"For any given population of susceptibles, there is some critical combination of contact frequency, infectivity, and disease duration just great enough for the positive loop to dominate the negative loops. That threshold is known as the tipping point. Below the tipping point, the system is stable: if the disease is introduced into the community, there may be a few new cases, but on average, people will recover faster than new cases are generated. Negative feedback dominates and the population is resistant to an epidemic. Past the tipping point, the positive loop dominates .The system is unstable and once a disease arrives, it can spread like wildfire that is, by positive feedback-limited only by the depletion of the susceptible population." (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)
"The tipping point is that magic moment when an idea, trend, or social behavior crosses a threshold, tips, and spreads like wildfire." (Malcolm T Gladwell, "The Tipping Point: How Little Things Can Make a Big Difference", 2000)
"This possibility of sudden change is at the center of the idea of the Tipping Point and might well be the hardest of all to accept. [...] The Tipping Point is the moment of critical mass, the threshold, the boiling point." (Malcolm T Gladwell, "The Tipping Point: How Little Things Can Make a Big Difference", 2000)
"[…] real networks not only are connected but are well beyond the threshold of one. Random network theory tells us that as the average number of links per node increases beyond the critical one, the number of nodes left out of the giant cluster decreases exponentially. That is, the more links we add, the harder it is to find a node that remains isolated. Nature does not take risks by staying close to the threshold. It well surpasses it."
"The arrow of time, through the defi ning role it plays in everyday life and its intimate link with the origin of the universe, lies at a singular threshold between the reality we experience and the more refi ned reality cutting-edge science seeks to uncover." (Brian Greene, "The Fabric of the Cosmos: Space, Time, and the Texture of Reality", 2004)
"In the case of a complex system, nonlinear behavior can happen as disturbances or changes in the system, each one relatively small by itself, accumulate. Outwardly, everything seems to be normal: the system doesn’t generate any surprises. At some point, though, the behavior of the whole system suddenly shifts to a radically new mode. This kind of behavior is often called a threshold effect, because the shift occurs when a critical threshold - usually unseen and often unexpected - is crossed." (Thomas Homer-Dixon, "The Upside of Down: Catastrophe, Creativity, and the Renewal of Civilization", 2006)
"But in mathematics there is a kind of threshold effect, an intellectual tipping point. If a student can just get over the first few humps, negotiate the notational peculiarities of the subject, and grasp that the best way to make progress is to understand the ideas, not just learn them by rote, he or she can sail off merrily down the highway, heading for ever more abstruse and challenging ideas, while an only slightly duller student gets stuck at the geometry of isosceles triangles." (Ian Stewart, "Why Beauty is Truth: A history of symmetry", 2007)
"The simplest basic architecture of an artificial neural network is composed of three layers of neurons - input, output, and intermediary (historically called perceptron). When the input layer is stimulated, each node responds in a particular way by sending information to the intermediary level nodes, which in turn distribute it to the output layer nodes and thereby generate a response. The key to artificial neural networks is in the ways that the nodes are connected and how each node reacts to the stimuli coming from the nodes it is connected to. Just as with the architecture of the brain, the nodes allow information to pass only if a specific stimulus threshold is passed. This threshold is governed by a mathematical equation that can take different forms. The response depends on the sum of the stimuli coming from the input node connections and is 'all or nothing'." (Diego Rasskin-Gutman, "Chess Metaphors: Artificial Intelligence and the Human Mind", 2009)
"The existence of dark matter particles can never be disproven by direct experiment because ever lighter particles and/or ever smaller cross sections just below the current detection threshold may be postulated for every non-detection. There exists no falsifiable prediction concerning the DM particles." (Pavel Kroupa, "The dark matter crisis: falsification of the current standard model of cosmology", 2012)
"Even more important is the way complex systems seem to strike a balance between the need for order and the imperative for change. Complex systems tend to locate themselves at a place we call 'the edge of chaos'. We imagine the edge of chaos as a place where there is enough innovation to keep a living system vibrant, and enough stability to keep it from collapsing into anarchy. It is a zone of conflict and upheaval, where the old and new are constantly at war. Finding the balance point must be a delicate matter - if a living system drifts too close, it risks falling over into incoherence and dissolution; but if the system moves too far away from the edge, it becomes rigid, frozen, totalitarian. Both conditions lead to extinction. […] Only at the edge of chaos can complex systems flourish. This threshold line, that edge between anarchy and frozen rigidity, is not a like a fence line, it is a fractal line; it possesses nonlinearity." (Stephen H Buhner, "Plant Intelligence and the Imaginal Realm: Beyond the Doors of Perception into the Dreaming of Earth", 2014)
"Flaws can be found in any research design if you look hard enough. […] In our experience, it is good scientific practice to refine one's research hypotheses in light of the data. Working scientists are also keenly aware of the risks of data dredging, and they use confidence intervals and p-values as a tool to avoid getting fooled by noise. Unfortunately, a by-product of all this struggle and care is that when a statistically significant pattern does show up, it is natural to get excited and believe it. The very fact that scientists generally don't cheat, generally don't go fishing for statistical significance, makes them vulnerable to drawing strong conclusions when they encounter a pattern that is robust enough to cross the p < 0.05 threshold." (Andrew Gelman & Eric Loken, "The Statistical Crisis in Science", American Scientist Vol. 102(6), 2014)
"Only at the edge of chaos can complex systems flourish. This threshold line, that edge between anarchy and frozen rigidity, is not a like a fence line, it is a fractal line; it possesses nonlinearity." (Stephen H Buhner, "Plant Intelligence and the Imaginal Realm: Beyond the Doors of Perception into the Dreaming of Earth", 2014)
"Bifurcation is a qualitative, topological change of a system’s phase space that occurs when some parameters are slightly varied across their critical thresholds. Bifurcations play important roles in many real-world systems as a switching mechanism. […] There are two categories of bifurcations. One is called a local bifurcation, which can be characterized by a change in the stability of equilibrium points. It is called local because it can be detected and analyzed only by using localized information around the equilibrium point. The other category is called a global bifurcation, which occurs when non-local features of the phase space, such as limit cycles (to be discussed later), collide with equilibrium points in a phase space. This type of bifurcation can’t be characterized just by using localized information around the equilibrium point." (Hiroki Sayama, "Introduction to the Modeling and Analysis of Complex Systems", 2015)
"[...] living organisms manifest deep new physical principles, and that we are on the threshold of uncovering and harnessing those principles. What is different this time, and why it has taken so many decades to discover the real secret of life, is that the new physics is not simply a matter of an additional type of force - a 'life force' - but something altogether more subtle, something that interweaves matter and information, wholes and parts, simplicity and complexity." (Paul Davies, "The Demon in the Machine: How Hidden Webs of Information Are Solving the Mystery of Life", 2019)
No comments:
Post a Comment