Showing posts with label stability. Show all posts
Showing posts with label stability. Show all posts

18 April 2022

On Singularity I

"It is possible to pass continuously from any non-singular curve to any other such curve by interposition of other curves in such a way that during this procedure one will meet no other occurrence of singularities, apart from a finite number of times a curve with an ordinary double point, no matter whether the curve has at that point real or imaginary branches." (Felix Klein, "Elementary Mathematics from a Higher Standpoint" Vol III: "Precision Mathematics and Approximation Mathematics", 1928)

"A singularity is a place where the classical concepts of space and time break down as do all the known laws of physics." (Stephen W Hawking, "Breakdown of Predictability in Gravitational Collapse", Physical Review D, 1976) 

"'Catastrophe theory' denotes both a purely mathematical discipline describing certain singularities of smooth maps, as well as the concerted effort to apply these theorems to a wide variety of problems in fields ranging from linguistics and psychology to embryology, evolution, physics, and engineering." (Héctor J Sussmann & Raphael S Zahler, "Catastrophe Theory as Applied to the Social and Biological Sciences: A Critique" Synthese Vol. 37 (2), 1978)

"In fact, all our theories of science are formulated on the assumption that space-time is smooth and nearly flat, so they break down at the big bang singularity, where the curvature of space-time is infinite." (Stephen W Hawking, "A Brief History of Time", 1988)

"The key to making discontinuity emerge from smoothness is the observation that the overall behavior of both static and dynamical systems is governed by what's happening near the critical points. These are the points at which the gradient of the function vanishes. Away from the critical points, the Implicit Function Theorem tells us that the behavior is boring and predictable, linear, in fact. So it's only at the critical points that the system has the possibility of breaking out of this mold to enter a new mode of operation. It's at the critical points that we have the opportunity to effect dramatic shifts in the system's behavior by 'nudging' lightly the system dynamics, one type of nudge leading to a limit cycle, another to a stable equilibrium, and yet a third type resulting in the system's moving into the domain of a 'strange attractor'. It's by these nudges in the equations of motion that the germ of the idea of discontinuity from smoothness blossoms forth into the modern theory of singularities, catastrophes and bifurcations, wherein we see how to make discontinuous outputs emerge from smooth inputs." (John L Casti, "Reality Rules: Picturing the world in mathematics", 1992)

"Catastrophe theory is a local theory, telling us what a function looks like in a small neighborhood of a critical point; it says nothing about what the function may be doing far away from the singularity. Yet most of the applications of the theory [...] involve extrapolating these rock-solid, local results to regions that may well be distant in time and space from the singularity." (John L Casti, "Five Golden Rules", 1995)

"When we examine the modeling literature, its most striking aspect is the predominance of 'flat' linear models. Why is this the case? After all, from a singularity theory viewpoint these linear objects are mathematical rarities. On mathematical grounds we should certainly not expect to see them put forth as credible representations of reality. Yet they are. And the reason is simple: linearity is a neutral assumption that leads to mathematically tractable models. So unless there is good reason to do otherwise, why not use a linear model?" (John L Casti, "Five Golden Rules", 1995)

"The best way to think about singularities is as boundaries or edges of spacetime. In this respect they are not, technically, part of spacetime itself." (Paul Davies," Cosmic Jackpot: Why Our Universe Is Just Right for Life", 2007)

Catastrophe theory can be thought of as a link between classical analysis, dynamical systems, differential topology (including singularity theory), modern bifurcation theory and the theory of complex systems. [...] The name ‘catastrophe theory’ is used for a combination of singularity theory and its applications. [...] From the didactical point of view, there are two main positions for courses in catastrophe theory at university level: Trying to teach the theory as a perfect axiomatic system consisting of exact definitions, theorems and proofs or trying to teach mathematics as it can be developed from historical or from natural problems. (Werner Sanns, "Catastrophe Theory" [Mathematics of Complexity and Dynamical Systems, 2012])

"Classification is only one of the mathematical aspects of catastrophe theory. Another is stability. The stable states of natural systems are the ones that we can observe over a longer period of time. But the stable states of a system, which can be described by potential functions and their singularities, can become unstable if the potentials are changed by perturbations. So stability problems in nature lead to mathematical questions concerning the stability of the potential functions." (Werner Sanns, "Catastrophe Theory" [Mathematics of Complexity and Dynamical Systems, 2012])

"The primary aspects of the theory of complex manifolds are the geometric structure itself, its topological structure, coordinate systems, etc., and holomorphic functions and mappings and their properties. Algebraic geometry over the complex number field uses polynomial and rational functions of complex variables as the primary tools, but the underlying topological structures are similar to those that appear in complex manifold theory, and the nature of singularities in both the analytic and algebraic settings is also structurally very similar." (Raymond O Wells Jr, "Differential and Complex Geometry: Origins, Abstractions and Embeddings", 2017)

"A theory that involves singularities and involves them unavoidably, moreover, carries within itself the seeds of its own destruction." (Peter Bergmann)

"It is more a philosophy than mathematics, and even as a philosophy it doesn't explain the real world [...] as mathematics, it brings together two of the most basic ideas in modern math: the study of dynamic systems and the study of the singularities of maps. Together, they cover a very wide area - but catastrophe theory brings them together in an arbitrary and constrained way." (Steven Smale)

24 May 2021

On Bifurcations I

"It is not enough to know the critical stress, that is, the quantitative breaking point of a complex design; one should also know as much as possible of the qualitative geometry of its failure modes, because what will happen beyond the critical stress level can be very different from one case to the next, depending on just which path the buckling takes. And here catastrophe theory, joined with bifurcation theory, can be very helpful by indicating how new failure modes appear." (Alexander Woodcock & Monte Davis, "Catastrophe Theory", 1978)

"The study of changes in the qualitative structure of the flow of a differential equation as parameters are varied is called bifurcation theory. At a given parameter value, a differential equation is said to have stable orbit structure if the qualitative structure of the flow does not change for sufficiently small variations of the parameter. A parameter value for which the flow does not have stable orbit structure is called a bifurcation value, and the equation is said to be at a bifurcation point." (Jack K Hale & Hüseyin Kocak, "Dynamics and Bifurcations", 1991)

"Fundamental to catastrophe theory is the idea of a bifurcation. A bifurcation is an event that occurs in the evolution of a dynamic system in which the characteristic behavior of the system is transformed. This occurs when an attractor in the system changes in response to change in the value of a parameter. A catastrophe is one type of bifurcation. The broader framework within which catastrophes are located is called dynamical bifurcation theory." (Courtney Brown, "Chaos and Catastrophe Theories", 1995)

"The existence of equilibria or steady periodic solutions is not sufficient to determine if a system will actually behave that way. The stability of these solutions must also be checked. As parameters are changed, a stable motion can become unstable and new solutions may appear. The study of the changes in the dynamic behavior of systems as parameters are varied is the subject of bifurcation theory. Values of the parameters at which the qualitative or topological nature of the motion changes are known as critical or bifurcation values." (Francis C Moona, "Nonlinear Dynamics", 2003)

"In parametrized dynamical systems a bifurcation occurs when a qualitative change is invoked by a change of parameters. In models such a qualitative change corresponds to transition between dynamical regimes. In the generic theory a finite list of cases is obtained, containing elements like ‘saddle-node’, ‘period doubling’, ‘Hopf bifurcation’ and many others." (Henk W Broer & Heinz Hanssmann, "Hamiltonian Perturbation Theory (and Transition to Chaos)", 2009)

"In dynamical systems, a bifurcation occurs when a small smooth change made to the parameter values (the bifurcation parameters) of a system causes a sudden 'qualitative' or topological change in its behaviour. Generally, at a bifurcation, the local stability properties of equilibria, periodic orbits or other invariant sets changes." (Gregory Faye, "An introduction to bifurcation theory",  2011)

"Catastrophe theory can be thought of as a link between classical analysis, dynamical systems, differential topology (including singularity theory), modern bifurcation theory and the theory of complex systems." (Werner Sanns, "Catastrophe Theory" [Mathematics of Complexity and Dynamical Systems, 2012])

"Roughly spoken, bifurcation theory describes the way in which dynamical system changes due to a small perturbation of the system-parameters. A qualitative change in the phase space of the dynamical system occurs at a bifurcation point, that means that the system is structural unstable against a small perturbation in the parameter space and the dynamic structure of the system has changed due to this slight variation in the parameter space." (Holger I Meinhardt, "Cooperative Decision Making in Common Pool Situations", 2012)

"Bifurcation theory is the mathematical study of changes in the qualitative or topological structure of a given family, such as the integral curves of a family of vector fields, and the solutions of a family of differential equations. Most commonly applied to the mathematical study of dynamical systems, a bifurcation occurs when a small smooth change made to the parameter values (the bifurcation parameters) of a system causes a sudden “qualitative” or topological change in its behavior. Bifurcations can occur in both continuous systems (described by ODEs, DDEs, or PDEs) and discrete systems (described by maps)." (Tianshou Zhou, "Bifurcation", 2013)

"The core of bifurcation theory of nonlinear system inevitably falls back to the dynamic analysis of linear ones. Because of that, the fundamental question one may ask is if there exist a linearized DAE system with the same qualitative behavior around fixed points of its nonlinear counterpart." (Ataíde S A.Netoa et al, "Nonlinear dynamic analysis of chemical engineering processes described by differential-algebraic equations systems", 2019)


15 May 2021

On Stability II

"Stability is commonly thought of as desirable, for its presence enables the system to combine of flexibility and activity in performance with something of permanence. Behaviour that is goal-seeking is an example of behaviour that is stable around a state of equilibrium. Nevertheless, stability is not always good, for a system may persist in returning to some state that, for other reasons, is considered undesirable." (W Ross Ashby, "An Introduction to Cybernetics", 1956)

"Effect spreads its 'tentacles' not only forwards (as a new cause giving rise to a new effect) but also backwards, to the cause which gave rise to it, thus modifying, exhausting or intensifying its force. This interaction of cause and effect is known as the principle of feedback. It operates everywhere, particularly in all self-organising systems where perception, storing, processing and use of information take place, as for example, in the organism, in a cybernetic device, and in society. The stability, control and progress of a system are inconceivable without feedback." (Alexander Spirkin, "Dialectical Materialism", 1983)

"Structure is the type of connection between the elements of a whole. […] . Structure is a composite whole, or an internally organised content. […] Structure implies not only the position of its elements in space but also their movement in time, their sequence and rhythm, the law of mutation of a process. So structure is actually the law or set of laws that determine a system's composition and functioning, its properties and stability." (Alexander Spirkin, "Dialectical Materialism", 1983)

"Stability theory is the study of systems under various perturbing influences. Since there are many systems, many types of influences, and many equations describing systems, this is an open-ended problem. A system is designed so that it will be stable under external influences. However, one cannot predict all external influences, nor predict the magnitude of those that occur. Consequently, we need control theory. If one is interested in stability theory, a natural result is a theory of control." (Richard E Bellman, "Eye of the Hurricane: An Autobiography", 1984)

"All systems evolve, although the rates of evolution may vary over time both between and within systems. The rate of evolution is a function of both the inherent stability of the system and changing environmental circumstances. But no system can be stabilized forever. For the universe as a whole, an isolated system, time’s arrow points toward greater and greater breakdown, leading to complete molecular chaos, maximum entropy, and heat death. For open systems, including the living systems that are of major interest to us and that interchange matter and energy with their external environments, time’s arrow points to evolution toward greater and greater complexity. Thus, the universe consists of islands of increasing order in a sea of decreasing order. Open systems evolve and maintain structure by exporting entropy to their external environments." (L Douglas Kiel, "Chaos Theory in the Social Sciences: Foundations and Applications", 1996)

"The phenomenon of emergence takes place at critical points of instability that arise from fluctuations in the environment, amplified by feedback loops." (Fritjof Capra, "The Hidden Connections", 2002)

"This spontaneous emergence of order at critical points of instability is one of the most important concepts of the new understanding of life. It is technically known as self-organization and is often referred to simply as ‘emergence’. It has been recognized as the dynamic origin of development, learning and evolution. In other words, creativity-the generation of new forms-is a key property of all living systems. And since emergence is an integral part of the dynamics of open systems, we reach the important conclusion that open systems develop and evolve. Life constantly reaches out into novelty." (Fritjof  Capra, "The Hidden Connections", 2002)

"Classification is only one of the mathematical aspects of catastrophe theory. Another is stability. The stable states of natural systems are the ones that we can observe over a longer period of time. But the stable states of a system, which can be described by potential functions and their singularities, can become unstable if the potentials are changed by perturbations. So stability problems in nature lead to mathematical questions concerning the stability of the potential functions." (Werner Sanns, "Catastrophe Theory" [Mathematics of Complexity and Dynamical Systems, 2012])

"An important aspect of the global theory of dynamical systems is the stability of the orbit structure as a whole. The motivation for the corresponding theory comes from applied mathematics. Mathematical models always contain simplifying assumptions. Dominant features are modeled; supposed small disturbing forces are ignored. Thus, it is natural to ask if the qualitative structure of the set of solutions - the phase portrait - of a model would remain the same if small perturbations were included in the model. The corresponding mathematical theory is called structural stability." (Carmen Chicone, "Stability Theory of Ordinary Differential Equations" [Mathematics of Complexity and Dynamical Systems, 2012])

"This spontaneous emergence of order at critical points of instability, which is often referred to simply as 'emergence', is one of the hallmarks of life. It has been recognized as the dynamic origin of development, learning, and evolution. In other words, creativity-the generation of new forms-is a key property of all living systems." (Fritjof Capra, "The Systems View of Life: A Unifying Vision", 2014)

18 March 2021

On Chaos IV

"One of the central problems studied by mankind is the problem of the succession of form. Whatever is the ultimate nature of reality (assuming that this expression has meaning), it is indisputable that our universe is not chaos. We perceive beings, objects, things to which we give names. These beings or things are forms or structures endowed with a degree of stability; they take up some part of space and last for some period of time." (René Thom, "Structural Stability and Morphogenesis", 1972)

"'Disorder' is not mere chaos; it implies defective order." (John M Ziman, "Models of Disorder", 1979)

"Chaos and catastrophe theories are among the most interesting recent developments in nonlinear modeling, and both have captured the interests of scientists in many disciplines. It is only natural that social scientists should be concerned with these theories. Linear statistical models have proven very useful in a great deal of social scientific empirical analyses, as is evidenced by how widely these models have been used for a number of decades. However, there is no apparent reason, intuitive or otherwise, as to why human behavior should be more linear than the behavior of other things, living and nonliving. Thus an intellectual movement toward nonlinear models is an appropriate evolutionary movement in social scientific thinking, if for no other reason than to expand our paradigmatic boundaries by encouraging greater flexibility in our algebraic specifications of all aspects of human life." (Courtney Brown, "Chaos and Catastrophe Theories", 1995)

"[...] chaos and catastrophe theories per se address behavioral phenomena that are consequences of two general types of nonlinear dynamic behavior. In the most elementary of behavioral terms, chaotic phenomena are a class of deterministic processes that seem to mimic random or stochastic dynamics. Catastrophe phenomena, on the other hand, are a class of dynamic processes that exhibit a sudden and large scale change in at least one variable in correspondence with relatively small changes in other variables or, in some cases, parameters." (Courtney Brown, "Chaos and Catastrophe Theories", 1995)

"Nature normally hates power laws. In ordinary systems all quantities follow bell curves, and correlations decay rapidly, obeying exponential laws. But all that changes if the system is forced to undergo a phase transition. Then power laws emerge-nature's unmistakable sign that chaos is departing in favor of order. The theory of phase transitions told us loud and clear that the road from disorder to order is maintained by the powerful forces of self-organization and is paved by power laws. It told us that power laws are not just another way of characterizing a system's behavior. They are the patent signatures of self-organization in complex systems." (Albert-László Barabási, "Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life", 2002)

"Chaos is not pure disorder, it carries within itself the indistinctness between the potentialities of order, of disorder, and of organization from which a cosmos will be born, which is an ordered universe." (Edgar Morin, "Restricted Complexity, General Complexity" [in (Carlos Gershenson et al [Eds.], "Worldviews, Science and Us: Philosophy and Complexity", 2007)])

"Chaos can be understood as a dynamical process in which microscopic information hidden in the details of a system’s state is dug out and expanded to a macroscopically visible scale (stretching), while the macroscopic information visible in the current system’s state is continuously discarded (folding)." (Hiroki Sayama, "Introduction to the Modeling and Analysis of Complex Systems", 2015)

"God has put a secret art into the forces of Nature so as to enable it to fashion itself out of chaos into a perfect world system." (Immanuel Kant)

"Science, like art, music and poetry, tries to reduce chaos to the clarity and order of pure beauty." (Detlev W Bronk)

17 March 2021

Mathematical Models III

"Mathematical model making is an art. If the model is too small, a great deal of analysis and numerical solution can be done, but the results, in general, can be meaningless. If the model is too large, neither analysis nor numerical solution can be carried out, the interpretation of the results is in any case very difficult, and there is great difficulty in obtaining the numerical values of the parameters needed for numerical results." (Richard E Bellman, "Eye of the Hurricane: An Autobiography", 1984)

"Symmetries abound in nature, in technology, and - especially - in the simplified mathematical models we study so assiduously. Symmetries complicate things and simplify them. They complicate them by introducing exceptional types of behavior, increasing the number of variables involved, and making vanish things that usually do not vanish. They simplify them by introducing exceptional types of behavior, increasing the number of variables involved, and making vanish things that usually do not vanish. They violate all the hypotheses of our favorite theorems, yet lead to natural generalizations of those theorems. It is now standard to study the 'generic' behavior of dynamical systems. Symmetry is not generic. The answer is to work within the world of symmetric systems and to examine a suitably restricted idea of genericity." (Ian Stewart, "Bifurcation with symmetry", 1988)

"Pedantry and sectarianism aside, the aim of theoretical physics is to construct mathematical models such as to enable us, from the use of knowledge gathered in a few observations, to predict by logical processes the outcomes in many other circumstances. Any logically sound theory satisfying this condition is a good theory, whether or not it be derived from ‘ultimate’ or ‘fundamental’ truth." (Clifford Truesdell & Walter Noll, "The Non-Linear Field Theories of Mechanics" 2nd Ed., 1992)

"[…] interval mathematics and fuzzy logic together can provide a promising alternative to mathematical modeling for many physical systems that are too vague or too complicated to be described by simple and crisp mathematical formulas or equations. When interval mathematics and fuzzy logic are employed, the interval of confidence and the fuzzy membership functions are used as approximation measures, leading to the so-called fuzzy systems modeling." (Guanrong Chen & Trung Tat Pham, "Introduction to Fuzzy Sets, Fuzzy Logic, and Fuzzy Control Systems", 2001)

"Modeling, in a general sense, refers to the establishment of a description of a system (a plant, a process, etc.) in mathematical terms, which characterizes the input-output behavior of the underlying system. To describe a physical system […] we have to use a mathematical formula or equation that can represent the system both qualitatively and quantitatively. Such a formulation is a mathematical representation, called a mathematical model, of the physical system." (Guanrong Chen & Trung Tat Pham, "Introduction to Fuzzy Sets, Fuzzy Logic, and Fuzzy Control Systems", 2001)

"An important aspect of the global theory of dynamical systems is the stability of the orbit structure as a whole. The motivation for the corresponding theory comes from applied mathematics. Mathematical models always contain simplifying assumptions. Dominant features are modeled; supposed small disturbing forces are ignored. Thus, it is natural to ask if the qualitative structure of the set of solutions - the phase portrait - of a model would remain the same if small perturbations were included in the model. The corresponding mathematical theory is called structural stability." (Carmen Chicone, "Stability Theory of Ordinary Differential Equations" [Mathematics of Complexity and Dynamical Systems, 2012])

"Models do not and need not match reality in all of its aspects and details to be adequate. A mathematical model is usually developed for a specific class of target systems, and its validity is determined relative to its intended applications. A model is considered valid within its intended domain of applicability provided that its predictions in that domain fall within an acceptable range of error, specified prior to the model’s development or identification." (Zoltan Domotor, "Mathematical Models in Philosophy of Science" [Mathematics of Complexity and Dynamical Systems, 2012])

"Simplified description of a real world system in mathematical terms, e. g., by means of differential equations or other suitable mathematical structures." (Benedetto Piccoli, Andrea Tosin, "Vehicular Traffic: A Review of Continuum Mathematical Models" [Mathematics of Complexity and Dynamical Systems, 2012])

"Stated loosely, models are simplified, idealized and approximate representations of the structure, mechanism and behavior of real-world systems. From the standpoint of set-theoretic model theory, a mathematical model of a target system is specified by a nonempty set - called the model’s domain, endowed with some operations and relations, delineated by suitable axioms and intended empirical interpretation." (Zoltan Domotor, "Mathematical Models in Philosophy of Science" [Mathematics of Complexity and Dynamical Systems, 2012])

"The standard view among most theoretical physicists, engineers and economists is that mathematical models are syntactic (linguistic) items, identified with particular systems of equations or relational statements. From this perspective, the process of solving a designated system of (algebraic, difference, differential, stochastic, etc.) equations of the target system, and interpreting the particular solutions directly in the context of predictions and explanations are primary, while the mathematical structures of associated state and orbit spaces, and quantity algebras – although conceptually important, are secondary." (Zoltan Domotor, "Mathematical Models in Philosophy of Science" [Mathematics of Complexity and Dynamical Systems, 2012])

28 February 2021

Tipping Point I

"For any given population of susceptibles, there is some critical combination of contact frequency, infectivity, and disease duration just great enough for the positive loop to dominate the negative loops. That threshold is known as the tipping point. Below the tipping point, the system is stable: if the disease is introduced into the community, there may be a few new cases, but on average, people will recover faster than new cases are generated. Negative feedback dominates and the population is resistant to an epidemic. Past the tipping point, the positive loop dominates .The system is unstable and once a disease arrives, it can spread like wildfire that is, by positive feedback-limited only by the depletion of the susceptible population." (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)

"If the contact rate, infectivity, and duration of infection are small enough, the system is below the tipping point and stable. Such a situation is known as herd immunity because the arrival of an infected individual does not produce an epidemic (though a few unlucky individuals may come in contact with any infectious arrivals and contract the disease, the group as a community is protected). However, changes in the contact rate, infectivity, or duration of illness can push a system past the tipping point." (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)

"The existence of the tipping point means it is theoretically possible to completely eradicate a disease. Eradication does not require a perfect vaccine and universal immunization but only the weaker condition that the reproduction rate of the disease fall and remain below one so that new cases arise at a lower rate than old cases are resolved." (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world. ", 2000)

"The sharp boundary between an epidemic and stability defined by the tipping point in the deterministic models becomes a probability distribution characterizing the chance an epidemic will occur for any given average rates of interaction, infectivity, and recovery. Likewise, the SI and SIR models assume a homogeneous and well-mixed population, while in reality it is often important to represent subpopulations and the spatial diffusion of an epidemic." (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)

"In the real world, advertising is expensive and does not persist indefinitely. The marketing plan for most new products includes a certain amount for a kickoff ad campaign and other initial marketing efforts. If the product is successful, further advertising can be supported out of the revenues the product generates. If, however, the product does not take off, the marketing budget is soon exhausted and external sources of adoption fall. Advertising is not exogenous, as in the Bass model, but is part of the feedback structure of the system. There is a tipping point for ideas and new products no less than for diseases." (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)

"The tipping point is that magic moment when an idea, trend, or social behavior crosses a threshold, tips, and spreads like wildfire." (Malcolm T Gladwell, "The Tipping Point: How Little Things Can Make a Big Difference", 2000)

"This possibility of sudden change is at the center of the idea of the Tipping Point and might well be the hardest of all to accept. [...] The Tipping Point is the moment of critical mass, the threshold, the boiling point." (Malcolm T Gladwell, "The Tipping Point: How Little Things Can Make a Big Difference", 2000)

"But in mathematics there is a kind of threshold effect, an intellectual tipping point. If a student can just get over the first few humps, negotiate the notational peculiarities of the subject, and grasp that the best way to make progress is to understand the ideas, not just learn them by rote, he or she can sail off merrily down the highway, heading for ever more abstruse and challenging ideas, while an only slightly duller student gets stuck at the geometry of isosceles triangles." (Ian Stewart, "Why Beauty is Truth: A history of symmetry", 2007)

"The product that first gets over its own tipping point attracts many consumers and this may make the competing product less attractive. Being the first to reach this tipping point is very important - more important than being the 'best' in an abstract sense." (David Easley & Jon Kleinberg, "Networks, Crowds, and Markets: Reasoning about a Highly Connected World", 2010)

"Stochastic variability and tipping points in the catch are two different dynamical phenomena. Yet they are both compatible with real-world data [...]" (John D W Morecroft, "Strategic Modelling and Business Dynamics: A Feedback Systems Approach", 2015)

20 February 2021

On Economics VI (Equilibrium I)

"The general theory of economic equilibrium was strengthened and made effective as an organon of thought by two powerful subsidiary conceptions - the Margin and Substitution. The notion of the Margin was extended beyond Utility to describe the equilibrium point in given conditions of any economic factor which can be regarded as capable of small variations about a given value, or in its functional relation to a given value." (John M Keynes, "Essays In Biography", 1933)

"Perhaps as important is the relation between the existence of solutions to a competitive equilibrium and the problems of normative or welfare economics." (Kenneth J Arrow & Gerard Debreu. "Existence of an equilibrium for a competitive economy", Econometrica: Journal of the Econometric Society, 1954)

"[Equilibrium] is a notion which can be employed usefully in varying degrees of looseness. It is an absolutely indispensable part of the toolbag of the economist and one which he can often contribute usefully to other sciences which are occasionally apt to get lost in the trackless exfoliations of purely dynamic systems." (Kenneth Boulding, The Skills of the Economist", Journal of Political Economy 67 (1), 1959)

"The ability to work with systems of general equilibrium is perhaps one of the most important skills of the economist - a skill which he shares with many other scientists, but in which he has perhaps a certain comparative advantage." (Kenneth Boulding, "The Skills of the Economist", Journal of Political Economy 67 (1), 1959)

"An economy may be in equilibrium from a short-period point of view and yet contain within itself incompatibilities that are soon going to knock it out of equilibrium." (Joan Robinson, "Essays in the Theory of Economic Growth", 1965)

"We know, in other words, the general conditions in which what we call, somewhat misleadingly, an equilibrium will establish itself: but we never know what the particular prices or wages are which would exist if the market were to bring about such an equilibrium." (Friedrich Hayek, "Unemployment and monetary policy: government as generator of the ‘business cycle’", 1979)

"Economic theory is devoted to the study of equilibrium positions. The concept of equilibrium is very useful. It allows us to focus on the final outcome rather than the process that leads up to it. But the concept is also very deceptive. It has the aura of something empirical: since the adjustment process is supposed to lead to an equilibrium, an equilibrium position seems somehow implicit in our observations. That is not true. Equilibrium itself has rarely been observed in real life - market prices have a notorious habit of fluctuating." (George Soros, "The Alchemy of Finance: Reading the Mind of the Market", 1987)

"The concept of a general equilibrium has no relevance to the real world (in other words, classical economics is an exercise in futility)." (George Soros, "The Alchemy of Finance: Reading the Mind of the Market", 1987)

"Financial markets are supposed to swing like a pendulum: They may fluctuate wildly in response to exogenous shocks, but eventually they are supposed to come to rest at an equilibrium point and that point is supposed to be the same irrespective of the interim fluctuations." (George Soros, "The Crisis of Global Capitalism", 1998)

"Stock market bubbles don't grow out of thin air. They have a solid basis in reality - but reality as distorted by a misconception. Under normal conditions misconceptions are self-correcting, and the markets tend toward some kind of equilibrium. Occasionally, a misconception is reinforced by a trend prevailing in reality, and that is when a boom-bust process gets under way. Eventually the gap between reality and its false interpretation becomes unsustainable, and the bubble bursts." (George Soros, [interview] 2004)

21 January 2021

Complex Systems III

"Complexity must be grown from simple systems that already work." (Kevin Kelly, "Out of Control: The New Biology of Machines, Social Systems and the Economic World", 1995)

"Even though these complex systems differ in detail, the question of coherence under change is the central enigma for each." (John H Holland," Hidden Order: How Adaptation Builds Complexity", 1995)

"By irreducibly complex I mean a single system composed of several well-matched, interacting parts that contribute to the basic function, wherein the removal of any one of the parts causes the system to effectively cease functioning. An irreducibly complex system cannot be produced directly (that is, by continuously improving the initial function, which continues to work by the same mechanism) by slight, successive modification of a precursor, system, because any precursors to an irreducibly complex system that is missing a part is by definition nonfunctional." (Michael Behe, "Darwin’s Black Box", 1996)

"A dictionary definition of the word ‘complex’ is: ‘consisting of interconnected or interwoven parts’ […] Loosely speaking, the complexity of a system is the amount of information needed in order to describe it. The complexity depends on the level of detail required in the description. A more formal definition can be understood in a simple way. If we have a system that could have many possible states, but we would like to specify which state it is actually in, then the number of binary digits (bits) we need to specify this particular state is related to the number of states that are possible." (Yaneer Bar-Yamm, "Dynamics of Complexity", 1997)

"When the behavior of the system depends on the behavior of the parts, the complexity of the whole must involve a description of the parts, thus it is large. The smaller the parts that must be described to describe the behavior of the whole, the larger the complexity of the entire system. […] A complex system is a system formed out of many components whose behavior is emergent, that is, the behavior of the system cannot be simply inferred from the behavior of its components." (Yaneer Bar-Yamm, "Dynamics of Complexity", 1997)

"Complex systems operate under conditions far from equilibrium. Complex systems need a constant flow of energy to change, evolve and survive as complex entities. Equilibrium, symmetry and complete stability mean death. Just as the flow, of energy is necessary to fight entropy and maintain the complex structure of the system, society can only survive as a process. It is defined not by its origins or its goals, but by what it is doing." (Paul Cilliers,"Complexity and Postmodernism: Understanding Complex Systems", 1998)

"There is no over-arching theory of complexity that allows us to ignore the contingent aspects of complex systems. If something really is complex, it cannot by adequately described by means of a simple theory. Engaging with complexity entails engaging with specific complex systems. Despite this we can, at a very basic level, make general remarks concerning the conditions for complex behaviour and the dynamics of complex systems. Furthermore, I suggest that complex systems can be modelled." (Paul Cilliers," Complexity and Postmodernism", 1998)

"The self-similarity of fractal structures implies that there is some redundancy because of the repetition of details at all scales. Even though some of these structures may appear to teeter on the edge of randomness, they actually represent complex systems at the interface of order and disorder."  (Edward Beltrami, "What is Random?: Chaos and Order in Mathematics and Life", 1999)

12 October 2020

On Self-Organization III

"The self-organisation of society depends on commonly diffused symbols evoking commonly diffused ideas, and at the same time indicating commonly understood action." (Alfred N Whitehead, "Symbolism: Its Meaning and Effect", 1927)

"To say a system is 'self-organizing' leaves open two quite different meanings. There is a first meaning that is simple and unobjectionable. This refers to the system that starts with its parts separate (so that the behavior of each is independent of the others' states) and whose parts then act so that they change towards forming connections of some type. Such a system is 'self-organizing' in the sense that it changes from 'parts separated' to 'parts joined'. […] In general such systems can be more simply characterized as 'self-connecting', for the change from independence between the parts to conditionality can always be seen as some form of 'connection', even if it is as purely functional […]  'Organizing' […] may also mean 'changing from a bad organization to a good one' […] The system would be 'self-organizing' if a change were automatically made to the feedback, changing it from positive to negative; then the whole would have changed from a bad organization to a good." (W Ross Ashby, "Principles of the self-organizing system", 1962)

"In self-organizing systems, on the other hand, ‘control’ of the organization is typically distributed over the whole of the system. All parts contribute evenly to the resulting arrangement." (Francis Heylighen, "The Science Of Self-Organization And Adaptivity", 1970)

"Self-organization can be defined as the spontaneous creation of a globally coherent pattern out of local interactions. Because of its distributed character, this organization tends to be robust, resisting perturbations. The dynamics of a self-organizing system is typically non-linear, because of circular or feedback relations between the components. Positive feedback leads to an explosive growth, which ends when all components have been absorbed into the new configuration, leaving the system in a stable, negative feedback state. Non-linear systems have in general several stable states, and this number tends to increase (bifurcate) as an increasing input of energy pushes the system farther from its thermodynamic equilibrium." (Francis Heylighen, "The Science Of Self-Organization And Adaptivity", 1970)

"To adapt to a changing environment, the system needs a variety of stable states that is large enough to react to all perturbations but not so large as to make its evolution uncontrollably chaotic. The most adequate states are selected according to their fitness, either directly by the environment, or by subsystems that have adapted to the environment at an earlier stage. Formally, the basic mechanism underlying self-organization is the (often noise-driven) variation which explores different regions in the system’s state space until it enters an attractor. This precludes further variation outside the attractor, and thus restricts the freedom of the system’s components to behave independently. This is equivalent to the increase of coherence, or decrease of statistical entropy, that defines self-organization." (Francis Heylighen, "The Science Of Self-Organization And Adaptivity", 1970)

"[The] system may evolve through a whole succession of transitions leading to a hierarchy of more and more complex and organized states. Such transitions can arise in nonlinear systems that are maintained far from equilibrium: that is, beyond a certain critical threshold the steady-state regime become unstable and the system evolves into a new configuration." (Ilya Prigogine, Gregoire Micolis & Agnes Babloyantz, "Thermodynamics of Evolution", Physics Today 25 (11), 1972)

"A self-organizing system not only regulates or adapts its behavior, it creates its own organization. In that respect it differs fundamentally from our present systems, which are created by their designer. We define organization as structure with function. Structure means that the components of a system are arranged in a particular order. It requires both connections, that integrate the parts into a whole, and separations that differentiate subsystems, so as to avoid interference. Function means that this structure fulfils a purpose." (Francis Heylighen & Carlos Gershenson, "The Meaning of Self-organization in Computing", IEEE Intelligent Systems, 2003)

"The basic concept of complexity theory is that systems show patterns of organization without organizer (autonomous or self-organization). Simple local interactions of many mutually interacting parts can lead to emergence of complex global structures. […] Complexity originates from the tendency of large dynamical systems to organize themselves into a critical state, with avalanches or 'punctuations' of all sizes. In the critical state, events which would otherwise be uncoupled became correlated." (Jochen Fromm, "The Emergence of Complexity", 2004)

"We have to be aware that even in mathematical and physical models of self-organizing systems, it is the observer who ascribes properties, aspects, states, and probabilities; and therefore entropy or order to the system. But organization is more than low entropy: it is structure that has a function or purpose." (Carlos Gershenson, "Design and Control of Self-organizing Systems", 2007)

"Like resilience, self-organizazion is often sacrificed for purposes of short-term productivity and stability." (Donella H Meadows, “Thinking in Systems: A Primer”, 2008)

05 March 2020

On Feedback (1980-1989)

"Effect spreads its 'tentacles' not only forwards (as a new cause giving rise to a new effect) but also backwards, to the cause which gave rise to it, thus modifying, exhausting or intensifying its force. This interaction of cause and effect is known as the principle of feedback. It operates everywhere, particularly in all self-organising systems where perception, storing, processing and use of information take place, as for example, in the organism, in a cybernetic device, and in society. The stability, control and progress of a system are inconceivable without feedback." (Alexander Spirkin, "Dialectical Materialism", 1983)

"The autonomy of living systems is characterized by closed, recursive organization. [...] A system's highest order of recursion or feedback process defines, generates, and maintains the autonomy of a system. The range of deviation this feedback seeks to control concerns the organization of the whole system itself. If the system should move beyond the limits of its own range of organization it would cease to be a system. Thus, autonomy refers to the maintenance of a systems wholeness. In biology, it becomes a definition of what maintains the variable called living." (Bradford P Keeney, "Aesthetics of Change", 1983)

"Ultimately, uncontrolled escalation destroys a system. However, change in the direction of learning, adaptation, and evolution arises from the control of control, rather than unchecked change per se. In general, for the survival and co-evolution of any ecology of systems, feedback processes must be embodied by a recursive hierarchy of control circuits." (Bradford P Keeney, "Aesthetics of Change", 1983)

"What is sometimes called 'positive feedback' or 'amplified deviation' is therefore a partial arc or sequence of a more encompassing negative feedback process. The appearance of escalating runaways in systems is a consequence of the frame of reference an observer has punctuated. Enlarging one's frame of reference enables the 'runaway' to be seen as a variation subject to higher orders of control." (Bradford P Keeney, "Aesthetics of Change", 1983)

"Every system of whatever size must maintain its own structure and must deal with a dynamic environment, i.e., the system must strike a proper balance between stability and change. The cybernetic mechanisms for stability (i.e., homeostasis, negative feedback, autopoiesis, equifinality) and change (i.e., positive feedback, algedonodes, self-organization) are found in all viable systems." (Barry Clemson, "Cybernetics: A New Management Tool", 1984) 

"The term closed loop-learning process refers to the idea that one learns by determining what s desired and comparing what is actually taking place as measured at the process and feedback for comparison. The difference between what is desired and what is taking place provides an error indication which is used to develop a signal to the process being controlled." (Harold Chestnut, 1984) 

"Negative feedback only improves the precision of goal-seeking, but does not determine it. Feedback devices are only executive mechanisms that operate during the translation of a program." (Ernst Mayr, "Toward a New Philosophy of Biology: Observations of an Evolutionist", 1988)

01 March 2020

On Stability I

"The behavior of two individuals, consisting of effort which results in output, is considered to be determined by a satisfaction function which depends on remuneration (receiving part of the output) and on the effort expended. The total output of the two individuals is not additive, that is, together they produce in general more than separately. Each individual behaves in a way which he considers will maximize his satisfaction function. Conditions are deduced for a certain relative equilibrium and for the stability of this equilibrium, i.e., conditions under which it will not pay the individual to decrease his efforts. In the absence of such conditions ‘exploitation’ occurs which may or may not lead to total parasitism." (Anatol Rapoport, "Mathematical theory of motivation interactions of two individuals," The Bulletin of Mathematical Biophysics 9, 1947)

"[…] there are three different but interconnected conceptions to be considered in every structure, and in every structural element involved: equilibrium, resistance, and stability." (Eduardo Torroja, "Philosophy of Structure" , 1951) 

"As shorthand, when the phenomena are suitably simple, words such as equilibrium and stability are of great value and convenience. Nevertheless, it should be always borne in mind that they are mere shorthand, and that the phenomena will not always have the simplicity that these words presuppose." (W Ross Ashby, "An Introduction to Cybernetics", 1956)

"The static stability of a system is defined by the initial tendency to return to equilibrium conditions following some disturbance from equilibrium. […] If the object has a tendency to continue in the direction of disturbance, negative static stability or static instability exists. […] If the object subject to disturbance has neither the tendency to return nor the tendency to continue in the displacement direction, neutral static stability exists." (Hugh H Hurt, "Aerodynamics for Naval Aviators", 1960)

"While static stability is concerned with the tendency of a displaced body to return to equilibrium, dynamic stability is concerned with the resulting motion with time. If an object is disturbed from equilibrium, the time history of the resulting motion indicates the dynamic stability of the system. In general, the system will demonstrate positive dynamic stability if the amplitude of the motion decreases with time." (Hugh H Hurt, "Aerodynamics for Naval Aviators", 1960)


"[...] in a state of dynamic equilibrium with their environments. If they do not maintain this equilibrium they die; if they do maintain it they show a degree of spontaneity, variability, and purposiveness of response unknown in the non-living world. This is what is meant by ‘adaptation to environment’ […] [Its] essential feature […] is stability - that is, the ability to withstand disturbances." (Kenneth Craik, 'Living organisms', “The Nature of Psychology”, 1966)

"One of the central problems studied by mankind is the problem of the succession of form. Whatever is the ultimate nature of reality (assuming that this expression has meaning). it is indisputable that our universe is not chaos. We perceive beings, objects, things to which we give names. These beings or things are forms or structures endowed with a degree of stability: they take up some part of space and last for some period of time." (René Thom, "Structural Stability and Morphogenesis", 1972)

"There seems to be a time scale in all natural processes beyond which structural stability and calculability become incompatible." (René Thom, "Structural Stability and Morphogenesis", 1972)

"Complex systems operate under conditions far from equilibrium. Complex systems need a constant flow of energy to change, evolve and survive as complex entities. Equilibrium, symmetry and complete stability mean death. Just as the flow, of energy is necessary to fight entropy and maintain the complex structure of the system, society can only survive as a process. It is defined not by its origins or its goals, but by what it is doing." (Paul Cilliers,"Complexity and Postmodernism: Understanding Complex Systems", 1998)

"Cybernetics is the science of effective organization, of control and communication in animals and machines. It is the art of steersmanship, of regulation and stability. The concern here is with function, not construction, in providing regular and reproducible behaviour in the presence of disturbances. Here the emphasis is on families of solutions, ways of arranging matters that can apply to all forms of systems, whatever the material or design employed. [...] This science concerns the effects of inputs on outputs, but in the sense that the output state is desired to be constant or predictable – we wish the system to maintain an equilibrium state. It is applicable mostly to complex systems and to coupled systems, and uses the concepts of feedback and transformations (mappings from input to output) to effect the desired invariance or stability in the result." (Chris Lucas, "Cybernetics and Stochastic Systems", 1999)

13 February 2020

On Equilibrium (1950-1959)

"Now a system is said to be at equilibrium when it has no further tendency to change its properties." (Walter J Moore, "Physical chemistry", 1950)

"Physical irreversibility manifests itself in the fact that, whenever the system is in a state far removed from equilibrium, it is much more likely to move toward equilibrium, than in the opposite direction." (William Feller, "An Introduction To Probability Theory And Its Applications", 1950)

"Equilibrium requires that the whole of the structure, the form of its elements, and the means of interconnection be so combined that at the supports there will automatically be produced passive forces or reactions that are able to balance the forces acting upon the structures, including the force of its own weight."  (Eduardo Torroja, "Philosophy of Structure", 1951) 

"[…] there are three different but interconnected conceptions to be considered in every structure, and in every structural element involved: equilibrium, resistance, and stability." (Eduardo Torroja, "Philosophy of Structure" , 1951) 

"Business-cycle theorists concerned themselves with why the economy naturally generated fluctuations in employment and output, [while the rest of the profession] continued to operate on the assumption that full employment was the natural, equilibrium position for the economy." (Robert A Gordon, "Business Fluctuations", 1952)

"Biological communities are systems of interacting components and thus display characteristic properties of systems, such as mutual interdependence, self-regulation, adaptation to disturbances, approach to states of equilibrium, etc." (Ludwig von Bertalanffy, "Problems of Life", 1952)

"Every stable system has the property that if displaced from a state of equilibrium and released, the subsequent movement is so matched to the initial displacement that the system is brought back to the state of equilibrium. A variety of disturbances will therefore evoke a variety of matched reactions." (W Ross Ashby, "Design for a Brain: The Origin of Adaptive Behavior", 1952)

"The primary fact is that all isolated state-determined dynamic systems are selective: from whatever state they have initially, they go towards states of equilibrium. These states of equilibrium are always characterised, in their relation to the change-inducing laws of the system, by being exceptionally resistant." (W Ross Ashby, "Design for a Brain: The Origin of Adaptive Behavior", 1952)

"Multiple equilibria are not necessarily useless, but from the standpoint of any exact science the existence of a uniquely determined equilibrium is, of course, of the utmost importance, even if proof has to be purchased at the price of very restrictive assumptions; without any possibility of proving the existence of (a) uniquely determined equilibrium - or at all events, of a small number of possible equilibria - at however high a level of abstraction, a field of phenomena is really a chaos that is not under analytical control." (Joseph A Schumpeter, "History of Economic Analysis", 1954)

"Perhaps as important is the relation between the existence of solutions to a competitive equilibrium and the problems of normative or welfare economics." (Kenneth J Arrow & Gerard Debreu. "Existence of an equilibrium for a competitive economy", Econometrica: Journal of the Econometric Society, 1954)

"As shorthand, when the phenomena are suitably simple, words such as equilibrium and stability are of great value and convenience. Nevertheless, it should be always borne in mind that they are mere shorthand, and that the phenomena will not always have the simplicity that these words presuppose." (W Ross Ashby, "An Introduction to Cybernetics", 1956)

"Reversible processes are not, in fact, processes at all, they are sequences of states of equilibrium. The processes which we encounter in real life are always irreversible processes." (Arnold Sommerfeld, "Thermodynamics and Statistical Mechanics", Lectures on Theoretical - Physics Vol. V, 1956)

"Thus, if the whole is at a state of equilibrium, each part must be in a state of equilibrium in the conditions provided by the other. [...] the whole is at a state of equilibrium if and only if each part is at a state of equilibrium in the conditions provided by the other part. [...] No state (of the whole) can be a state of equilibrium unless it is acceptable to every one of the component parts, each acting in the conditions given by the others." (W Ross Ashby, "An Introduction to Cybernetics", 1956)

"It is clear to all that the animal organism is a highly complex system consisting of an almost infinite series of parts connected both with one another and, as a total complex, with the surrounding world, with which it is in a state of equilibrium. (Ivan P Pavlov, "Experimental psychology, and other essays", 1957)

"[Equilibrium] is a notion which can be employed usefully in varying degrees of looseness. It is an absolutely indispensable part of the toolbag of the economist and one which he can often contribute usefully to other sciences which are occasionally apt to get lost in the trackless exfoliations of purely dynamic systems." (Kenneth Boulding, The Skills of the Economist", Journal of Political Economy 67 (1), 1959)

"One of the most important skills of the economist, therefore, is that of simplification of the model." (Kenneth Boulding, "The Skills of the Economist", Journal of Political Economy 67 (1), 1959)

"The ability to work with systems of general equilibrium is perhaps one of the most important skills of the economist - a skill which he shares with many other scientists, but in which he has perhaps a certain comparative advantage." (Kenneth Boulding, "The Skills of the Economist", Journal of Political Economy 67 (1), 1959)

04 February 2020

On Spacetime (1950-1974)

"The rate of growth deserves to be studied as a necessary preliminary to the theoretical study of form, and organic form itself is found, mathematically speaking, to be a function of time. […] We might call the form of an organism an event in space-time, and not merely a configuration in space."  (Sir D’Arcy W Thompson, "On Growth and Form", 1951)

"In the realm of physics it is perhaps only the theory of relativity which has made it quite clear that the two essences, space and time, entering into our intuition, have no place in the world constructed by mathematical physics. Colours are thus 'really' not even æther-vibrations, but merely a series of values of mathematical functions in which occur four independent parameters corresponding to the three dimensions of space, and the one of time." (Hermann Weyl, "Space, Time, Matter", 1952)

"Space and time are commonly regarded as the forms of existence of the real world, matter as its substance. A definite portion of matter occupies a definite part of space at a definite moment of time. It is in the composite idea of motion that these three fundamental conceptions enter into intimate relationship." (Hermann Weyl, "Space, Time, Matter", 1952)

"It is the invariable lesson to humanity that distance in time, and in space as well, lends focus. It is not recorded, incidentally, that the lesson has ever been permanently learned." (Isaac Asimov, "Foundation and Empire", 1952)

"Space-time does not claim existence on its own, but only as a structural quality of the field." (Albert Einstein, 1954)

"The main interest of physical statistics lies in fact not so much in the distribution of the phenomena in space, but rather in their succession in time." (Richard von Mises, "Probability, Statistics, and Truth"2nd Ed., 1957)

"Synchronistic phenomena prove the simultaneous occurrence of meaningful equivalences in heterogenous, causally unrelated processes; in other words, they prove that a content perceived by an observer can, at the same time, be represented by an outside event, without any causal connection. From this it follows either that the psyche cannot be localized in time, or that space is relative to the psyche." (Carl G Jung, "The structure and dynamics of the psyche", 1960)

"If the universe is a mingling of probability clouds spread through a cosmic eternity of space-time, how is there as much order, persistence, and coherent transformation as there is?" (Lancelot L Whyte, "Essay on Atomism: From Democritus to 1960", 1961)

"The laws of thought are also the laws of things: of things in the remotest space and the remotest time." (Clive S Lewis, "Christian Reflections", 1967)

"There is one metaphor in the physicist’s account of space-time which one would expect anyone to recognize as such, for metaphor is here strained far beyond the breaking point, i.e., when it is said that time is ‘at right angles to each of the other three dimensions’. Can anyone really attach any meaning to this - except as a recipe for drawing diagrams?" (Clement W K Mundle, "The Space-Time World", Mind, 1967)

"Space-time is the basic spatiotemporal entity. Many philosophers have mouthed this truth, but few have swallowed it, and very few have digested it [...] An appreciation of this truth is crucial to what is commonly referred to as the philosophy of space and time [...] In large measure the lack of progress in this area can be traced to the fact that philosophers have not taken seriously the corollary that talk about space and time is really talk about the spatial and temporal aspects of spacetime." (John Earman, "Space-Time or How to Solve Philosophical Problems and Dissolve Philosophical Muddles Without Really Trying", Journal of Philosophy, 1970) 

"One of the central problems studied by mankind is the problem of the succession of form. Whatever is the ultimate nature of reality (assuming that this expression has meaning). it is indisputable that our universe is not chaos. We perceive beings, objects, things to which we give names. These beings or things are forms or structures endowed with a degree of stability: they take up some part of space and last for some period of time." (René Thom, "Structural Stability and Morphogenesis", 1972) 

15 December 2019

René F Thom - Collected Quotes

"Everything considered, mathematicians should have the courage of their most profound convictions and thus affirm that mathematical forms indeed have an existence that is independent of the mind considering them. […] Yet, at any given moment, mathematicians have only an incomplete and fragmentary view of this world of ideas." (René F Thom, "Modern Mathematics: An Educational and Philosophical Error?", American Scientist Vol. 59, 1971) 

"Any mathematician endowed with a modicum of intellectual honesty will recognise then that in each of his proofs he is capable of giving a meaning to the symbols he uses." (René F Thom, "Modern mathematics, does it exist?", 1972)

"One of the central problems studied by mankind is the problem of the succession of form. Whatever is the ultimate nature of reality (assuming that this expression has meaning). it is indisputable that our universe is not chaos. We perceive beings, objects, things to which we give names. These beings or things are forms or structures endowed with a degree of stability: they take up some part of space and last for some period of time." (René F Thom, "Structural Stability and Morphogenesis", 1972)

"The fact that we have to consider more refined explanations - namely, those of science - to predict the change of phenomena shows that the  determinism of the change of forms is not rigorous, and that the same local  situation can give birth to apparently different outcomes under the influence of unknown or unobservable factors." (René F Thom, "Structural Stability and Morphogenesis", 1972)

"The real problem which confronts mathematics is not that of rigour, but the problem of the development of ‘meaning’, of the ‘existence’of mathematical objects.'' (René F Thom, "Modern mathematics, does it exist?", 1972)

"There seems to be a time scale in all natural processes beyond which structural stability and calculability become incompatible." (René F Thom, "Structural Stability and Morphogenesis", 1972)

"This distinction between regular and catastrophic points is obviously somewhat arbitrary because it depends on the fineness of the observation used. One might object, not without reason, that each point is catastrophic to sufficiently sensitive observational techniques. This is why the distinction is an idealization, to be made precise by a mathematical model, and to this end we summarize some ideas of qualitative dynamics." (René F Thom, "Structural Stability and Morphogenesis", 1972)

"The catastrophe model is at the same time much less and much more than a scientific theory; one should consider it as a language, a method, which permits classification and systematization of given empirical data [...] In fact, any phenomenon at all can be explained by a suitable model from catastrophe theory." (René F Thom, 1973)

"Catastrophe Theory is-quite likely-the first coherent attempt (since Aristotelian logic) to give a theory on analogy. When narrow-minded scientists object to Catastrophe Theory that it gives no more than analogies, or metaphors, they do not realise that they are stating the proper aim of Catastrophe Theory, which is to classify all possible types of analogous situations." (René F Thom," La Théorie des catastrophes: État présent et perspective", 1977)

"Algebra is rich in structure but weak in meaning." (René F Thom) 

"If we admit a priori that science is just acquisition of knowledge, that is, building an inventory of all observable phenomena in a given disciplinary domain - then, obviously, any science is empirical.” (René F Thom) 

"The spirit of geometry circulates almost everywhere in the immense body of mathematics, and it is a major pedagogical error to seek to eliminate it." (René F Thom) 

"Topology is precisely that mathematical discipline which allows a passage from the local to the global." (René F Thom)

Related Posts Plugin for WordPress, Blogger...

On Leonhard Euler

"I have been able to solve a few problems of mathematical physics on which the greatest mathematicians since Euler have struggled in va...