2002)

On Truth: Mathematical Truth (-1899)

"And thus many are ignorant of mathematical truths, not out of any imperfection of their faculties, or uncertainty in the things themselves, but for want of application in acquiring, examining, and by due ways comparing those ideas." (John Locke, "An Essay Concerning Human Understanding", 1689)

"Mathematics make the mind attentive to the objects which it considers. This they do by entertaining it with a great variety of truths, which are delightful and evident, but not obvious. Truth is the same thing to the understanding as music to the ear and beauty to the eye. The pursuit of it does really as much gratify a natural faculty implanted in us by our wise Creator as the pleasing of our senses: only in the former case, as the object and faculty are more spiritual, the delight is more pure, free from regret, turpitude, lassitude, and intemperance that commonly attend sensual pleasures." (John Arbuthnot, "An Essay on the Usefulness of Mathematical Learning", 1701)

"The mathematics are the friends to religion, inasmuch as they charm the passions, restrain the impetuosity of the imagination, and purge the mind from error and prejudice. Vice is error, confusion and false reasoning; and all truth is more or less opposite to it. Besides, mathematical truth may serve for a pleasant entertainment for those hours which young men are apt to throw away upon their vices; the delightfulness of them being such as to make solitude not only easy but desirable." (John Arbuthnot, "An Essay on the Usefulness of Mathematical Learning", 1701)

"He that gives a portion of his time and talent to the investigation of mathematical truth will come to all other questions with a decided advantage over his opponents."  (Charles C Colton, "Lacon", 1820)

"Each mathematician for himself, and not anyone for any other, not even all for one, must tread that more than royal road which leads to the palace and sanctuary of mathematical truth.” (Sir William R Hamilton, “Report of the Fifth Meeting of the British Association for the Advancement of Science”, [Address] 1835)

"The peculiar character of mathematical truth is that it is necessarily and inevitably true; and one of the most important lessons which we learn from our mathematical studies is a knowledge that there are such truths." (William Whewell, "Principles of English University Education", 1838)

"What is exact about mathematics but exactness? And is not this a consequence of the inner sense of truth?" (Johann Wolfgang von Goethe, "Sprüche in Prosa", 1840)

"Every theorem in geometry is a law of external nature, and might have been ascertained by generalizing from observation and experiment, which in this case resolve themselves into comparisons and measurements. But it was found practicable, and being practicable was desirable, to deduce these truths by ratiocination from a small number of general laws of nature, the certainty and universality of which was obvious to the most careless observer, and which compose the first principles and ultimate premises of the science." (John S Mill, "A System of Logic, Ratiocinative and Inductive", 1843)

"He that gives a portion of his time and talent to the investigation of mathematical truth will come to all other questions with a decided advantage over his opponents."  (Colton, Charles Caleb, "Lacon; or Many Things in a Few Words", 1849)

"Geometry in every proposition speaks a language which experience never dares to utter; and indeed of which she but half comprehends the meaning. Experience sees that the assertions are true, but she sees not how profound and absolute is their truth. She unhesitatingly assents to the laws which geometry delivers, but she does not pretend to see the origin of their obligation. She is always ready to acknowledge the sway of pure scientific principles as a matter of fact, but she does not dream of offering her opinion on their authority as a matter of right; still less can she justly claim to herself the source of that authority." (William Whewell, "The Philosophy of the Inductive Sciences", 1858)

"The peculiarity of the evidence of mathematical truths is that all the argument is on one side." (John S Mill, "On Liberty", 1859)

"It always seems to me absurd to speak of a complete proof, or of a theorem being rigorously demonstrated. An incomplete proof is no proof, and a mathematical truth not rigorously demonstrated is not demonstrated at all." (James J Sylvester, "On certain inequalities related to prime numbers", Nature Vol. 38, 1888)

"Mathematics connect themselves on the one side with common life and physical science; on the other side with philosophy in regard to our notions of space and time, and in the questions which have arisen as to the universality and necessity of the truths of mathematics and the foundation of our knowledge of them." (Arthur Cayley, 1888)

"Geometry, then, is the application of strict logic to those properties of space and figure which are self-evident, and which therefore cannot be disputed. But the rigor of this science is carried one step further; for no property, however evident it may be, is allowed to pass without demonstration, if that can be given. The question is therefore to demonstrate all geometrical truths with the smallest possible number of assumptions." (Augustus de Morgan, "On the Study and Difficulties of Mathematics", 1898)

On Truth: Mathematical Truth (2000-)

"Mathematical truth is like any other truth. A statement is true if our embodied understanding of the statement accords with our embodied understanding of the subject matter and the situation at hand. Truth, including mathematical truth, is thus dependent on embodied human cognition." (George Lakoff & Rafael E Nuñez, "Where Mathematics Come From: How the Embodied Mind Brings Mathematics into Being, 2000)

"Mathematics is an objective feature of the universe; mathematical objects are real; mathematical truth is universal, absolute, and certain." (George Lakoff & Rafael E Nuñez, "Where Mathematics Come From: How the Embodied Mind Brings Mathematics into Being, 2000)

"Mathematics is not placid, static and eternal. […] Most mathematicians are happy to make use of those axioms in their proofs, although others do not, exploring instead so-called intuitionist logic or constructivist mathematics. Mathematics is not a single monolithic structure of absolute truth!" (Gregory J Chaitin, "A century of controversy over the foundations of mathematics", 2000)

"That a proof must be convincing is part of the anthropology of mathematics, providing the key to understanding mathematics as a human activity. We invoke the logic of mathematics when we demand that every informal proof be capable of being formalized within the confines of a definite formal system. Finally, the epistemology of mathematics comes into play with the requirement that a proof be surveyable. We can't really say that we have created a genuine piece of knowledge unless it can be examined and verified by others; there are no private truths in mathematics.(John L Casti, "Mathematical Mountaintops: The Five Most Famous Problems of All Time", 2001)

"Traditionally, mathematical truths have been considered to be a priori truths, either in the sense that they are truths that would be true in any possible universe, or in the sense that they are truths whose validity is independent of our sensory impressions." (John L Casti, "Mathematical Mountaintops: The Five Most Famous Problems of All Time", 2001)

"While mathematical truth is the aim of inquiry, some falsehoods seem to realize this aim better than others; some truths better realize the aim than other truths and perhaps even some falsehoods realize the aim better than some truths do. The dichotomy of the class of propositions into truths and falsehoods should thus be supplemented with a more fine-grained ordering - one which classifies propositions according to their closeness to the truth, their degree of truth-likeness or verisimilitude. The problem of truth-likeness is to give an adequate account of the concept and to explore its logical properties and its applications to epistemology and methodology." (Graham Oddie, "Truth-likeness", Stanford Encyclopedia of Philosophy, 2001)

"In essence, mathematicians wanted to prove two things: 1.Mathematics is consistent: Mathematics contains no internal contradictions. There are no slips of reason or ambiguities. No matter from what direction we approach the edifice of mathematics, it will always display the same rigor and truth. 2.Mathematics is complete: No mathematical truths are left hanging. Nothing needs adding to the system. Mathematicians can prove every theorem with total rigor so that nothing is excluded from the overall system." (F David Peat, "From Certainty to Uncertainty", 2002)

"'There is an old debate', Erdos liked to say, 'about whether you create mathematics or just discover it. In other words, are the truths already there, even if we don't yet know them?' Erdos had a clear answer to this question: Mathematical truths are there among the list of absolute truths, and we just rediscover them. Random graph theory, so elegant and simple, seemed to him to belong to the eternal truths. Yet today we know that random networks played little role in assembling our universe. Instead, nature resorted to a few fundamental laws, which will be revealed in the coming chapters. Erdos himself created mathematical truths and an alternative view of our world by developing random graph theory." (Albert-László Barabási, "Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life", 2002)

"Where we find certainty and truth in mathematics we also find beauty. Great mathematics is characterized by its aesthetics. Mathematicians delight in the elegance, economy of means, and logical inevitability of proof. It is as if the great mathematical truths can be no other way. This light of logic is also reflected back to us in the underlying structures of the physical world through the mathematics of theoretical physics." (F David Peat, "From Certainty to Uncertainty", 2002)

"Mathematical truth is not totally objective. If a mathematical statement is false, there will be no proofs, but if it is true, there will be an endless variety of proofs, not just one! Proofs are not impersonal, they express the personality of their creator/discoverer just as much as literary efforts do. If something important is true, there will be many reasons that it is true, many proofs of that fact. [...] each proof will emphasize different aspects of the problem, each proof will lead in a different direction. Each one will have different corollaries, different generalizations. [...] the world of mathematical truth has infinite complexity […]" (Gregory Chaitin, "Meta Math: The Quest for Omega", 2005)

"We do not discover mathematical truths; we remember them from our passages through this world outside our own." (Ivar Ekeland, "The Best of All Possible Worlds", 2006)

"Mathematics is about truth: discovering the truth, knowing the truth, and communicating the truth to others." (William Byers, "How Mathematicians Think", 2007)

"There is an absolute nature to truth in mathematics, which is unmatched in any other branch of knowledge. A theorem, once proven, requires independent checking but not repetition or independent derivation to be accepted as correct. […] Truth in mathematics is totally dependent on pure thought, with no component of data to be added. This is unique. Associated with truth in mathematics is an absolute certainty in its validity" (James Glimm, "Reflections and Prospectives", 2009)

"Truth in mathematics is totally dependent on pure thought, with no component of data to be added. This is unique. Associated with truth in mathematics is an absolute certainty in its validity. Why does this matter, and why does it go beyond a cultural oddity of our profession? The answer is that mathematics is deeply embedded in the reasoning used within many branches of knowledge. That reasoning often involves conjectures, assumptions, intuition. But whatever aspect has been reduced to mathematics has an absolute validity. As in other subjects search for truth, the mathematical components embedded in their search are like the boulders in the stream, providing a solid footing on which to cross from one side to the other." (James Glimm, "Reflections and Prospectives", 2009)

"What is the basis of this interest in beauty? Is it the same in both mathematics and science? Is it rational, in either case, to expect or demand that the products of the discipline satisfy such a criterion? Is there an underlying assumption that the proper business of mathematics and science is to discover what can be discovered about reality and that truth - mathematical and physical - when seen as clearly as possible, must be beautiful? If the demand for beauty stems from some such assumption, is the assumption itself an article of blind faith? If such an assumption is not its basis, what is?" (Raymond S Nickerson, "Mathematical Reasoning:  Patterns, Problems, Conjectures, and Proofs", 2010)

"Despite its deductive nature, mathematics yields its truths much like any other intellectual pursuit: someone asks a question or poses a challenge, others react or propose solutions, and gradually the edges of the debate are framed and a vocabulary is built." (David Perkins, "Calculus and Its Origins", 2012)

"There are thousands of apparent mathematical truths out there that we humans have discovered and believe to be true but have so far been unable to prove. They are called conjectures. A conjecture is simply a statement about mathematical reality that you believe to be true [..]" (Paul Lockhart, "Measurement", 2012)

On Truth: Mathematical Truth (1975-1999)

"Mathematics has been trivialized, derived from indubitable, trivial axioms in which only absolutely clear trivial terms figure, and from which truth pours down in clear channels." (Imre Lakatos, "Mathematics, Science and Epistemology", 1980)

"Theorems often tell us complex truths about the simple things, but only rarely tell us simple truths about the complex ones. To believe otherwise is wishful thinking or ‘mathematics envy’." (Marvin Minsky, "Music, Mind, and Meaning", 1981)

"In the initial stages of research, mathematicians do not seem to function like theorem-proving machines. Instead, they use some sort of mathematical intuition to ‘see’ the universe of mathematics and determine by a sort of empirical process what is true. This alone is not enough, of course. Once one has discovered a mathematical truth, one tries to find a proof for it." (Rudy Rucker, "Infinity and the Mind: The science and philosophy of the infinite", 1982)

"In brief, the way we do mathematics is human, very much so. But mathematicians have no doubt that there is a mathematical reality beyond our puny existence. We discover mathematical truth, we do not create it. We ask ourselves what seems to be a natural question and start working on it, and not uncommonly we find the solution (or someone else does). And we know that the answer could not have been different." (David Ruelle, "Chance and Chaos", 1991)

"Mathematical truth ultimately depends on an irreducible set of assumptions, which are adopted without demonstration. But to qualify as true knowledge, the assumptions require a warrant for their assertion. There is no valid warrant for mathematical knowledge other than demonstration or proof. Therefore the assumptions are beliefs, not knowledge, and remain open to challenge, and thus to doubt." (Paul Ernest, "The Philosophy of Mathematics Education", 1991)

"The philosophy of mathematics is the branch of philosophy whose task is to reflect on, and account for the nature of mathematics. [...] The role of the philosophy of mathematics is to provide a systematic and absolutely secure foundation for mathematical knowledge, that is for mathematical truth." (Paul Ernest, "The Philosophy of Mathematics Education", 1991)

"The absolutist view of mathematical knowledge is that it consists of certain and unchallengeable truths. According to this view, mathematical knowledge is made up of absolute truths, and represents the unique realm of certain knowledge, apart from logic and statements true by virtue of the meanings of terms […]" (Paul Ernest, "The Philosophy of Mathematics Education", 1991)

"There is one qualitative aspect of reality that sticks out from all others in both profundity and mystery. It is the consistent success of mathematics as a description of the workings of reality and the ability of the human mind to discover and invent mathematical truths." (John D Barrow, "Theories of Everything: The quest for ultimate explanation. New", 1991)

"This absolutist view of mathematical knowledge is based on two types of assumptions: those of mathematics, concerning the assumption of axioms and definitions, and those of logic concerning the assumption of axioms, rules of inference and the formal language and its syntax. These are local or micro-assumptions. There is also the possibility of global or macro-assumptions, such as whether logical deduction suffices to establish all mathematical truths." (Paul Ernest, "The Philosophy of Mathematics Education", 1991)

"When all the mathematical smoke clears away, Godel's message is that mankind will never know the final secret of the universe by rational thought alone. It's impossible for human beings to ever formulate a complete description of the natural numbers. There will always be arithmetic truths that escape our ability to fence them in using the tools, tricks and subterfuges of rational analysis." (John L Casti, "Reality Rules: Picturing the world in mathematics" Vol. II, 1992)

"Mathematics is one of the surest ways for a man to feel the power of thought and the magic of the spirit. Mathematics is one of the eternal truths and, as such, raises the spirit to the same level on which we feel the presence of God." (Malba Tahan & Patricia R Baquero,"The Man Who Counted", 1993)

"Mathematical beauty and mathematical truth share the fundamental property of objectivity, that of being inescapably context-dependent. Mathematical beauty and mathematical truth, like any other objective characteristics of mathematics, are subject to the laws of the real world, on a par with the laws of physics." (Gian-Carlo Rota, "The Phenomenology of Mathematical Beauty", Synthese, 111(2), 1997)

"Mathematical logic deals not with the truth but only with the game of truth." (Gian-Carlo Rota, "Indiscrete Thoughts", 1997)

"It is often the case in mathematics that the definition of truth is assumed to be clear-cut, unambiguous, and unproblematic. While this is often justifiable as a simplifying assumption, the fact is that it is incorrect and that the meaning of the concept of truth in mathematics has changed significantly over time." (Paul Ernest, "Social Constructivism as a Philosophy of Mathematics", 1998)

"Mathematical truth is found to exceed the proving of theorems and to elude total capture in the confining meshes of any logical net." (John Polkinghorne, "Belief in God in an Age of Science", 1998)

"The reason why a 'crude', experimental approach is not adequate for determining mathematical truth lies in the nature of what mathematics is and is intended to be. Though its roots lie in the physical world, mathematics is a precise and idealized discipline. The 'points', 'lines', 'planes', and other ideal constructs of mathematics have no exact counterpart in reality. What the mathematician does is to take a totally abstract, idealized view of the world, and reason with his abstractions in an entirely precise and rigorous fashion." (Keith Devlin, "Mathematics: The New Golden Age", 1998)

"Whatever the ins and outs of poetry, one thing is clear: the manner of expression - notation - is fundamental. It is the same with mathematics - not in the aesthetic sense that the beauty of mathematics is tied up with how it is expressed - but in the sense that mathematical truths are revealed, exploited and developed by various notational innovations." (James R Brown, "Philosophy of Mathematics", 1999)

On Truth: Mathematical Truth (1900-1974)

 "The mathematician, carried along on his flood of symbols, dealing apparently with purely formal truths, may still reach results of endless importance for our description of the physical universe." (Karl Pearson, “The Grammar of Science”, 1900)

"The motive for the study of mathematics is insight into the nature of the universe. Stars and strata, heat and electricity, the laws and processes of becoming and being, incorporate mathematical truths. If language imitates the voice of the Creator, revealing His heart, mathematics discloses His intellect, repeating the story of how things came into being. And the value of mathematics, appealing as it does to our energy and to our honor, to our desire to know the truth and thereby to live as of right in the household of God, is that it establishes us in larger and larger certainties. As literature develops emotion, understanding, and sympathy, so mathematics develops observation, imagination, and reason." (William E Chancellor,"A Theory of Motives, Ideals and Values in Education" 1907)

"[…] because mathematics contains truth, it extends its validity to the whole domain of art and the creatures of the constructive imagination." (James B Shaw, "Lectures on the Philosophy of Mathematics", 1918)

"Mathematics is the most exact science, and its conclusions are capable of absolute proof. But this is so only because mathematics does not attempt to draw absolute conclusions. All mathematical truths are relative, conditional." (Charles P Steinmetz, 1923)

"Conventionalism as geometrical and mathematical truths are created by our choices, not dictated by or imposed on us by scientific theory. The idea that geometrical truth is truth we create by the understanding of certain conventions in the discovery of non-Euclidean geometries." (Clifford Singer, "Engineering a Visual Field", 1955)

"Mathematics is neither a description of nature nor an explanation of its operation; it is not concerned with physical motion or with the metaphysical generation of quantities. It is merely the symbolic logic of possible relations, and as such is concerned with neither approximate nor absolute truth, but only with hypothetical truth. That is, mathematics determines what conclusions will follow logically from given premises. The conjunction of mathematics and philosophy, or of mathematics and science is frequently of great service in suggesting new problems and points of view." (Carl B Boyer, "The History of the Calculus and Its Conceptual Development", 1959)

"Mathematics is a body of knowledge, but it contains no truths." (Morris Kline, “Mathematics in Western Culture”, 1964)

"Now a mathematician has a matchless advantage over general scientists, historians, politicians, and exponents of other professions: He can be wrong. A fortiori, he can also be right. [...] A mistake made by a mathematician, even a great one, is not a 'difference of a point of view' or 'another interpretation of the data' or a 'dictate of a conflicting ideology', it is a mistake. The greatest of all mathematicians, those who have discovered the greatest quantities of mathematical truths, are also those who have published the greatest numbers of lacunary proofs, insufficiently qualified assertions, and flat mistakes." (Clifford Truesdell, "Late Baroque Mechanics to Success, Conjecture, Error, and Failure in Newton's Principia" [in "Essays in the History of Mechanics"], 1968)

23 December 2022

Mathematical Experience IV: Logic and Truth

"It falls into this difficulty without any fault of its own. It begins with principles, which cannot be dispensed with in the field of experience, and the truth and sufficiency of which are, at the same time, insured by experience. With these principles it rises, in obedience to the laws of its own nature, to ever higher and more remote conditions. But it quickly discovers that, in this way, its labours must remain ever incomplete, because new questions never cease to present themselves; and thus it finds itself compelled to have recourse to principles which transcend the region of experience, while they are regarded by common sense without distrust. It thus falls into confusion and contradictions, from which it conjectures the presence of latent errors, which, however, it is unable to discover, because the principles it employs, transcending the limits of experience, cannot be tested by that criterion. The arena of these endless contests is called Metaphysic." (Immanuel Kant, "The Critique of Pure Reason", 1781)

"Logic does not pretend to teach the surgeon what are the symptoms which indicate a violent death. This he must learn from his own experience and observation, or from that of others, his predecessors in his peculiar science. But logic sits in judgment on the sufficiency of that observation and experience to justify his rules, and on the sufficiency of his rules to justify his conduct. It does not give him proofs, but teaches him what makes them proofs, and how he is to judge of them." (John Stuart Mill, "A System of Logic, Ratiocinative and Inductive: Being a Connected View of the Principles of Evidence, and the Methods of Scientific Investigation", 1843)

"But I shall certainly admit a system as empirical or scientific only if it is capable of being tested by experience. These considerations suggest that not the verifiability but the falsifiability of a system is to be taken as a criterion of demarcation. In other words: I shall not require of a scientific system that it shall be capable of being singled out, once and for all, in a positive sense; but I shall require that its logical form shall be such that it can be singled out, by means of empirical tests, in a negative sense: it must be possible for an empirical scientific system to be refuted by experience." (Karl R Popper, "The Logic of Scientific Discovery", 1934)

"The ultimate origin of the difficulty lies in the fact (or philosophical principle) that we are compelled to use the words of common language when we wish to describe a phenomenon, not by logical or mathematical analysis, but by a picture appealing to the imagination. Common language has grown by everyday experience and can never surpass these limits. Classical physics has restricted itself to the use of concepts of this kind; by analysing visible motions it has developed two ways of representing them by elementary processes; moving particles and waves. There is no other way of giving a pictorial description of motions - we have to apply it even in the region of atomic processes, where classical physics breaks down." (Max Born, "Atomic Physics", 1957)

"There is a logic of language and a logic of mathematics. The former is supple and lifelike, it follows our experience. The latter is abstract and rigid, more ideal. The latter is perfectly necessary, perfectly reliable: the former is only sometimes reliable and hardly ever systematic. But the logic of mathematics achieves necessity at the expense of living truth, it is less real than the other, although more certain. It achieves certainty by a flight from the concrete into abstraction." (Thomas Merton, "The Secular Journal of Thomas Merton", 1959)

"We who are heirs to three recent centuries of scientific development can hardly imagine a state of mind in which many mathematical objects were regarded as symbols of spiritual truths or episodes in sacred history. Yet, unless we make this effort of imagination, a fraction of the history of mathematics is incomprehensible." (Philip J Davis & Rueben Hersh, "The Mathematical Experience", 1985)

"What does a rigorous proof consist of? The word ‘proof’ has a different meaning in different intellectual pursuits. A ‘proof’ in biology might consist of experimental data confirming a certain hypothesis; a ‘proof’ in sociology or psychology might consist of the results of a survey. What is common to all forms of proof is that they are arguments that convince experienced practitioners of the given field. So too for mathematical proofs. Such proofs are, ultimately, convincing arguments that show that the desired conclusions follow logically from the given hypotheses." (Ethan Bloch, "Proofs and Fundamentals", 2000)

"Science, at its core, is simply a method of practical logic that tests hypotheses against experience. Scientism, by contrast, is the worldview and value system that insists that the questions the scientific method can answer are the most important questions human beings can ask, and that the picture of the world yielded by science is a better approximation to reality than any other." (John M Greer, "After Progress: Reason and Religion at the End of the Industrial Age", 2015)

18 July 2021

Out of Context: On Probability (Definitions)

"Probability is the very guide of life." (Marcus Tullius Cicero, "De Natura Deorum" ["On the Nature of the Gods"], 45 BC) [attributed

"Probability is a degree of possibility." (Gottfried W Leibniz, "On estimating the uncertain", 1676)

"Probability is the appearance of agreement upon fallible proofs." (John Locke, "An Essay Concerning Human Understanding", Book IV, 1689)

"Probability is likeliness to be true, the very notation of the word signifying such a proposition, for which there be arguments or proofs to make it pass, or be received for true." (John Locke, "An Essay Concerning Human Understanding", Book IV, 1689)

"Probability is a degree of certainty and it differs from certainty as a part from a whole." (Jacob Bernoulli, "Ars Conjectandi", 1713)

"[…] to us, probability is the very guide of life." (Joseph Butler, "The Analogy of Religion", 1736) 

"Probability is relative in part to this ignorance, and in part to our knowledge." (Pierre-Simon Laplace, "Mémoire sur les Approximations des Formules qui sont Fonctions de Très Grands Nombres", 1783) 

"Probability is expectation founded upon partial knowledge." (George Boole, "The Laws of Thought", 1854)

"Probability is, so far as measurement is concerned, closely analogous to similarity." (John M Keynes, "A Treatise on Probability", 1921)

"The Theory of Probability is concerned with that part which we obtain by argument, and it treats of the different degrees in which the results so obtained are conclusive or inconclusive." (John M Keynes, "A Treatise on Probability", 1921)

"Probability is the most important concept in modern science, especially as nobody has the slightest notion what it means." (Bertrand Russell, 1929)

"Probability is truth in some degree […]" (Errol E Harris, "Hypothesis and Perception: The Roots of Scientific Method", 1970)

"Probability, too, if regarded as something endowed with some kind of objective existence, is no less a misleading misconception, an illusory attempt to exteriorize or materialize our true probabilistic beliefs." (Bruno de Finetti, "Theory of Probability", 1974)

"The logic of certainty furnishes us with the range of possibility (and the possible has no gradations); probability is an additional notion that one applies within the range of possibility, thus giving rise to graduations (‘more or less’ probable) that are meaningless in the logic of uncertainty."  (Bruno de Finetti, "Theory of Probability", 1974)

"Many modern philosophers claim that probability is relation between an hypothesis and the evidence for it." (Ian Hacking, "The Emergence of Probability", 1975)

"The theory of probability is the only mathematical tool available to help map the unknown and the uncontrollable." (Benoit Mandelbrot, "The Fractal Geometry of Nature", 1977)

"Probability is the mathematics of uncertainty." (Richard W Hamming, "Methods of Mathematics Applied to Calculus, Probability, and Statistics", 1985)

"Probabilities are summaries of knowledge that is left behind when information is transferred to a higher level of abstraction." (Judea Pearl, Probabilistic Reasoning in Intelligent Systems: Network of Plausible, Inference, 1988)

"Probability is the branch of mathematics that describes randomness." (David S Moore, "Uncertainty", 1990)

"[...] probability is a style of thinking." (Richard W Hamming, "The Art of Probability for Scientists and Engineers", 1991)

"Probability is not about the odds, but about the belief in the existence of an alternative outcome, cause, or motive." (Nassim N Taleb, "Fooled by Randomness", 2001)

"Probability is a mathematical language for quantifying uncertainty." (Larry A Wasserman, "All of Statistics: A concise course in statistical inference", 2004)

"Probability is a liberal art; it is a child of skepticism, not a tool for people with calculators on their belts to satisfy their desire to produce fancy calculations and certainties." (Nassim N Taleb, “The Black Swan”, 2007)

"We have to be aware that probabilities are relative to a level of observation, and that what is most probable at one level is not necessarily so at another."(Carlos Gershenson, "Design and Control of Self-organizing Systems", 2007)

"Probability is the science of uncertainty. It provides precise mathematical rules for understanding and analyzing our own ignorance." (Michael J Evans & Jeffrey S Rosenthal, "Probability and Statistics: The Science of Uncertainty", 2009)

17 June 2021

On Knowledge (-1699)

"In all disciplines in which there is systematic knowledge of things with principles, causes, or elements, it arises from a grasp of those: we think we have knowledge of a thing when we have found its primary causes and principles, and followed it back to its elements." (Aristotle, "Physics", cca. 350 BC)

"Thinking is different from perceiving and is held to be in part imagination, in part judgement: we must therefore first mark off the sphere of imagination and then speak of judgement. If then imagination is that in virtue of which an image arises for us, excluding metaphorical uses of the term, is it a single faculty or disposition relative to images, in virtue of which we discriminate and are either in error or not? The faculties in virtue of which we do this are sense, opinion, knowledge, thought." (Aristotle, "De Anima", cca. 350 BC)

"Knowledge, then, is a state of capacity to demonstrate, and has the other limiting characteristics which we specify in the Analytics; for it is when one believes in a certain way and the principles are known to him that he has knowledge, since if they are not better known to him than the conclusion, he will have his knowledge only on the basis of some concomitant." (Aristotle," Nicomachean Ethics", cca. 340 BC)

"What we know is not capable of being otherwise; of things capable of being otherwise we do not know, when they have passed outsideour observation, whether they exist or not. Therefore the object of knowledge is of necessity. Therefore it is eternal; for things that are of necessity in the unqualified sense are all eternal; and things that are eternal are ungenerated and imperishable. " (Aristotle, "Nicomachean Ethics", cca. 340 BC)

"We can get some idea of a whole from a part, but never knowledge or exact opinion. Special histories therefore contribute very little to the knowledge of the whole and conviction of its truth. It is only indeed by study of the interconnexion of all the particulars, their resemblances and differences, that we are enabled at least to make a general survey, and thus derive both benefit and pleasure from history." (Polybius, "The Histories", cca. 150 BC)

"The mathematician speculates the causes of a certain sensible effect, without considering its actual existence; for the contemplation of universals excludes the knowledge of particulars; and he whose intellectual eye is fixed on that which is general and comprehensive, will think but little of that which is sensible and singular." (Proclus Lycaeus, cca 5th century)

"All knowledge or cognition possessed by creatures is limited. Infinite knowledge belongs solely to God, because of His infinite nature." (John of Salisbury, "Metalogicon", 1159)

"All things have a way of adding up together, so that one will become more proficient in any proposed branch of learning to the extent that he has mastered neighboring and related departments of knowledge." (John of Salisbury, "Metalogicon", 1159)

"In our acquisition of [scientific] knowledge, investigation is the first step, and comes before comprehension, analysis, and retention. Innate ability, although it proceeds from nature, is fostered by study and exercise. What is difficult when we first try it, becomes easier after assiduous practice, and once the rules for doing it are mastered, very easy, unless languor creeps in, through lapse of use or carelessness, and impedes our efficiency. This, in short, is how all the arts have originated: Nature, the first fundamental, begets the habit and practice of study, which proceeds to provide an art, and the latter, in turn, finally furnishes the faculty whereof we speak. Natural ability is accordingly effective. So, too, is exercise. And memory likewise, is effective, when employed by the two aforesaid. With the help of the foregoing, reason waxes strong, and produces the arts, which are proportionate to [man’s] natural talents." (John of Salisbury, "Metalogicon", 1159)

"There are four great sciences, without which the other sciences cannot be known nor a knowledge of things secured […] Of these sciences the gate and key is mathematics […] He who is ignorant of this [mathematics] cannot know the other sciences nor the affairs of this world." (Roger Bacon, "Opus Majus", 1267)

"There are two modes of acquiring knowledge, namely, by reasoning and experience. Reasoning draws a conclusion and makes us grant the conclusion, but does not make the conclusion certain, nor does it remove doubt so that the mind may rest on the intuition of truth unless the mind discovers it by the path of experience." (Roger Bacon, "Opus Majus", 1267)

"That faculty which perceives and recognizes the noble proportions in what is given to the senses, and in other things situated outside itself, must be ascribed to the soul. It lies very close to the faculty which supplies formal schemata to the senses, or deeper still, and thus adjacent to the purely vital power of the soul, which does not think discursively […] Now it might be asked how this faculty of the soul, which does not engage in conceptual thinking, and can therefore have no proper knowledge of harmonic relations, should be capable of recognizing what is given in the outside world. For to recognize is to compare the sense perception outside with the original pictures inside, and to judge that it conforms to them." (Johannes Kepler, "Harmonices Mundi" ["Harmony of the World"] , 1619)

"Knowledge being to be had only of visible and certain truth, error is not a fault of our knowledge, but a mistake of our judgment, giving assent to that which is not true." (John Locke, "An Essay Concerning Human Understanding", 1689)

"[…] the highest probability amounts not to certainty, without which there can be no true knowledge." (John Locke, "An Essay Concerning Human Understanding", 1689)

On Knowledge (2000-2009)

"Storytelling is the art of unfolding knowledge in a way that makes each piece contribute to a larger truth." (Philip Gerard, "Writing a Book That Makes a Difference", 2000)

"There is a strong tendency today to narrow specialization. Because of the exponential growth of information, we can afford (in terms of both economics and time) preparation of specialists in extremely narrow fields, the various branches of science and engineering having their own particular realms. As the knowledge in these fields grows deeper and broader, the individual's field of expertise has necessarily become narrower. One result is that handling information has become more difficult and even ineffective." (Semyon D Savransky, "Engineering of Creativity", 2000)

"All human knowledge - including statistics - is created  through people's actions; everything we know is shaped by our language, culture, and society. Sociologists call this the social construction of knowledge. Saying that knowledge is socially constructed does not mean that all we know is somehow fanciful, arbitrary, flawed, or wrong. For example, scientific knowledge can be remarkably accurate, so accurate that we may forget the people and social processes that produced it." (Joel Best, "Damned Lies and Statistics: Untangling Numbers from the Media, Politicians, and Activists", 2001)

"Defined from a societal standpoint, information may be seen as an entity which reduces maladjustment between system and environment. In order to survive as a thermodynamic entity, all social systems are dependent upon an information flow. This explanation is derived from the parallel between entropy and information where the latter is regarded as negative entropy (negentropy). In more common terms information is a form of processed data or facts about objects, events or persons, which are meaningful for the receiver, inasmuch as an increase in knowledge reduces uncertainty." (Lars Skyttner, "General Systems Theory: Ideas and Applications", 2001)

"Knowledge is factual when evidence supports it and we have great confidence in its accuracy. What we call 'hard fact' is information supported by  strong, convincing evidence; this means evidence that, so far as we know, we cannot deny, however we examine or test it. Facts always can be questioned, but they hold up under questioning. How did people come by this information? How did they interpret it? Are other interpretations possible? The more satisfactory the answers to such questions, the 'harder' the facts."(Joel Best, Damned Lies and Statistics: Untangling Numbers from the Media, Politicians, and Activists, 2001)

"Knowledge maps are node-link representations in which ideas are located in nodes and connected to other related ideas through a series of labeled links. They differ from other similar representations such as mind maps, concept maps, and graphic organizers in the deliberate use of a common set of labeled links that connect ideas. Some links are domain specific (e.g., function is very useful for some topic domains...) whereas other links (e.g., part) are more broadly used. Links have arrowheads to indicate the direction of the relationship between ideas." (Angela M. O’Donnell et al, "Knowledge Maps as Scaffolds for Cognitive Processing", Educational Psychology Review Vol. 14 (1), 2002) 

"Knowledge is encoded in models. Models are synthetic sets of rules, and pictures, and algorithms providing us with useful representations of the world of our perceptions and of their patterns." (Didier Sornette, "Why Stock Markets Crash - Critical Events in Complex Systems", 2003)

"The networked world continuously refines, reinvents, and reinterprets knowledge, often in an autonomic manner." (Donald M Morris et al, "A revolution in knowledge sharing", 2003) 

"A mental model is conceived […] as a knowledge structure possessing slots that can be filled not only with empirically gained information but also with ‘default assumptions’ resulting from prior experience. These default assumptions can be substituted by updated information so that inferences based on the model can be corrected without abandoning the model as a whole. Information is assimilated to the slots of a mental model in the form of ‘frames’ which are understood here as ‘chunks’ of knowledge with a well-defined meaning anchored in a given body of shared knowledge." (Jürgen Renn, "Before the Riemann Tensor: The Emergence of Einstein’s Double Strategy", 2005)

"Evolution moves towards greater complexity, greater elegance, greater knowledge, greater intelligence, greater beauty, greater creativity, and greater levels of subtle attributes such as love. […] Of course, even the accelerating growth of evolution never achieves an infinite level, but as it explodes exponentially it certainly moves rapidly in that direction." (Ray Kurzweil, "The Singularity is Near", 2005)

“It makes no sense to seek a single best way to represent knowledge - because each particular form of expression also brings its particular limitations. For example, logic-based systems are very precise, but they make it hard to do reasoning with analogies. Similarly, statistical systems are useful for making predictions, but do not serve well to represent the reasons why those predictions are sometimes correct.” (Marvin Minsky, "The Emotion Machine: Commonsense Thinking, Artificial Intelligence, and the Future of the Human Mind", 2006)

"Information is just bits of data. Knowledge is putting them together. Wisdom is transcending them." (Ram Dass, "One-Liners: A Mini-Manual for a Spiritual Life (ed. Harmony", 2007)

"Science is not only the enterprise of harnessing nature to serve the practical needs of humankind. It is also part of man’s unending search for knowledge about the universe and his place within it." (Henry P Stapp, "Mindful Universe: Quantum Mechanics and the Participating Observer", 2007)

"Critical thinking is essentially a questioning, challenging approach to knowledge and perceived wisdom. It involves ideas and information from an objective position and then questioning this information in the light of our own values, attitudes and personal philosophy." Brenda Judge et al, "Critical Thinking Skills for Education Students", 2009)

"Equations seem like treasures, spotted in the rough by some discerning individual, plucked and examined, placed in the grand storehouse of knowledge, passed on from generation to generation. This is so convenient a way to present scientific discovery, and so useful for textbooks, that it can be called the treasure-hunt picture of knowledge." (Robert P Crease, "The Great Equations", 2009)

"Traditional statistics is strong in devising ways of describing data and inferring distributional parameters from sample. Causal inference requires two additional ingredients: a science-friendly language for articulating causal knowledge, and a mathematical machinery for processing that knowledge, combining it with data and drawing new causal conclusions about a phenomenon."(Judea Pearl, "Causal inference in statistics: An overview", Statistics Surveys 3, 2009)

On Knowledge (1800-1824)

"Knowledge is only real and can only be set forth fully in the form of science, in the form of system." (G W Friedrich Hegel, "The Phenomenology of Mind", 1807)

"It is not knowledge, but the act of learning, not possession but the act of getting there, which grants the greatest enjoyment. When I have clarified and exhausted a subject, then I turn away from it, in order to go into darkness again; the never satisfied man is so strange if he has completed a structure, then it is not in order to dwell in it peacefully, but in order to begin another. I imagine the world conqueror must feel thus, who, after one kingdom is scarcely conquered, stretched out his arms for others." (Carl F Gauss, [Letter to Farkas Bolyai] 1808)

"Thus then does the Doctrine of Knowledge, which in its substance is the realisation of the absolute Power of intelligising which has now been defined, end with the recognition of itself as a mere Schema in a Doctrine of Wisdom, although indeed a necessary and indispensable means to such a Doctrine: - a Schema, the sole aim of which is, with the knowledge thus acquired, - by which knowledge alone a Will, clear and intelligible to itself and reposing upon itself without wavering or perplexity, is possible, - to return wholly into Actual Life; - not into the Life of blind and irrational Instinct which we have laid bare in all its nothingness, but into the Divine Life which shall become visible to us." (Johann G Fichte, "Outline of the Doctrine of Knowledge", 1810)

"The most important questions of life are, for the most part, really only problems of probability. Strictly speaking one may even say that nearly all our knowledge is problematical; and in the small number of things which we are able to know with certainty, even in the mathematical sciences themselves, induction and analogy, the principal means for discovering truth, are based on probabilities, so that the entire system of human knowledge is connected with this theory." (Pierre-Simon Laplace, "Theorie Analytique des Probabilités", 1812)

"One may even say, strictly speaking, that almost all our knowledge is only probable; and in the small number of things that we are able to know with certainty, in the mathematical sciences themselves, the principal means of arriving at the truth - induction and analogy - are based on probabilities, so that the whole system of human knowledge is tied up with the theory set out in this essay." (Pierre-Simon Laplace, "Philosophical Essay on Probabilities", 1814) 

"[...] all knowledge, and especially the weightiest knowledge of the truth, to which only a brief triumph is allotted between the two long periods in which it is condemned as paradoxical or disparaged as trivial." (Arthur Schopenhauer, "The World as Will and Representation", 1819)

"The highest knowledge can be nothing more than the shortest and clearest road to truth; all the rest is pretension, not performance, mere verbiage and grandiloquence, from which we can learn nothing." (Charles C Colton, "Lacon", 1820)

"We [...] are profiting not only by the knowledge, but also by the ignorance, not only by the discoveries, but also by the errors of our forefathers; for the march of science, like that of time, has been progressing in the darkness, no less than in the light." (Charles C Colton, "Lacon", 1820)

"The aim of every science is foresight. For the laws of established observation of phenomena are generally employed to foresee their succession. All men, however little advanced make true predictions, which are always based on the same principle, the knowledge of the future from the past." (Auguste Compte, "Plan des travaux scientifiques nécessaires pour réorganiser la société", 1822)

On Knowledge (1825-1849)

"It is true that of far the greater part of things, we must content ourselves with such knowledge as description may exhibit, or analogy supply; but it is true likewise, that these ideas are always incomplete, and that at least, till we have compared them with realities, we do not know them to be just. As we see more, we become possessed of more certainties, and consequently gain more principles of reasoning, and found a wider base of analogy." (Samuel Johnson, 1825)

"The first steps in the path of discovery, and the first approximate measures, are those which add most to the existing knowledge of mankind." (Charles Babbage, "Reflections on the Decline of Science in England", 1830)

"Our knowledge of circumstances has increased, but our uncertainty, instead of having diminished, has only increased. The reason of this is, that we do not gain all our experience at once, but by degrees; so our determinations continue to be assailed incessantly by fresh experience; and the mind, if we may use the expression, must always be under arms." (Carl von Clausewitz, "On War", 1832)

"Truth in itself is rarely sufficient to make men act. Hence the step is always long from cognition to volition, from knowledge to ability. The most powerful springs of action in men lie in his emotions." (Carl von Clausewitz, "On War", 1832)

"Science and knowledge are subject, in their extension and increase, to laws quite opposite to those which regulate the material world. Unlike the forces of molecular attraction, which cease at sensible distances; or that of gravity, which decreases rapidly with the increasing distance from the point of its origin; the farther we advance from the origin of our knowledge, the larger it becomes, and the greater power it bestows upon its cultivators, to add new fields to its dominions." (Charles Babbage, "On the Economy of Machinery and Manufactures", 1832)

"The peculiar character of mathematical truth is that it is necessarily and inevitably true; and one of the most important lessons which we learn from our mathematical studies is a knowledge that there are such truths." (William Whewell, "Principles of English University Education", 1838)

"[…] in order that the facts obtained by observation and experiment may be capable of being used in furtherance of our exact and solid knowledge, they must be apprehended and analysed according to some Conception which, applied for this purpose, gives distinct and definite results, such as can be steadily taken hold of and reasoned from […]" (William Whewell, "The Philosophy of the Inductive Sciences Founded Upon their History" Vol. 2, 1840)

"But a thousand unconnected observations have no more value, as a demonstrative proof, than a single one. If we do not succeed in discovering causes by our researches, we have no right to create them by the imagination; we must not allow mere fancy to proceed beyond the bounds of our knowledge."(Justus von Liebig, "The Lancet", 1844)

"[…] there do exist among us doctrines of solid and acknowledged certainty, and truths of which the discovery has been received with universal applause. These constitute what we commonly term Sciences; and of these bodies of exact and enduring knowledge, we have within our reach so large and varied a collection, that we may examine them, and the history of their formation, with good prospect of deriving from the study such instruction as we seek." (William Whewell, "The Philosophy of the Inductive Sciences Founded upon Their History" Vol. 1, 1847)

On Knowledge (1850-1874)

"In every branch of knowledge the progress is proportional to the amount of facts on which to build, and therefore to the facility of obtaining data." (James C Maxwell, [Letter to Lewis Campbell] 1851) 

"Remember that accumulated knowledge, like accumulated capital, increases at compound interest: but it differs from the accumulation of capital in this; that the increase of knowledge produces a more rapid rate of progress, whilst the accumulation of capital leads to a lower rate of interest. Capital thus checks its own accumulation: knowledge thus accelerates its own advance. Each generation, therefore, to deserve comparison with its predecessor, is bound to add much more largely to the common stock than that which it immediately succeeds." (Charles Babbage, "The Exposition of 1851: Or the Views of Industry, Science and Government of England", 1851)

"All knowledge is profitable; profitable in its ennobling effect on the character, in the pleasure it imparts in its acquisition, as well as in the power it gives over the operations of mind and of matter. All knowledge is useful; every part of this complex system of nature is connected with every other. Nothing is isolated. The discovery of to-day, which appears unconnected with any useful process, may, in the course of a few years, become the fruitful source of a thousand inventions." (Joseph Henry, "Report of the Secretary" [Sixth Annual Report of the Board of Regents of the Smithsonian Institution for 1851], 1852)

"SYSTEM (σύστημα, σύν ἵστημιavu, to place together) - is a full and connected view of all the truths of some department of knowledge. An organized body of truth, or truths arranged under one and the same idea, which idea is as the life or soul which assimilates all those truths. No truth is altogether isolated. Every truth has relation to some other. And we should try to unite the facts of our knowledge so as to see them in their several bearings. This we do when we frame them into a system. To do so legitimately we must begin by analysis and end with synthesis. But system applies not only to our knowledge, but to the objects of our knowledge. Thus we speak of the planetary system, the muscular system, the nervous system. We believe that the order to which we would reduce our ideas has a foundation in the nature of things. And it is this belief that encourages us to reduce our knowledge of things into systematic order. The doing so is attended with many advantages. At the same time a spirit of systematizing may be carried too far. It is only in so far as it is in accordance with the order of nature that it can be useful or sound." (William Fleming, "Vocabulary of philosophy, mental, moral, and metaphysical; with quotations and references; for the use of students", 1857)

"Science asks no questions about the ontological pedigree or a priori character of a theory, but is content to judge it by its performance; and it is thus that a knowledge of nature, having all the certainty which the senses are competent to inspire, has been attained - a knowledge which maintains a strict neutrality toward all philosophical systems and concerns itself not with the genesis or a priori grounds of ideas." (Chauncey Wright, "The Philosophy of Herbert Spencer", North American Review, 1865)

"One of the greatest obstacles to the free and universal movement of human knowledge is the tendency that leads different kinds of knowledge to separate into systems." (Claude Bernard, "An Introduction to the Study of Experimental Medicine", 1865)

"Isolated facts and experiments have in themselves no value, however great their number may be. They only become valuable in a theoretical or practical point of view when they make us acquainted with the law of a series of uniformly recurring phenomena, or, it may be, only give a negative result showing an incompleteness in our knowledge of such a law, till then held to be perfect." (Hermann von Helmholtz, "The Aim and Progress of Physical Science", 1869)

"As systematic unity is what first raises ordinary knowledge to the rank of science, that is, makes a system out of a mere aggregate of knowledge, architectonic is the doctrine of the scientific in our knowledge, and therefore necessarily forms part of the doctrine of method." (Immanuel Kant, "Critique of Pure Reason", 1871)

"Simplification of modes of proof is not merely an indication of advance in our knowledge of a subject, but is also the surest guarantee of readiness for farther progress." (William T Kelvin, "Elements of Natural Philosophy", 1873)

"Numerical facts, like other facts, are but the raw materials of knowledge, upon which our reasoning faculties must be exerted in order to draw forth the principles of nature. [...] Numerical precision is the soul of science [...]" (William S Jevons, "The Principles of Science: A Treatise on Logic and Scientific Method", 1874)

On Knowledge (1980-1989)

"Definitions, like questions and metaphors, are instruments for thinking. Their authority rests entirely on their usefulness, not their correctness. We use definitions in order to delineate problems we wish to investigate, or to further interests we wish to promote. In other words, we invent definitions and discard them as suits our purposes." (Neil Postman, "Language Education in a Knowledge Context", 1980)

"A schema, then is a data structure for representing the generic concepts stored in memory. There are schemata representing our knowledge about all concepts; those underlying objects, situations, events, sequences of events, actions and sequences of actions. A schema contains, as part of its specification, the network of interrelations that is believed to normally hold among the constituents of the concept in question. A schema theory embodies a prototype theory of meaning. That is, inasmuch as a schema underlying a concept stored in memory corresponds to the meaning of that concept, meanings are encoded in terms of the typical or normal situations or events that instantiate that concept." (David E Rumelhart, "Schemata: The building blocks of cognition", 1980)

“Analogies, metaphors, and emblems are the threads by which the mind holds on to the world even when, absentmindedly, it has lost direct contact with it, and they guarantee the unity of human experience. Moreover, in the thinking process itself they serve as models to give us our bearings lest we stagger blindly among experiences that our bodily senses with their relative certainty of knowledge cannot guide us through.” (Hannah Arendt, “The Life of the Mind”, 1981)

"Knowledge specialists may ascribe a degree of certainty to their models of the world that baffles and offends managers. Often the complexity of the world cannot be reduced to mathematical abstractions that make sense to a manager. Managers who expect complete, one-to-one correspondence between the real world and each element in a model are disappointed and skeptical." (Dale E Zand, "Information, Organization, and Power", 1981)

"The thinking person goes over the same ground many times. He looks at it from varying points of view - his own, his arch-enemy’s, others’. He diagrams it, verbalizes it, formulates equations, constructs visual images of the whole problem, or of troublesome parts, or of what is clearly known. But he does not keep a detailed record of all this mental work, indeed could not. […] Deep understanding of a domain of knowledge requires knowing it in various ways. This multiplicity of perspectives grows slowly through hard work and sets the state for the re-cognition we experience as a new insight." (Howard E Gruber, "Darwin on Man", 1981)

"Definitions are temporary verbalizations of concepts, and concepts - particularly difficult concepts - are usually revised repeatedly as our knowledge and understanding grows." (Ernst Mayr, "The Growth of Biological Thought", 1982)

"We are drowning in information but starved for knowledge." (John Naisbitt, "Megatrends: Ten New Directions Transforming Our Lives", 1982)

"We define a semantic network as 'the collection of all the relationships that concepts have to other concepts, to percepts, to procedures, and to motor mechanisms' of the knowledge." (John F Sowa, "Conceptual Structures", 1984)

"Contrary to the impression students acquire in school, mathematics is not just a series of techniques. Mathematics tells us what we have never known or even suspected about notable phenomena and in some instances even contradicts perception. It is the essence of our knowledge of the physical world. It not only transcends perception but outclasses it." (Morris Kline, "Mathematics and the Search for Knowledge", 1985)

"Knowledge is the appropriate collection of information, such that it's intent is to be useful. Knowledge is a deterministic process. When someone 'memorizes' information (as less-aspiring test-bound students often do), then they have amassed knowledge. This knowledge has useful meaning to them, but it does not provide for, in and of itself, an integration such as would infer further knowledge." (Russell L Ackoff, "Towards a Systems Theory of Organization", 1985)

"Although science literally means ‘knowledge’, the scientific attitude is concerned much more with rational perception through the mind and with testing such perceptions against actual fact, in the form of experiments and observations." (David Bohm & F David Peat, "Science, Order, and Creativity", 1987)

"There is no coherent knowledge, i.e. no uniform comprehensive account of the world and the events in it. There is no comprehensive truth that goes beyond an enumeration of details, but there are many pieces of information, obtained in different ways from different sources and collected for the benefit of the curious. The best way of presenting such knowledge is the list - and the oldest scientific works were indeed lists of facts, parts, coincidences, problems in several specialized domains." (Paul K Feyerabend, "Farewell to Reason", 1987)

"We admit knowledge whenever we observe an effective (or adequate) behavior in a given context, i.e., in a realm or domain which we define by a question (explicit or implicit)." (Humberto Maturana & Francisco J Varela, "The Tree of Knowledge", 1987)

"In the Information Age, the first step to sanity is FILTERING. Filter the information: extract for knowledge. Filter first for substance. Filter second for significance. […] Filter third for reliability. […] Filter fourth for completeness." (Marc Stiegler, "David’s Sling", 1988)

"Probabilities are summaries of knowledge that is left behind when information is transferred to a higher level of abstraction." (Judea Pearl, "Probabilistic Reasoning in Intelligent Systems: Network of Plausible, Inference", 1988)

"Science doesn't purvey absolute truth. Science is a mechanism. It's a way of trying to improve your knowledge of nature. It's a system for testing your thoughts against the universe and seeing whether they match. And this works, not just for the ordinary aspects of science, but for all of life. I should think people would want to know that what they know is truly what the universe is like, or at least as close as they can get to it." (Isaac Asimov, [Interview by Bill Moyers] 1988)

"A discovery in science, or a new theory, even where it appears most unitary and most all-embracing, deals with some immediate element of novelty or paradox within the framework of far vaster, unanalyzed, unarticulated reserves of knowledge, experience, faith, and presupposition. Our progress is narrow: it takes a vast world unchallenged and for granted." (James R Oppenheimer, "Atom and Void", 1989)

16 June 2021

On Knowledge (1875-1899)

"[…] it must be noticed that these diagrams do not naturally harmonize with the propositions of ordinary life or ordinary logic. […] The great bulk of the propositions which we commonly meet with are founded, and rightly founded, on an imperfect knowledge of the actual mutual relations of the implied classes to one another. […] one very marked characteristic about these circular diagrams is that they forbid the natural expression of such uncertainty, and are therefore only directly applicable to a very small number of such propositions as we commonly meet with." (John Venn, "On the Diagrammatic and Mechanical Representation of Propositions and Reasonings", 1880)

"Science is the observation of things possible, whether present or past; prescience is the knowledge of things which may come to pass, though but slowly." (Leonardo da Vinci, "The Notebooks of Leonardo da Vinci", 1883)

"[…] when you can measure what you are speaking about, and express it in numbers, you know something about it; but when you cannot express it in numbers, your knowledge is of a meager and unsatisfactory kind; it may be the beginning of knowledge, but you have scarcely in your thoughts advanced to the state of science." (William T Kelvin, "Electrical Units of Measurement", 1883)

"I am convinced that it is impossible to expound the methods of induction in a sound manner, without resting them on the theory of probability. Perfect knowledge alone can give certainty, and in nature perfect knowledge would be infinite knowledge, which is clearly beyond our capacities. We have, therefore, to content ourselves with partial knowledge, - knowledge mingled with ignorance, producing doubt." (William S Jevons, "The Principles of Science: A Treatise on Logic and Scientific Method", 1887)

"Just as, in the map of a half-explored country, we see detached bits of rivers, isolated mountains, and undefined plains, not connected into any complete plan, so a new branch of knowledge consists of groups of facts, each group standing apart, so as not to allow us to reason from one to another." (William S Jevons, "The Principles of Science: A Treatise on Logic and Scientific Method", 1887)

"We say it is ‘explanation’ but it is only in ‘description’ that we are in advance of the older stages of knowledge and science. We describe better we explain just as little as our predecessors." (Friedrich W Nietzsche, "The Joyful Wisdom", 1887)

"The smallest group of facts, if properly classified and logically dealt with, will form a stone which has its proper place in the great building of knowledge, wholly independent of the individual workman who has shaped it." (Karl Pearson, "The Grammar of Science", 1892)

"The true aim of the teacher must be to impart an appreciation of method and not a knowledge of facts." (Karl Pearson, "The Grammar of Science", 1892)

"There is no short cut to truth, no way to gain a knowledge of the universe except through the gateway of scientific method." (Karl Pearson, "The Grammar of Science", 1892)

"Facts are not much use, considered as facts. They bewilder by their number and their apparent incoherency. Let them be digested into theory, however, and brought into mutual harmony, and it is another matter. Theory is of the essence of facts. Without theory scientific knowledge would be only worthy of the mad house." (Oliver Heaviside, "Electromagnetic Theory", 1893)

"Mature knowledge regards logical clearness as of prime importance: only logically clear images does it test as to correctness; only correct images does it compare as to appropriateness. By pressure of circumstances the process is often reversed. Images are found to be suitable for a certain purpose; are next tested as to their correctness ; and only in the last place purged of implied contradictions." (Heinrich Hertz, "The Principles of Mechanics Presented in a New Form", 1894)

"Without a theory all our knowledge of nature would be reduced to a mere inventory of the results of observation. Every scientific theory must be regarded as an effort of the human mind to grasp the truth, and as long as it is consistent with the facts, it forms a chain by which they are linked together and woven into harmony." (Thomas Preston, "The Theory of Heat", 1894)

"It is they who hold the secret of the mysterious property of the mind by which error ministers to truth, and truth slowly but irrevocably prevails. Theirs is the logic of discovery, the demonstration of the advance of knowledge and the development of ideas, which as the earthly wants and passions of men remain almost unchanged, are the charter of progress, and the vital spark in history." (Lord John Acton, "The Study of History", [lecture delivered at Cambridge] 1895)

"In order to comprehend and fully control arithmetical concepts and methods of proof, a high degree of abstraction is necessary, and this condition has at times been charged against arithmetic as a fault. I am of the opinion that all other fields of knowledge require at least an equally high degree of abstraction as mathematics, - provided, that in these fields the foundations are also everywhere examined with the rigour and completeness which is actually necessary." (David Hilbert, "Die Theorie der algebraischen Zahlkorper", 1897)

14 June 2021

On Puzzles (- 1950)

"Everything in nature is a puzzle until it finds its solution in man, who solves it in some way with God, and so completes the circle of creation. " (Theodore T Munger, "The Appeal to Life", 1891)

"The most ordinary things are to philosophy a source of insoluble puzzles. In order to explain our perceptions it constructs the concept of matter and then finds matter quite useless either for itself having or for causing perceptions in a mind. With infinite ingenuity it constructs a concept of space or time and then finds it absolutely impossible that there be objects in this space or that processes occur during this time [...] The source of this kind of logic lies in excessive confidence in the so-called laws of thought." (Ludwig E Boltzmann, "On Statistical Mechanics", 1904)

"The discovery which has been pointed to by theory is always one of profound interest and importance, but it is usually the close and crown of a long and fruitful period, whereas the discovery which comes as a puzzle and surprise usually marks a fresh epoch and opens a new chapter in science." (Sir Oliver J Lodge, [Becquerel Memorial Lecture] Journal of the Chemical Society, Transactions 101 (2), 1912)

"The development of mathematics is largely a natural, not a purely logical one: mathematicians are continually answering questions suggested by astronomers or physicists; many essential mathematical theories are but the reflex outgrowth from physical puzzles." (George A L Sarton, "The Teaching of the History of Science", The Scientific Monthly, 1918)

"In her manifold opportunities Nature has thus helped man to polish the mirror of [man’s] mind, and the process continues. Nature still supplies us with abundance of brain-stretching theoretical puzzles and we eagerly tackle them; there are more worlds to conquer and we do not let the sword sleep in our hand; but how does it stand with feeling? Nature is beautiful, gladdening, awesome, mysterious, wonderful, as ever, but do we feel it as our forefathers did?" (Sir John A Thomson, "The System of Animate Nature", 1920)

"[while] the traditional way is to regard the facts of science as something like the parts of a jig-saw puzzle, which can be fitted together in one and only one way, I regard them rather as the tiny pieces of a mosaic, which can be fitted together in many ways. A new theory in an old subject is, for me, a new mosaic pattern made with the pieces taken from an older pattern. [...] Theories come into fashion and theories go out of fashion, but the facts connected with them stay." (William H George, "The Scientist in Action", 1936)

"The laws of science are the permanent contributions to knowledge - the individual pieces that are fitted together in an attempt to form a picture of the physical universe in action. As the pieces fall into place, we often catch glimpses of emerging patterns, called theories; they set us searching for the missing pieces that will fill in the gaps and complete the patterns. These theories, these provisional interpretations of the data in hand, are mere working hypotheses, and they are treated with scant respect until they can be tested by new pieces of the puzzle." (Edwin P Whipple, "Experiment and Experience", [Commencement Address, California Institute of Technology] 1938)

"Even if all parts of a problem seem to fit together like the pieces of a jigsaw puzzle, one has to remember that the probable need not necessarily be the truth and the truth not always probable." (Sigmund Freud, "Moses and Monotheism", 1939)

Related Posts Plugin for WordPress, Blogger...

On Leonhard Euler

"I have been able to solve a few problems of mathematical physics on which the greatest mathematicians since Euler have struggled in va...