Showing posts with label conjectures. Show all posts
Showing posts with label conjectures. Show all posts

24 September 2023

On Conjecture (1950-1974)

"The mathematician as the naturalist, in testing some consequence of a conjectural general law by a new observation, addresses a question to Nature: 'I suspect that this law is true. Is it true?' If the consequence is clearly refuted, the law cannot be true. If the consequence is clearly verified, there is some indication that the law may be true. Nature may answer Yes or No, but it whispers one answer and thunders the other, its Yes is provisional, its No is definitive." (George Pólya, "Induction and Analogy in Mathematics" Vol. 1, 1954)

"We secure our mathematical knowledge by demonstrative reasoning, but we support our conjectures by plausible reasoning. A mathematical proof is demonstrative reasoning, but the inductive evidence of the physicist, the circumstantial evidence of the lawyer, the documentary evidence of the historian, and the statistical evidence of the economist belong to plausible reasoning." (George Pólya, "Mathematics and Plausible Reasoning", 1954)

"Scientific theories are not the digest of observations, but they are inventions - conjectures boldly put forward for trial, to be eliminated if they clashed with observations; with observations which were rarely accidental, but as a rule undertaken with the definite intention of testing a theory by obtaining, if possible, a decisive refutation." (Karl R Popper, "Conjectures and Refutations: The Growth of Scientific Knowledge", 1963)

"We wish to see [...] the typical attitude of the scientist who uses mathematics to understand the world around us [...] In the solution of a problem [...] there are typically three phases. The first phase is entirely or almost entirely a matter of physics; the third, a matter of mathematics; and the intermediate phase, a transition from physics to mathematics. The first phase is the formulation of the physical hypothesis or conjecture; the second, its translation into equations; the third, the solution of the equations. Each phase calls for a different kind of work and demands a different attitude." (George Pólya, "Mathematical Methods in Science", 1963) 

"We defined the art of conjecture, or stochastic art, as the art of evaluating as exactly as possible the probabilities of things, so that in our judgments and actions we can always base ourselves on what has been found to be the best, the most appropriate, the most certain, the best advised; this is the only object of the wisdom of the philosopher and the prudence of the statesman." (Bertrand de Jouvenel, "The Art of Conjecture", 1967)

"All advances of scientific understanding, at every level, begin with a speculative adventure, an imaginative preconception of what might be true. [... This] conjecture is then exposed to criticism to find out whether or not that imagined world is anything like the real one. Scientific reasoning is, therefore, at all levels an interaction between two episodes of thought - a dialogue between two voices, the one imaginative and the other critical [...]" (Sir Peter B Medawar,  "The Hope of Progress", 1972)

"In moving from conjecture to experimental data, (D), experiments must be designed which make best use of the experimenter's current state of knowledge and which best illuminate his conjecture. In moving from data to modified conjecture, (A), data must be analyzed so as to accurately present information in a manner which is readily understood by the experimenter." (George E P Box & George C Tjao, "Bayesian Inference in Statistical Analysis", 1973)

"Statistical methods are tools of scientific investigation. Scientific investigation is a controlled learning process in which various aspects of a problem are illuminated as the study proceeds. It can be thought of as a major iteration within which secondary iterations occur. The major iteration is that in which a tentative conjecture suggests an experiment, appropriate analysis of the data so generated leads to a modified conjecture, and this in turn leads to a new experiment, and so on." (George E P Box & George C Tjao, "Bayesian Inference in Statistical Analysis", 1973)

"[Great scientists] are men of bold ideas, but highly critical of their own ideas: they try to find whether their ideas are right by trying first to find whether they are not perhaps wrong. They work with bold conjectures and severe attempts at refuting their own conjectures." (Karl R Popper, "The Problem of Demarcation", 1974)

17 June 2021

On Knowledge (1775-1799)

"Cultivate that kind of knowledge which enables us to discover for ourselves in case of need that which others have to read or be told of." (Georg C Lichtenberg, Notebook D, 1773-1775)

"Knowledge is of two kinds. We know a subject ourselves, or we know where we can find information upon it." (Samuel Johnson, 1775)

"Our knowledge springs from two fundamental sources of the mind; the first is the capacity of receiving representations (receptivity for impressions), the second is the power of knowing an object through these representations (spontaneity [in the production] of concepts)." (Immanuel Kant, "Critique of Pure Reason", 1781)

"Philosophical knowledge is the knowledge gained by reason from concepts; mathematical knowledge is the knowledge gained by reason from the construction of concepts." (Immanuel Kant, "Critique of Pure Reason", 1781)

"Thoughts without content are empty, intuitions without concepts are blind. The understanding can intuit nothing, the senses can think nothing. Only through their unison can knowledge arise." (Immanuel Kant, "Critique of Pure Reason", 1781)

"The word ‘chance’ then expresses only our ignorance of the causes of the phenomena that we observe to occur and to succeed one another in no apparent order. Probability is relative in part to this ignorance, and in part to our knowledge." (Pierre-Simon Laplace, "Mémoire sur les Approximations des Formules qui sont Fonctions de Très Grands Nombres", 1783)

"The mathematician pays not the least regard either to testimony or conjecture, but deduces everything by demonstrative reasoning, from his definitions and axioms. Indeed, whatever is built upon conjecture, is improperly called science; for conjecture may beget opinion, but cannot produce knowledge." (Thomas Reid, "Essays on the Intellectual Powers of Man", 1785)

"On completing one discovery we never fail to get an imperfect knowledge of others of which you could have no idea before […]" (Joseph Priestley, 1786)

"As there is no study which may be so advantageously entered upon with a less stock of preparatory knowledge than mathematics, so there is none in which a greater number of uneducated men have raised themselves, by their own exertions, to distinction and eminence. […] Many of the intellectual defects which, in such cases, are commonly placed to the account of mathematical studies, ought to be ascribed to the want of a liberal education in early youth." (Dugald Stewart, "Elements of the Philosophy of the Human Mind", 1792)

"The power of Reason […] is unquestionably the most important by far of those which are comprehended under the general title of Intellectual. It is on the right use of this power that our success in the pursuit of both knowledge and of  happiness depends; and it is by the exclusive possession of it that man is distinguished, in the most essential respects, from the lower animals. It is, indeed, from their subserviency to its operations, that the other faculties […] derive their chief value." (Dugald Stewart, "Elements of the Philosophy of the Human Mind", 1792)

"Conjecture may lead you to form opinions, but it cannot produce knowledge. Natural philosophy must be built upon the phenomena of nature discovered by observation and experiment." (George Adams, "Lectures on Natural and Experimental Philosophy" Vol. 1, 1794)

30 May 2021

On Conjecture (-1749)

"In the discovery of hidden things and the investigation of hidden causes, stronger reasons are obtained from sure experiments and demonstrated arguments than from probable conjectures and the opinions of philosophical speculators of the common sort […]" (William Gilbert, "De Magnete", 1600)

"Men are deplorably ignorant with respect to natural things, an modern philosophers, as though dreaming in the darkness, must be aroused and taught the uses of things, the dealing with things; they must be made to quit the sort of learning that comes only from books, and that rests only on vain arguments from probability and upon conjecture." (William Gilbert, "On the Loadstone and Magnetic Bodies and on the Great Magnet the Earth: A New Physiology, Demonstrated with many Arguments and Experiments", 1600)

"Another argument of hope may be drawn from this–that some of the inventions already known are such as before they were discovered it could hardly have entered any man's head to think of; they would have been simply set aside as impossible. For in conjecturing what may be men set before them the example of what has been, and divine of the new with an imagination preoccupied and colored by the old; which way of forming opinions is very fallacious, for streams that are drawn from the springheads of nature do not always run in the old channels." (Sir Francis Bacon, "Novum Organum", 1620)

"The art of discovering the causes of phenomena, or true hypothesis, is like the art of deciphering, in which an ingenious conjecture greatly shortens the road." (Gottfried W Leibniz, "New Essays Concerning Human Understanding", 1704 [published 1765])

"It proceeds indeed upon mathematical principles in calculating the number of the combinations of the things proposed: but by the conclusions that are obtained by it, the sagacity of the natural philosopher, the exactness of the historian, the skill and judgement of the physician, and the prudence and foresight of the politician, may be assisted; because the business of all these important professions is but to form reasonable conjectures concerning the several objects which engage their attention, and all wise conjectures are the results of a just and careful examination of the several different effects that may possibly arise from the causes that are capable of producing them." (Jacob Bernoulli, "Ars conjectandi", 1713)

"We define the art of conjecture, or stochastic art, as the art of evaluating as exactly as possible the probabilities of things, so that in our judgments and actions we can always base ourselves on what has been found to be the best, the most appropriate, the most certain, the best advised; this is the only object of the wisdom of the philosopher and the prudence of the statesman." (Jacob Bernoulli, "Ars Conjectandi", 1713)

"It may be observed of mathematicians that they only meddle with such things as are certain, passing by those that are doubtful and unknown. They profess not to know all things, neither do they affect to speak of all things. What they know to be true, and can make good by invincible arguments, that they publish and insert among their theorems. Of other things they are silent and pass no judgment at all, chusing [choosing] rather to acknowledge their ignorance, than affirm anything rashly. They affirm nothing among their arguments or assertions which is not most manifestly known and examined with utmost rigour, rejecting all probable conjectures and little witticisms. They submit nothing to authority, indulge no affection, detest subterfuges of words, and declare their sentiments, as in a Court of Judicature [Justice], without passion, without apology; knowing that their reasons, as Seneca testifies of them, are not brought to persuade, but to compel." (Isaac Barrow, "Mathematical Lectures", 1734)

On Conjecture (Unsourced)

"In the study of Nature conjecture must be entirely put aside, and vague hypothesis carefully guarded against. The study of Nature begins with facts, ascends to laws, and raises itself, as far as the limits of man’s intellect will permit, to the knowledge of causes, by the threefold means of observation, experiment and logical deduction." (Jean Baptiste-Andre Dumas)

"Indeed, when in the course of a mathematical investigation we encounter a problem or conjecture a theorem, our minds will not rest until the problem is exhaustively solved and the theorem rigorously proved; or else, until we have found the reasons which made success impossible and, hence, failure unavoidable. Thus, the proofs of the impossibility of certain solutions plays a predominant role in modern mathematics; the search for an answer to such questions has often led to the discovery of newer and more fruitful fields of endeavour." (David Hilbert)

"The conjectures of the scientific intelligence are genuine creative novelties, inherently unpredictable and not determined by the character of the scientist’s physical environment. The thinking mind is not a causal mechanism." (Anthony M Quinton)

"The only use of an hypothesis is, that it should lead to experiments; that it should be a guide to facts. In this application, conjectures are always of use. The destruction of an error hardly ever takes place without the discovery of truth. [...] Hypothesis should be considered merely an intellectual instrument of discovery, which at any time may be relinquished for a better instrument. It should never be spoken of as truth; its highest praise is verisimility. Knowledge can only be acquired by the senses; nature has an archetype in the human imagination; her empire is given only to industry and action, guided and governed by experience." (Sir Humphry Davy) 

"The purpose of life is to conjecture and prove." (Paul Erdős)

"The theory of numbers, more than any other branch of mathematics, began by being an experimental science. Its most famous theorems have all been conjectured, sometimes a hundred years or more before they were proved; and they have been suggested by the evidence of a mass of computations." (Godfrey H Hardy)

"What certainty can there be in a Philosophy which consists in as many Hypotheses as there are Phaenomena to be explained. To explain all nature is too difficult a task for any one man or even for any one age. 'Tis much better to do a little with certainty, & leave the rest for others that come after you, than to explain all things by conjecture without making sure of any thing." (Sir Isaac Newton)

On Conjecture (2000-2019)

"It is sometimes said that mathematics is not an experimental subject. This is not true! Mathematicians often use the evidence of lots of examples to help form a conjecture, and this is an experimental approach. Having formed a conjecture about what might be true, the next task is to try to prove it." (George M Phillips, "Mathematics Is Not a Spectator Sport", 2000)

"A felicitous but unproved conjecture may be of much more consequence for mathematics than the proof of many a respectable theorem." (Atle Selberg, 2001)

"Given a conjecture, the best thing is to prove it. The second best thing is to disprove it. The third best thing is to prove that it is not possible to disprove it, since it will tell you not to waste your time trying to disprove it." (Saharon Shelah, [Rutgers University Colloquium] 2001)

"Mathematicians often get bored by a problem after they have fully understood it and have given proofs of their conjectures. Sometimes they even forget the precise details of what they have done after the lapse of years, having refocused their interest in another area. The common notion of the mathematician contemplating timeless truths, thinking over the same proof again and again - Euclid looking on beauty bare - is rarely true in any static sense." (Avner Ash & Robert Gross, "Fearless Symmetry: Exposing the hidden patterns of numbers", 2006)

"Still, in the end, we find ourselves drawn to the beauty of the patterns themselves, and the amazing fact that we humans are smart enough to prove even a feeble fraction of all possible theorems about them. Often, greater than the contemplation of this beauty for the active mathematician is the excitement of the chase. Trying to discover first what patterns actually do or do not occur, then finding the correct statement of a conjecture, and finally proving it - these things are exhilarating when accomplished successfully. Like all risk-takers, mathematicians labor months or years for these moments of success." (Avner Ash & Robert Gross, "Fearless Symmetry: Exposing the hidden patterns of numbers", 2006)

"The word conjecture means 'guess'. The way it is used in mathematics is 'educated guess'." (Avner Ash & Robert Gross, "Fearless Symmetry: Exposing the hidden patterns of numbers", 2006)

"Mathematics is the art of explanation. If you deny students the opportunity to engage in this activity - to pose their own problems, to make their own conjectures and discoveries, to be wrong, to be creatively frustrated, to have an inspiration, and to cobble together their own explanations and proofs - you deny them mathematics itself." (Paul Lockhart, "A Mathematician's Lament", 2009)

"Mathematics is the music of reason. To do mathematics is to engage in an act of discovery and conjecture, intuition and inspiration; to be in a state of confusion - not because it makes no sense to you, but because you gave it sense and you still don't understand what your creation is up to; to have a break-through idea; to be frustrated as an artist; to be awed and overwhelmed by an almost painful beauty; to be alive, damn it." (Paul Lockhart, "A Mathematician's Lament", 2009)

"The reasoning of the mathematician and that of the scientist are similar to a point. Both make conjectures often prompted by particular observations. Both advance tentative generalizations and look for supporting evidence of their validity. Both consider specific implications of their generalizations and put those implications to the test. Both attempt to understand their generalizations in the sense of finding explanations for them in terms of concepts with which they are already familiar. Both notice fragmentary regularities and - through a process that may include false starts and blind alleys - attempt to put the scattered details together into what appears to be a meaningful whole. At some point, however, the mathematician’s quest and that of the scientist diverge. For scientists, observation is the highest authority, whereas what mathematicians seek ultimately for their conjectures is deductive proof." (Raymond S Nickerson, "Mathematical Reasoning: Patterns, Problems, Conjectures and Proofs", 2009)

"Truth in mathematics is totally dependent on pure thought, with no component of data to be added. This is unique. Associated with truth in mathematics is an absolute certainty in its validity. Why does this matter, and why does it go beyond a cultural oddity of our profession? The answer is that mathematics is deeply embedded in the reasoning used within many branches of knowledge. That reasoning often involves conjectures, assumptions, intuition. But whatever aspect has been reduced to mathematics has an absolute validity. As in other subjects search for truth, the mathematical components embedded in their search are like the boulders in the stream, providing a solid footing on which to cross from one side to the other." (James Glimm, "Reflections and Prospectives", 2009)

"Essentially, engaging in the practice of mathematics means that you are playing around, making observations and discoveries, constructing examples (as well as counterexamples), formulating conjectures, and then - the hard part - 'proving them'." (Paul Lockhart, "Measurement", 2012)

"There are thousands of apparent mathematical truths out there that we humans have discovered and believe to be true but have so far been unable to prove. They are called conjectures. A conjecture is simply a statement about mathematical reality that you believe to be true [..]" (Paul Lockhart, "Measurement", 2012)

On Conjecture (1975-1999)

"All knowledge, the sociologist could say, is conjectural and theoretical. Nothing is absolute and final. Therefore all knowledge is relative to the local situation of the thinkers who produce it: the ideas and conjectures that they are capable of producing: the problems that bother them; the interplay of assumptions and criticism in their milieu; their purposes and aims; the experiences they have and the standards and meanings they apply." (David Bloor, "Knowledge and Social Imagery", 1976)

"The essential function of a hypothesis consists in the guidance it affords to new observations and experiments, by which our conjecture is either confirmed or refuted." (Ernst Mach, "Knowledge and Error: Sketches on the Psychology of Enquiry", 1976)

"The verb 'to theorize' is now conjugated as follows: 'I built a model; you formulated a hypothesis; he made a conjecture.'" (John M Ziman, "Reliable Knowledge", 1978)

"All advances of scientific understanding, at every level, begin with a speculative adventure, an imaginative preconception of what might be true - a preconception that always, and necessarily, goes a little way (sometimes a long way) beyond anything which we have logical or factual authority to believe in. It is the invention of a possible world, or of a tiny fraction of that world. The conjecture is then exposed to criticism to find out whether or not that imagined world is anything like the real one. Scientific reasoning is therefore at all levels an interaction between two episodes of thought - a dialogue between two voices, the one imaginative and the other critical; a dialogue, as I have put it, between the possible and the actual, between proposal and disposal, conjecture and criticism, between what might be true and what is in fact the case." (Sir Peter B Medawar, "Pluto’s Republic: Incorporating the Art of the Soluble and Induction Intuition in Scientific Thought", 1982)

"So-called scientific knowledge is not knowledge, for it consists only of conjectures or hypotheses - even if some have gone through the crossfire of ingenious tests." (Karl R Popper, "Epistemology and the Problem of Peace", [lecture in "All Life is Problem Solving", 1999] 1985)

"Three shifts can be detected over time in the understanding of mathematics itself. One is a shift from completeness to incompleteness, another from certainty to conjecture, and a third from absolutism to relativity." (Leone Burton, "Femmes et Mathematiques: Y a–t–il une?",  Association for Women in Mathematics Newsletter, Intersection 18, 1988)

"A mathematical proof is a chain of logical deductions, all stemming from a small number of initial assumptions ('axioms') and subject to the strict rules of mathematical logic. Only such a chain of deductions can establish the validity of a mathematical law, a theorem. And unless this process has been satisfactorily carried out, no relation - regardless of how often it may have been confirmed by observation - is allowed to become a law. It may be given the status of a hypothesis or a conjecture, and all kinds of tentative results may be drawn from it, but no mathematician would ever base definitive conclusions on it. (Eli Maor, "e: The Story of a Number", 1994)

"The sequence for the understanding of mathematics may be: intuition, trial, error, speculation, conjecture, proof. The mixture and the sequence of these events differ widely in different domains, but there is general agreement that the end product is rigorous proof - which we know and can recognize, without the formal advice of the logicians. […] Intuition is glorious, but the heaven of mathematics requires much more. Physics has provided mathematics with many fine suggestions and new initiatives, but mathematics does not need to copy the style of experimental physics. Mathematics rests on proof - and proof is eternal." (Saunders Mac Lan, "Reponses to …", Bulletin of the American Mathematical Society Vol. 30 (2), 1994)

"The methods of science include controlled experiments, classification, pattern recognition, analysis, and deduction. In the humanities we apply analogy, metaphor, criticism, and (e)valuation. In design we devise alternatives, form patterns, synthesize, use conjecture, and model solutions." (Béla H Bánáthy, "Designing Social Systems in a Changing World", 1996)

"A proof of a mathematical theorem is a sequence of steps which leads to the desired conclusion. The rules to be followed [...] were made explicit when logic was formalized early in the this century [...] These rules can be used to disprove a putative proof by spotting logical errors; they cannot, however, be used to find the missing proof of a [...] conjecture. [...] Heuristic arguments are a common occurrence in the practice of mathematics. However... The role of heuristic arguments has not been acknowledged in the philosophy of mathematics despite the crucial role they play in mathematical discovery. [...] Our purpose is to bring out some of the features of mathematical thinking which are concealed beneath the apparent mechanics of proof." (Gian-Carlo Rota, "Indiscrete Thoughts", 1997)

"Architectural conjectures are mathematically precise assertions, as well milled as minted coins, provisionally usable in the commerce of logical arguments; less than ‘coins’ and more aptly, promissory notes to be paid in full by some future demonstration, or to be contradicted. These conjectures are expected to turn out to be true, as, of course, are all conjectures; their formulation is often away of "formally" packaging, or at least acknowledging, an otherwise shapeless body of mathematical experience that points to their truth." (Barry Mazur, "Conjecture", Synthese 111, 1997)

"The everyday usage of 'theory' is for an idea whose outcome is as yet undetermined, a conjecture, or for an idea contrary to evidence. But scientists use the word in exactly the opposite sense. [In science] 'theory' [...] refers only to a collection of hypotheses and predictions that is amenable to experimental test, preferably one that has been successfully tested. It has everything to do with the facts." (Tony Rothman & George Sudarshan, "Doubt and Certainty: The Celebrated Academy: Debates on Science, Mysticism, Reality, in General on the Knowable and Unknowable", 1998)

"A mathematician experiments, amasses information, makes a conjecture, finds out that it does not work, gets confused and then tries to recover. A good mathematician eventually does so - and proves a theorem." (Steven Krantz, "Conformal Mappings", American Scientist, 1999)

On Conjecture (1800-1899)

"In order to supply the defects of experience, we will have recourse to the probable conjectures of analogy, conclusions which we will bequeath to our posterity to be ascertained by new observations, which, if we augur rightly, will serve to establish our theory and to carry it gradually nearer to absolute certainty." (Johann H Lambert, "The System of the World", 1800)

"In all speculations on the origin, or agents that have produced the changes on this globe, it is probable that we ought to keep within the boundaries of the probable effects resulting from the regular operations of the great laws of nature which our experience and observation have brought within the sphere of our knowledge. When we overleap those limits, and suppose a total change in nature's laws, we embark on the sea of uncertainty, where one conjecture is perhaps as probable as another; for none of them can have any support, or derive any authority from the practical facts wherewith our experience has brought us acquainted." (William Maclure, "Observations on the Geology of the United States of America", 1817)

"The science of the mathematics performs more than it promises, but the science of metaphysics promises more than it performs. The study of the mathematics, like the Nile, begins in minuteness but ends in magnificence; but the study of metaphysics begins with a torrent of tropes, and a copious current of words, yet loses itself at last in obscurity and conjecture, like the Niger in his barren deserts of sand." (Charles C Colton, "Lacon", 1820)

"We know the effects of many things, but the causes of few; experience, therefore, is a surer guide than imagination, and inquiry than conjecture." (Charles C Colton, "Lacon", 1820)

"Let me be permitted to recall that the object of mathematics is not to investigate the causes that one can assign to natural phenomena. This science would lose both its character and credit if, renouncing the support of general well-confirmed facts, it sought within the realm of nebulous conjectures, a realm which has always been a fertile source of error for ways of satisfying the thirst fo rexplanation." (Sophie Germain, "Examen des principes qui peuvent conduire a la connaissance des lois de requilibre et du mouvement des solides elastiques", Annales de Chimie 38, 1828)

"Life is not the object of Science: we see a little, very little; And what is beyond we can only conjecture." (Samuel Johnson, "Causes Which Produce Diversity of Opinion", 1840)

"The entire annals of Observation probably do not elsewhere exhibit so extraordinary a verification of any theoretical conjecture adventured on by the human spirit!" (John P Nichol, "The Planet Neptune: An Exposition and History", 1848)

"The philosophical study of nature rises above the requirements of mere delineation, and does not consist in the sterile accumulation of isolated facts. The active and inquiring spirit of man may therefore be occasionally permitted to escape from the present into the domain of the past, to conjecture that which cannot yet be clearly determined, and thus to revel amid the ancient and ever-recurring myths of geology." (Alexander von Humboldt, "Views of Nature: Or Contemplation of the Sublime Phenomena of Creation", 1850)

"The rules of scientific investigation always require us, when we enter the domains of conjecture, to adopt that hypothesis by which the greatest number of known facts and phenomena may be reconciled." (Matthew F Maury, "The Physical Geography of the Sea", 1855)

"There is something fascinating about science. One gets such wholesale returns of conjecture out of such a trifling investment of fact." (Samuel L Clemens [Mark Twain], "Life on the Mississippi", 1883)

"I have been able to solve a few problems of mathematical physics on which the greatest mathematicians since Euler have struggled in vain. [...] But the pride I might have held in my conclusions was perceptibly lessened by the fact that I knew that the solution of these problems had almost always come to me as the gradual generalization of favorable examples, by a series of fortunate conjectures, after many errors." (Hermann von Helmholtz, 1891)

On Conjecture (1900-1949)

"It is best to prove things by actual experiment; then you know; whereas if you depend on guessing and supposing and conjecturing, you will never get educated."  (Samuel L Clemens [Mark Twain], "Eve’s Diary", 1906)

"The development of mathematics toward greater precision has led, as is well known, to the formalization of large tracts of it, so that one can prove any theorem using nothing but a few mechanical rules.[...] One might therefore conjecture that these axioms and rules of inference are sufficient to decide any mathematical question that can at all be formally expressed in these systems. It will be shown below that this is not the case, that on the contrary there are in the two systems mentioned relatively simple problems in the theory of integers that cannot be decided on the basis of the axioms." (Kurt Gödel, "On Formally Undecidable Propositions of Principia Mathematica and Related Systems", 1931)

"An inference, if it is to have scientific value, must constitute a prediction concerning future data. If the inference is to be made purely with the help of the distribution theory of statistics, the experiments that constitute evidence for the inference must arise from a state of statistical control; until that state is reached, there is no universe, normal or otherwise, and the statistician’s calculations by themselves are an illusion if not a delusion. The fact is that when distribution theory is not applicable for lack of control, any inference, statistical or otherwise, is little better than a conjecture. The state of statistical control is therefore the goal of all experimentation." (William E Deming, "Statistical Method from the Viewpoint of Quality Control", 1939)

"To say that mathematics in general has been reduced to logic hints at some new firming up of mathematics at its foundations. This is misleading. Set theory is less settled and more conjectural than the classical mathematical superstructure than can be founded upon it." (Willard Van Orman Quine, "Elementary Logic", 1941)

"[…] analogy [is] an important source of conjectures. In mathematics, as in the natural and physical sciences, discovery often starts from observation, analogy, and induction. These means, tastefully used in framing a plausible heuristic argument, appeal particularly to the physicist and the engineer." (George Pólya, "How to solve it", 1945) 

"Inference by analogy appears to be the most common kind of conclusion, and it is possibly the most essential kind. It yields more or less plausible conjectures which may or may not be confirmed by experience and stricter reasoning." (George Pólya, "How to Solve It", 1945)

On Conjecture (1750-1799)

"One of the most intimate of all associations in the human mind is that of cause and effect. They suggest one another with the utmost readiness upon all occasions; so that it is almost impossible to contemplate the one, without having some idea of, or forming some conjecture about the other." (Joseph Priestley, "The History and Present State of Electricity", 1767)

"It falls into this difficulty without any fault of its own. It begins with principles, which cannot be dispensed with in the field of experience, and the truth and sufficiency of which are, at the same time, insured by experience. With these principles it rises, in obedience to the laws of its own nature, to ever higher and more remote conditions. But it quickly discovers that, in this way, its labours must remain ever incomplete, because new questions never cease to present themselves; and thus it finds itself compelled to have recourse to principles which transcend the region of experience, while they are regarded by common sense without distrust. It thus falls into confusion and contradictions, from which it conjectures the presence of latent errors, which, however, it is unable to discover, because the principles it employs, transcending the limits of experience, cannot be tested by that criterion. The arena of these endless contests is called Metaphysic." (Immanuel Kant, "The Critique of Pure Reason", 1781)

"[...] the lofty aspirations of humanity and not delusions; they are realities. They link us to a purer order of existence, which makes us heirs of immortality. We repose order a confident and unwavering assurance that, in God’s own time, these earth-mists will be dispersed, and the dim twilight of conjecture will yield to the glorious, unclouded noonday of knowledge." (John LeConte, "The Nebular Hypothesis", The Popular Science Monthly Vol. 2, 1873)

"On the other hand, if we add observation to observation, without attempting to draw no only certain conclusions, but also conjectural views from them, we offend against the very end for which only observations ought to be made." (Friedrich W Herschel, "On the Construction of the Heavens", Philosophical Transactions of the Royal Society of London Vol. LXXV, 1785)

"The mathematician pays not the least regard either to testimony or conjecture, but deduces everything by demonstrative reasoning, from his definitions and axioms. Indeed, whatever is built upon conjecture, is improperly called science; for conjecture may beget opinion, but cannot produce knowledge." (Thomas Reid, "Essays on the Intellectual Powers of Man", 1785)

"Conjecture may lead you to form opinions, but it cannot produce knowledge. Natural philosophy must be built upon the phenomena of nature discovered by observation and experiment." (George Adams, "Lectures on Natural and Experimental Philosophy" Vol. 1, 1794)

"Conjectures in philosophy are termed hypotheses or theories; and the investigation of an hypothesis founded on some slight probability, which accounts for many appearances in nature, has too often been considered as the highest attainment of a philosopher. If the hypothesis (sic) hangs well together, is embellished with a lively imagination, and serves to account for common appearances - it is considered by many, as having all the qualities that should recommend it to our belief, and all that ought to be required in a philosophical system." (George Adams, "Lectures on Natural and Experimental Philosophy" Vol. 1, 1794)

29 May 2021

Clifford Truesdell - Collected Quotes

"Pedantry and sectarianism aside, the aim of theoretical physics is to construct mathematical models such as to enable us, from the use of knowledge gathered in a few observations, to predict by logical processes the outcomes in many other circumstances. Any logically sound theory satisfying this condition is a good theory, whether or not it be derived from 'ultimate' or 'fundamental' truth. It is as ridiculous to deride continuum physics because it is not obtained from nuclear physics as it would be to reproach it with lack of foundation in the Bible." (Clifford Truesdell & Walter Noll, "The Non-Linear Field Theories of Mechanics", 1965)

"The task of the theorist is to bring order into the chaos of the phenomena of nature, to invent a language by which a class of these phenomena can be described efficiently and simply." (Clifford Truesdell & Walter Noll, "The Non-Linear Field Theories of Mechanics", 1965)

"A mathematical theorem cannot be escaped by denying its truth or by forgetting it for vague, intuitive reasons that blur the edges of all rational processes. The way to escape an unpleasant theorem is to prove another one." (Clifford Truesdell, "Six Lectures on Modern Natural Philosophy", 1966)

"As mechanics is the science of motions and forces, so thermodynamics is the science of forces and entropy. What is entropy? Heads have split for a century trying to define entropy in terms of other things. Entropy, like force, is an undefined object, and if you try to define it, you will suffer the same fate as the force definers of the seventeenth and eighteenth centuries: Either you will get something too special or you will run around in a circle." (Clifford Truesdell, "Six Lectures on Modern Natural Philosophy", 1966)

"Despite two centuries of study, the integrals of general dynamical systems remain covered with darkness. To save the classical thermostatics, the practical success of which is shown by the wide use to which it has been put, we must find a way out. That is, we must find some mathematical connection between time averages of the functions of physical interest and the corresponding simple canonical averages." (Clifford Truesdell, "Six Lectures on Modern Natural Philosophy", 1966)

"Formerly, the beginner was taught to crawl through the underbrush, never lifting his eyes to the trees; today he is often made to focus on the curvature of the universe, missing even the earth." (Clifford Truesdell, "Six Lectures on Modern Natural Philosophy", 1966)

"In all of natural philosophy, the most deeply and repeatedly studied part, next to pure geometry, is mechanics. […] The picture of nature as a whole given us by mechanics may be compared to a black-and-white photograph: It neglects a great deal, but within its limitations, it can be highly precise. Developing sharper and more flexible black-and-white photography has not attained pictures in color or three-dimensional casts, but it serves in cases where color and thickness are irrelevant, presently impossible to get in the required precision, or distractive from the true content." (Clifford Truesdell, "Six Lectures on Modern Natural Philosophy", 1966)

"Mathematicians, on the other hand, often regard all of physics as a kind of divine revelation or trickery, where mathematical morals are irrelevant, so that if they enter this red-light district at all, it is only to get what they want as cheaply as possible before returning to the respectability of problems purely mathematical in the older sense: analysis, probability, differential geometry, etc." (Clifford Truesdell, "Six Lectures on Modern Natural Philosophy", 1966)

"Mechanics seeks to connect these three elements -body, motion, and force -in such a way as to yield good models for the behavior of the materials in nature." (Clifford Truesdell, "Six Lectures on Modern Natural Philosophy", 1966)

"Nature does not seem full of circles and triangles to the ungeometrical; rather, mastery of the theory of triangles and circles, and later of conic sections, has taught the theorist, the experimenter, the carpenter, and even the artist to find them everywhere, from the heavenly motions to the pose of a Venus." (Clifford Truesdell, "Six Lectures on Modern Natural Philosophy", 1966)

"[..] principle of equipresence: A quantity present as an independent variable in one constitutive equation is so present in all, to the extent that its appearance is not forbidden by the general laws of Physics or rules of invariance. […] The principle of equipresence states, in effect, that no division of phenomena is to be laid down by constitutive equations." (Clifford Truesdell, "Six Lectures on Modern Natural Philosophy", 1966)

"Rational mechanics is mathematics, just as geometry is mathematics. […] Mechanics cannot, any more than geometry, exhaust the properties of the physical universe. […] Mechanics presumes geometry and hence is more special; since it attributes to a sphere additional properties beyond its purely geometric ones, the mechanics of spheres is not only more complicated and detailed but also, on the grounds of pure logic, necessarily less widely applicable than geometry. This, again, is no reproach; geometry is not despised because it is less widely applicable than topology. A more complicated theory, such as mechanics, is less likely to apply to any given case; when it does apply, it predicts more than any broader, less specific theory." (Clifford Truesdell, "Six Lectures on Modern Natural Philosophy", 1966)

"The purpose of statistical mechanics, for phenomena of equilibrium, is to calculate time averages, and the ensemble theory is useful only as a tool enabling us to calculate time averages without knowing how to integrate the equations of motion. The ensemble theory is a mathematical device; we are wasting our time if we try to explain it by itself." (Clifford Truesdell, "Six Lectures on Modern Natural Philosophy", 1966)

"There is nothing that can be said by mathematical symbols and relations which cannot also be said by words. The converse, however, is false. Much that can be and is said by words cannot successfully be put into equations, because it is nonsense." (Clifford A Truesdell, "Six Lectures on Modern Natural Philosophy", 1966) 

"Thermostatics, which even now is usually called thermodynamics, has an unfortunate history and a cancerous tradition. It arose in a chaos of metaphysical and indeed irrational controversy, the traces of which drip their poison even today. As compared with the older science of mechanics and the younger science of electromagnetism, its mathematical structure is meager. Though claims for its breadth of application are often extravagant, the examples from which its principles usually are inferred are most special, and extensive mathematical developments based on fundamental equations, such as typify mechanics and electromagnetism, are wanting. The logical standards acceptable in thermostatics fail to meet the criteria of other exact sciences [...]." (Clifford Truesdell, "Six Lectures on Modern Natural Philosophy", 1966)

"Nothing is harder to surmount than a corpus of true but too special knowledge; to reforge the tradition of his forebears is the greatest originality a man can have." (Clifford Truesdell, The Creation and Unfolding of the Concept of Stress'' [in "Essays in the History of Mechanics"] , 1968) 

"Now a mathematician has a matchless advantage over general scientists, historians, politicians, and exponents of other professions: He can be wrong. A fortiori, he can also be right. [...] A mistake made by a mathematician, even a great one, is not a 'difference of a point of view' or 'another interpretation of the data' or a 'dictate of a conflicting ideology', it is a mistake. The greatest of all mathematicians, those who have discovered the greatest quantities of mathematical truths, are also those who have published the greatest numbers of lacunary proofs, insufficiently qualified assertions, and flat mistakes." (Clifford Truesdell, "Late Baroque Mechanics to Success, Conjecture, Error, and Failure in Newton's Principia" [in "Essays in the History of Mechanics"], 1968)

"The mistakes made by a great mathematician are of two kinds: first, trivial slips that anyone can correct, and, second, titanic failures reflecting the scale of the struggle which the great mathematician waged. Failures of this latter kind are often as important as successes, for they give rise to major discoveries by other mathematicians. One error of a great mathematician has often done more for science than a hundred impeccable little theorems proved by lesser men." (Clifford Truesdell, "Late Baroque Mechanics to Success, Conjecture, Error, and Failure in Newton's Principia" [in "Essays in the History of Mechanics"], 1968)

"Every physicist knows exactly what the first and the second law mean, but [...] no two physicists agree about them." (Clifford Truesdell)

03 September 2019

Raymond S Nickerson - Collected Quotes

"A proof in mathematics is a compelling argument that a proposition holds without exception; a disproof requires only the demonstration of an exception. A mathematical proof does not, in general, establish the empirical truth of whatever is proved. What it establishes is that whatever is proved - usually a theorem - follows logically from the givens, or axioms." (Raymond S Nickerson, "Mathematical Reasoning: Patterns, Problems, Conjectures and Proofs", 2009)

"As well as regarding mathematics as the study of patterns, mathematics can be viewed, pragmatically, as a vast collection of problems of certain types and of approaches that have proved to be effective in solving them." (Raymond S Nickerson, "Mathematical Reasoning: Patterns, Problems, Conjectures, and Proofs", 2009)

"How are we to explain the contrast between the matter-of-fact way in which √-1 and other imaginary numbers are accepted today and the great difficulty they posed for learned mathematicians when they first appeared on the scene? One possibility is that mathematical intuitions have evolved over the centuries and people are generally more willing to see mathematics as a matter of manipulating symbols according to rules and are less insistent on interpreting all symbols as representative of one or another aspect of physical reality. Another, less self-congratulatory possibility is that most of us are content to follow the computational rules we are taught and do not give a lot of thought to rationales." (Raymond S Nickerson, "Mathematical Reasoning: Patterns, Problems, Conjectures, and Proofs", 2009)

"Philosophers have sometimes made a distinction between analytic and synthetic truths. Analytic truths are not verified by observation; true analytic statements are tautologies and are true by virtue of the definitions of their terms and their logical structure. Synthetic truths relate to the material world; the truth of synthetic statements depends on their correspondence to how physical reality works. Mathematics, according to this distinction, deals exclusively with analytic truths. Its statements are all tautologies and are (analytically) true by virtue of their adherence to formal rules of construction." (Raymond S Nickerson, "Mathematical Reasoning: Patterns, Problems, Conjectures, and Proofs", 2009)

"The characterization of mathematics as a deductive discipline is accurate but incomplete. It represents the finished and polished consequences of the work of mathematicians, but it does not adequately represent the doing of mathematics. It describes theorem proofs but not theorem proving. Moreover, the history of mathematics is not the emotionless chronology of inventions of evermore esoteric formalisms that some people imagine it to be. It has its full share of color, mystery, and intrigue." (Raymond S Nickerson, "Mathematical Reasoning: Patterns, Problems, Conjectures, and Proofs", 2009)

"The reasoning of the mathematician and that of the scientist are similar to a point. Both make conjectures often prompted by particular observations. Both advance tentative generalizations and look for supporting evidence of their validity. Both consider specific implications of their generalizations and put those implications to the test. Both attempt to understand their generalizations in the sense of finding explanations for them in terms of concepts with which they are already familiar. Both notice fragmentary regularities and - through a process that may include false starts and blind alleys - attempt to put the scattered details together into what appears to be a meaningful whole. At some point, however, the mathematician’s quest and that of the scientist diverge. For scientists, observation is the highest authority, whereas what mathematicians seek ultimately for their conjectures is deductive proof." (Raymond S Nickerson, "Mathematical Reasoning: Patterns, Problems, Conjectures and Proofs", 2009)

"What is the basis of this interest in beauty? Is it the same in both mathematics and science? Is it rational, in either case, to expect or demand that the products of the discipline satisfy such a criterion? Is there an underlying assumption that the proper business of mathematics and science is to discover what can be discovered about reality and that truth - mathematical and physical - when seen as clearly as possible, must be beautiful? If the demand for beauty stems from some such assumption, is the assumption itself an article of blind faith? If such an assumption is not its basis, what is?" (Raymond S Nickerson, "Mathematical Reasoning:  Patterns, Problems, Conjectures, and Proofs", 2009)

"Without denying the usefulness of the distinction between intuition and proof, I believe it can be drawn too sharply; intuition plays an essential role in the making and evaluating of proofs and is sometimes changed as a consequence of these processes. In this respect, the distinction is like that between creative and critical thinking; while this distinction too is a useful one, it is not possible to have either in any very satisfactory sense without the other." (Raymond S Nickerson, "Mathematical Reasoning: Patterns, Problems, Conjectures, and Proofs", 2009)

14 July 2019

Barry Mazur - Collected Quotes

"[Number theory] produces, without effort, innumerable problems which have a sweet, innocent air about them, tempting flowers; and yet…number theory swarms with bugs, waiting to bite the tempted flower-lovers who, once bitten, are inspired to excesses of effort!" (Barry Mazur, "Number Theory as Gadfly", The American Mathematical Monthly, Volume 98, 1991)

"Architectural conjectures are mathematically precise assertions, as well milled as minted coins, provisionally usable in the commerce of logical arguments; less than ‘coins’ and more aptly, promissory notes to be paid in full by some future demonstration, or to be contradicted. These conjectures are expected to turn out to be true, as, of course, are all conjectures; their formulation is often away of "formally" packaging, or at least acknowledging, an otherwise shapeless body of mathematical experience that points to their truth." (Barry Mazur, "Conjecture", Synthese 111, 1997)

"A seemingly modest change of notation may suggest a radical shift in viewpoint. Any new notation may ask new questions." (Barry Mazur, "Imagining Numbers", 2003)

"If we think of square roots in the geometric manner, as we have just done, to ask for the square root of a negative quantity is like asking: ‘What is the length of the side of a square whose area is less than zero?’ This has more the ring of a Zen koan than of a question amenable to a quantitative answer." (Barry Mazur, "Imagining Numbers", 2003)

“[…] history of mathematics. It might be described as a moment of restless anticipation in the face of a slowly emerging act of imagining." (Barry Mazur, "Imagining Numbers", 2003)

 "The wonderful thing about mathematics is that, in the end as well as in the beginning, it can depend upon no authority other than one’s own (your own) mind; its verification comes from thinking alone, an activity open to anyone. If we have no theoretical equipment, we use the mathematical eyes and ears with which we were born and just experiment with our guesses to see whether we have faith in them." (Barry Mazur, "Imagining Numbers", 2003)

"At some point in his or her life every working mathematician has to explain to someone, usually a relative, that mathematics is hardly a finished project. Mathematicians know, of course, that it is far too soon to put the glorious achievements of their trade into a big museum and just become happy curators. In many respects, the study of mathematics has hardly begun." (Barry Mazur, [foreword] 2006)

"It is a hard balancing act: to explain important and beautiful mathematical ideas - to truly explain them - to people with a general cultural background but no technical training in math, and yet not to slip away from the full seriousness and ambitious goals of the subject being explained." (Barry Mazur, [foreword] 2006)

"Some mathematical models have been blindly used - their presuppositions as little understood as any legal fine print one ‘agrees to’ but never reads - with faith in their trustworthiness. The very arcane nature of some of the formulations of these models might have contributed to their being given so much credence. If so, we mathematicians have an important mission to perform: to help people who wish to think through the fundamental assumptions underlying models that are couched in mathematical language, making these models intelligible, rather than (merely) formidable Delphic oracles." (Barry Mazur, "The Authority of the Incomprehensible", 2014)

"In mathematics, we often depend on the proof of a statement to offer not only a justification of its truth, but also a way of understanding its implications, its connections to other established truths - a way, in short of explaining the statement. But sometimes even though a proof does its job of showing the truth of a result it still leaves us with the nagging question of why.’ It may be elusive - given a specific proof - to describe in useful terms the type of explanation the proof actually offers. It would be good to have an adequate vocabulary to help us think about the explanatory features of mathematics (and, more generally, of science)." (Barry Mazur, "On the word ‘because’ in mathematics, and elsewhere", 2017)

30 June 2019

Karl R Popper - Collected Quotes

"A scientist, whether theorist or experimenter, puts forward statements, or systems of statements, and tests them step by step. In the field of the empirical sciences, more particularly, he constructs hypotheses, or systems of theories, and tests them against experience by observation and experiment." (Karl R Popper, "The Logic of Scientific Discovery", 1934)

“It is sometimes said of two expositions of one and the same mathematical proof that the one is simpler or more elegant than the other. This is a distinction which has little interest from the point of view of the theory of knowledge; it does not fall within the province of logic, but merely indicates a preference of an aesthetic or pragmatic character.” (Karl R Popper, “The Logic of Scientific Discovery”, 1934)

"Modern positivists are apt to see more clearly that science is not a system of concepts but rather a system of statements." (Karl R Popper, "The Logic of Scientific Discovery", 1934)

"Science is not a system of certain, or -established, statements; nor is it a system which steadily advances towards a state of finality […] And our guesses are guided by the unscientific, the metaphysical (though biologically explicable) faith in laws, in regularities which we can uncover - discover. Like Bacon, we might describe our own contemporary science - 'the method of reasoning which men now ordinarily apply to nature' - as consisting of 'anticipations, rash and premature' and as 'prejudices'." (Karl R Popper, "The Logic of Scientific Discovery", 1934)

"Science does not aim, primarily, at high probabilities. It aims at a high informative content, well backed by experience. But a hypothesis may be very probable simply because it tells us nothing, or very little." (Karl R Popper, "The Logic of Scientific Discovery", 1934)

"The most important application of the theory of probability is to what we may call 'chance-like' or 'random' events, or occurrences. These seem to be characterized by a peculiar kind of incalculability which makes one disposed to believe - after many unsuccessful attempts - that all known rational methods of prediction must fail in their case. We have, as it were, the feeling that not a scientist but only a prophet could predict them. And yet, it is just this incalculability that makes us conclude that the calculus of probability can be applied to these events." (Karl R Popper, "The Logic of Scientific Discovery", 1934)

"There is no such thing as a logical method of having new ideas or a logical reconstruction of this process […] very discovery contains an ‘irrational element’ or a ‘creative intuition’." (Karl R Popper, "The logic of scientific discovery", 1934)

"It is his intuition, his mystical insight into the nature of things, rather than his reasoning which makes a great scientist." (Karl R Popper, "The Open Society and Its Enemies", 1945)  

“It is easy to obtain confirmations, or verifications, for nearly every theory - if we look for confirmations. Confirmations should count only if they are the result of risky predictions. […] A theory which is not refutable by any conceivable event is non-scientific. Irrefutability is not a virtue of a theory (as people often think) but a vice. Every genuine test of a theory is an attempt to falsify it, or refute it.” (Karl R Popper, “Conjectures and Refutations: The Growth of Scientific Knowledge”, 1963)

"All prescientific knowledge, whether animal or human, is dogmatic; and science begins with the invention of the non-dogmatic, critical method." (Karl R Popper, "The Logic and Evolution of Scientific Theory", [in "All Life is Problem Solving", 1999] 1972)

"An empirical scientific theory differs from other theories because it may be undone by possible experimental results: that is to say, possible experimental results can be described that would falsify the theory if we were actually to obtain them." (Karl R Popper, "The Logic and Evolution of Scientific Theory", [in "All Life is Problem Solving", 1999] 1972)

"At any event, the critical approach is the crucial novelty that makes science what it is, achieved above all through objective, public, linguistic formulation of its theories. This usually leads to a taking of sides and hence to critical discussion." (Karl R Popper, "The Logic and Evolution of Scientific Theory", [in "All Life is Problem Solving", 1999] 1972)

"But the laws of addition and multiplication (the associative laws, for example) are not a human invention. They are unintended consequences of human invention, and they were discovered. And the existence ofprime numbers - indivisible numbers that are the product only of themselves and unity - is also a discovery, no doubt quite a late one. The prime numbers were discovered in the series of natural numbers, not by everyone but by people who studied these numbers and their special peculiarities - by real mathematicians." (Karl R Popper, "Notes of a Realist on the Body-Mind Problem", [in "All Life is Problem Solving", 1999] 1972)

"Higher organisms are able to learn through trial and error how a certain problem should be solved. We may say that they too make testing movements - mental testings - and that to learn is essentially to tryout one testing movement after another until one is found that solves the problem. We might compare the animal's successful solution to an expectation and hence to a hypothesis or a theory. For the animal's behaviour shows us that it expects (perhaps unconsciously or dispositionally) that in a similar case the same testing movements will again solve the problem in question." (Karl R Popper, "The Logic and Evolution of Scientific Theory", [in "All Life is Problem Solving", 1999] 1972)

"Science is a product of the human mind, but this product is as objective as a cathedral." (Karl R Popper, "The Logic and Evolution of Scientific Theory", [in "All Life is Problem Solving", 1999] 1972)

"The idea of approximation to the truth is, in my view, one of the most important ideas in the theory ofscience. [...] The idea of approximation to the truth - like the idea of truth as a
regulative principle - presupposes a realistic view ofthe world. It does not presuppose that reality is as our scientific theories describe it; but it does presuppose that there is a reality and that we and our theories - which are ideas we have ourselves created and are therefore always idealizations - can draw closer and closer to an adequate description of reality, if we employ the four-stage method of trial and error." (Karl R Popper, "The Logic and Evolution of Scientific Theory", [in "All Life is Problem Solving", 1999] 1972)

"The natural as well as the social sciences always start from problems, from the fact that something inspires amazement in us, as the Greek philosophers used to say. To solve these problems, the sciences use fundamentally the same method that common sense employs, the method of trial and error. To be more precise, it is the method of trying out solutions to our problem and then discarding the false ones as erroneous. This method assumes that we work with a large number of experimental solutions. One solution after another is put to the test and eliminated." (Karl R Popper, "The Logic and Evolution of Scientific Theory", [in "All Life is Problem Solving", 1999] 1972)

"The realistic view ofthe world, together with the idea of approximation to the truth, seem to me indispensable for an understanding of the perpetually idealizing character of science." (Karl R Popper, "The Logic and Evolution of Scientific Theory", [in "All Life is Problem Solving", 1999] 1972)

"Science begins with problems. It attempts to solve them through bold, inventive theories. The great majority of theories are false and/or untestable. Valuable, testable theories will search for errors. We try to find errors and to eliminate them. This is science: it consists of wild, often irresponsible ideas that it places under the strict control of error correction."(Karl R Popper, "Epistemology and the Problem of Peace", [lecture in "All Life is Problem Solving", 1999] 1985)

"Scientists, like all organisms, work with the method of trial and error. The trial is a solution to a problem. In the evolution of the plant or animal kingdom, error or, to be more precise, the correction of error usually means eradication of the organism; in science it usually means eradication of the hypothesis or theory." (Karl R Popper, "Epistemology and the Problem of Peace", [lecture in "All Life is Problem Solving", 1999] 1985)

"So-called scientific knowledge is not knowledge, for it consists only of conjectures or hypotheses - even if some have gone through the crossfire of ingenious tests." (Karl R Popper, "Epistemology and the Problem of Peace", [lecture in "All Life is Problem Solving", 1999] 1985)

"The method of natural science is the conscious search for errors and correction of them through conscious criticism. Ideally such criticism should be impersonal and directed only at the theories or hypotheses in question."  (Karl R Popper, "Epistemology and the Problem of Peace", [lecture in "All Life is Problem Solving", 1999] 1985)

"We can assert the truth, attain the truth, often enough. But we can never attain certainty." (Karl R Popper, "Epistemology and the Problem of Peace", [lecture in "All Life is Problem Solving", 1999] 1985)

"[...] everything we know is genetically a priori. All that is a posteriori is the selection from what we ourselves have invented a priori." (Karl R Popper, "The Epistemological Position of Evolutionary Epistemology", [in "All Life is Problem Solving", 1999] 1987)

"The task of us all as thinking human beings is to discover the truth. The truth is absolute and objective, but we do not have it in the bag. We are constantly seeking it and often find it only with difficulty; and we keep trying to improve our approximation to the truth. If truth were not absolute and objective, we should not be able to go wrong. Or our mistakes would be as good as our truth." (Karl R Popper, "The Epistemological Position of Evolutionary Epistemology", [in "All Life is Problem Solving", 1999] 1987)

"We know nothing - that is the first point. Therefore we should be very modest - that is the second. That we should not claim to know when we do not know - that is
the third." (Karl R Popper, "The Epistemological Position of Evolutionary Epistemology", [in "All Life is Problem Solving", 1999] 1987)

"[...] we learn only through trial and error. Our trials, however, are always our hypotheses. They stem from us, not from the external world. All we learn from the external world is that some of our efforts are mistaken." (Karl R Popper, "The Epistemological Position of Evolutionary Epistemology", [in "All Life is Problem Solving", 1999] 1987)

"Without intuition we get nowhere - even though most of our intuitions eventually turn out wrong. We need intuitions, ideas, if possible, competing ideas; and we need ideas about how those ideas can be criticized, improved, and critically tested. And until they are refuted (indeed, for longer), we must also put up with questionable ideas. For even the best ideas are questionable." (Karl R Popper, "Kepler's Metaphysics of the Solar System and His Empirical Criticism", [in "All Life is Problem Solving", 1999] 1986)

"Classical models tell us more than we at first can know." (Karl R Popper)

"A theory is just a mathematical model to describe the observations." (Karl R Popper)

"Science starts from problems, and not from observations." (Karl R Popper)

02 June 2019

What is Mathematics not? - Part IV

"Mathematics is not placid, static and eternal. […] Most mathematicians are happy to make use of those axioms in their proofs, although others do not, exploring instead so-called intuitionist logic or constructivist mathematics. Mathematics is not a single monolithic structure of absolute truth!" (Gregory J Chaitin, "A century of controversy over the foundations of mathematics", 2000)

"It is sometimes said that mathematics is not an experimental subject. This is not true! Mathematicians often use the evidence of lots of examples to help form a conjecture, and this is an experimental approach. Having formed a conjecture about what might be true, the next task is to try to prove it." (George M Phillips, "Mathematics Is Not a Spectator Sport", 2000)

"Mathematics is not monolithic in its general subject matter. There is no such thing as the geometry or the set theory or the formal logic. Rather, there are mutually inconsistent versions of geometry, set theory, logic, and so on. Each version forms a distinct and internally consistent subject matter." (George Lakoff & Rafael E Nuñez, "Where Mathematics Come From: How the Embodied Mind Brings Mathematics into Being, 2000)

"Mathematics is not just about numbers. As well as numbers, modern mathematics also looks at the relations between them. The passage from pure numerology to this new vision has derived from the realization that the most profound meaning is not in the numbers but in the relations between them. Mathematical investigation is precisely the exploration and the study of the different possible relations; some of them find a concrete and immediate application in the environment in which they are immersed, others just ‘live’ in the minds of those that conceive them." (Cristoforo S Bertuglia & Franco Vaio, "Nonlinearity, Chaos and Complexity: The Dynamics of Natural and Social Systems", 2003)

"Contrary to popular belief, mathematics is not a universal language. Rather, mathematics is based on a strict set of definitions and rules that have been instated and to which meaning has been given." (Christopher Tremblay, "Mathematics for Game Developers", 2004)

"Mathematics is not about abstract entities alone but is about relation of abstract entities with real entities. […] Adequacy relations between abstract and real entities provide space or opportunity where mathematical and logical thought operates parsimoniously."  (Navjyoti Singh, "Classical Indian Mathematical Thought", 2005)

"Mathematics is not a matter of ‘anything goes,’ and every mathematician is guided by explicit or unspoken assumptions as to what counts as legitimate – whether we choose to view these assumptions as the product of birth, experience, indoctrination, tradition, or philosophy. At the same time, mathematicians are primarily problem solvers and theory builders, and answer first and foremost to the internal exigencies of their subject." (Jeremy Avigad, "Methodology and Metaphysics in the Development of Dedekind’s Theory of Ideals", 2006)

"Logic moves in one direction, the direction of clarity, coherence, and structure. Ambiguity moves in the other direction, that of fluidity, openness, and release. Mathematics moves back and forth between these two poles. Mathematics is not a fixed, static entity that can be structured definitively. It is dynamic, alive: its dynamism a function of the relationship between the two poles that have been described above. It is the interactions between these different aspects that give mathematics its power." (William Byers, "How Mathematicians Think", 2007)

"[…] mathematics is not only to teach the algorithms and skills of mathematics - which we will agree are very important - but also to teach for understanding, with an emphasis on reasoning." (Alfred S Posamentier et al, "Exemplary Practices for Secondary Math Teachers", 2007)

"[…] mathematics is not only an essential tool for science and technology, but also for humanities, in particular for art. And out of art we may say that mathematics gains one of its main reasons for developing and changing in time. Mathematics contributes to our way of conceiving and shaping the world we live in, while art develops the means to harmonize, describe, represent aesthetically - or even to transcend and transfigure -  the world of our sensations and perception." (Mauro Francaviglia, "Art and Mathematics", 2008)

"Mathematics is not an inevitable body of knowledge. Understanding it and doing it requires a consciousness of the ‘rules’ and the awareness that they are rules or conventions. Such awareness is particularly needed at the early stages where we often act as if there is nothing to be surprised about." (Bill Barton, "The Language of Mathematics: Telling Mathematical Tales", 2008)

27 May 2019

On Theorems (1990-1999)

"[…] mystery is an inescapable ingredient of mathematics. Mathematics is full of unanswered questions, which far outnumber known theorems and results. It’s the nature of mathematics to pose more problems than it can solve. Indeed, mathematics itself may be built on small islands of truth comprising the pieces of mathematics that can be validated by relatively short proofs. All else is speculation." (Ivars Peterson, "Islands of Truth", 1990)

"A distinctive feature of mathematics, that feature in virtue of which it stands as a paradigmatically rational discipline, is that assertions are not accepted without proof. […] By proof is meant a deductively valid, rationally compelling argument which shows why this must be so, given what it is to be a triangle. But arguments always have premises so that if there are to be any proofs there must also be starting points, premises which are agreed to be necessarily true, self-evident, neither capable of, nor standing in need of, further justification. The conception of mathematics as a discipline in which proofs are required must therefore also be a conception of a discipline in which a systematic and hierarchical order is imposed on its various branches. Some propositions appear as first principles, accepted without proof, and others are ordered on the basis of how directly they can be proved from these first principle. Basic theorems, once proved, are then used to prove further results, and so on. Thus there is a sense in which, so long as mathematicians demand and provide proofs, they must necessarily organize their discipline along lines approximating to the pattern to be found in Euclid's Elements." (Mary Tiles, "Mathematics and the Image of Reason", 1991)

"[...] there is no criterion for appreciation which does not vary from one epoch to another and from one mathematician to another. [...] These divergences in taste recall the quarrels aroused by works of art, and it is a fact that mathematicians often discuss among themselves whether a theorem is more or less 'beautiful'. This never fails to surprise practitioners of other sciences: for them the sole criterion is the 'truth' of a theory or formula." (Jean Dieudonné, "Mathematics – The Music of Reason", 1992)

"An intuitive proof allows you to understand why the theorem must be true; the logic merely provides firm grounds to show that it is true." (Ian Stewart, "Concepts of Modern Mathematics",  1995)

"Mathematics is about theorems: how to find them; how to prove them; how to generalize them; how to use them; how to understand them. […] But great theorems do not stand in isolation; they lead to great theories. […] And great theories in mathematics are like great poems, great paintings, or great literature: it takes time for them to mature and be recognized as being 'great'." (John L Casti, "Five Golden Rules", 1995)

"To be an engineer, and build a marvelous machine, and to see the beauty of its operation is as valid an experience of beauty as a mathematician's absorption in a wondrous theorem. One is not ‘more’ beautiful than the other. To see a space shuttle standing on the launch pad, the vented gases escaping, and witness the thunderous blast-off as it climbs heavenward on a pillar of flame - this is beauty. Yet it is a prime example of applied mathematics.” (Calvin C Clawson, “Mathematical Mysteries”, 1996)

"The lack of beauty in a piece of mathematics is of frequent occurrence, and it is a strong motivation for further mathematical research. Lack of beauty is associated with lack of definitiveness. A beautiful proof is more often than not the definitive proof (though a definitive proof need not be beautiful); a beautiful theorem is not likely to be improved upon or generalized." (Gian-Carlo Rota, "The phenomenology of mathematical proof", Synthese, 111(2), 1997)

"The most common instance of beauty in mathematics is a brilliant step in an otherwise undistinguished proof. […] A beautiful theorem may not be blessed with an equally beautiful proof; beautiful theorems with ugly proofs frequently occur. When a beautiful theorem is missing a beautiful proof, attempts are made by mathematicians to provide new proofs that will match the beauty of the theorem, with varying success. It is, however, impossible to find beautiful proofs of theorems that are not beautiful." (Gian-Carlo Rota, "The Phenomenology of Mathematical Beauty", 1997)

"Mathematical truth is found to exceed the proving of theorems and to elude total capture in the confining meshes of any logical net." (John Polkinghorne, "Belief in God in an Age of Science", 1998)

"A mathematician experiments, amasses information, makes a conjecture, finds out that it does not work, gets confused and then tries to recover. A good mathematician eventually does so – and proves a theorem." (Steven Krantz, "Conformal Mappings", American Scientist, Sept.–Oct. 1999)

"Let us regard a proof of an assertion as a purely mechanical procedure using precise rules of inference starting with a few unassailable axioms. This means that an algorithm can be devised for testing the validity of an alleged proof simply by checking the successive steps of the argument; the rules of inference constitute an algorithm for generating all the statements that can be deduced in a finite number of steps from the axioms." (Edward Beltrami, "What is Random?: Chaos and Order in Mathematics and Life", 1999)

"Mathematicians, like the rest of us, cherish clever ideas; in particular they delight in an ingenious picture. But this appreciation does not overwhelm a prevailing skepticism. After all, a diagram is - at best - just a special case and so can't establish a general theorem. Even worse, it can be downright misleading. Though not universal, the prevailing attitude is that pictures are really no more than heuristic devices; they are psychologically suggestive and pedagogically important - but they prove nothing. I want to oppose this view and to make a case for pictures having a legitimate role to play as evidence and justification - a role well beyond the heuristic.  In short, pictures can prove theorems." (James R Brown, "Philosophy of Mathematics: An Introduction to the World of Proofs and Pictures, 1999)

See also:
Theorems I, II, III, IV, V, VI, VII, VIII, X

Proofs I, II, III, IV, V,. VI, VII, VIII, IX

09 May 2019

On Proofs (2000 - 2009)

"It is through proof that human mathematicians transcend the limitations of their humanity. Proofs link human mathematicians to truths of the universe. In the romance, proofs are discoveries of those truths." (George Lakoff & Rafael E Nuñez, "Where Mathematics Come From: How the Embodied Mind Brings Mathematics into Being, 2000)

"What does a rigorous proof consist of? The word ‘proof’ has a different meaning in different intellectual pursuits. A ‘proof’ in biology might consist of experimental data confirming a certain hypothesis; a ‘proof’ in sociology or psychology might consist of the results of a survey. What is common to all forms of proof is that they are arguments that convince experienced practitioners of the given field. So too for mathematical proofs. Such proofs are, ultimately, convincing arguments that show that the desired conclusions follow logically from the given hypotheses." (Ethan Bloch, "Proofs and Fundamentals", 2000)

"A felicitous but unproved conjecture may be of much more consequence for mathematics than the proof of many a respectable theorem." (Atle Selberg, 2001)

"By common consensus in the mathematical world, a good proof displays three essential characteristics: a good proof is (1) convincing, (2) surveyable, and (3) formalizable. The first requirement means simply that most mathematicians believe it when they see it. […] Most mathematicians and philosophers of mathematics demand more than mere plausibility, or even belief. A proof must be able to be understood, studied, communicated, and verified by rational analysis. In short, it must be surveyable. Finally, formalizability means we can always find a suitable formal system in which an informal proof can be embedded and fleshed out into a formal proof." (John L Casti, "Mathematical Mountaintops: The Five Most Famous Problems of All Time", 2001)

"Generally speaking, there are three grades of proof in mathematics. The first, or highest quality type of proof, is one that incorporates why and how the result is true, not simply that it is so. […] Second-grade proofs content themselves with showing that their   conclusion is true, by relying on the law of the excluded middle. Thus, they assume that the conclusion they want to demonstrate is false and then derive a contradiction from this assumption. In polite company, these are often termed 'nonconstructive proofs', since they lack the how and why. […] Finally, there is the third order, or lowest grade, of proof. In these situations, the idea of proof degenerates into mere verification, in which a (usually) large number of cases are considered separately and verified, one by one, very often by a computer." (John L Casti, "Mathematical Mountaintops: The Five Most Famous Problems of All Time", 2001)

"Somehow mathematicians seem to long for more than just results from their proofs; they want insight." (John L Casti, "Mathematical Mountaintops: The Five Most Famous Problems of All Time", 2001)

"That a proof must be convincing is part of the anthropology of mathematics, providing the key to understanding mathematics as a human activity. We invoke the logic of mathematics when we demand that every informal proof be capable of being formalized within the confines of a definite formal system. Finally, the epistemology of mathematics comes into play with the requirement that a proof be surveyable. We can't really say that we have created a genuine piece of knowledge unless it can be examined and verified by others; there are no private truths in mathematics." (John L Casti, "Mathematical Mountaintops: The Five Most Famous Problems of All Time", 2001)

"Where we find certainty and truth in mathematics we also find beauty. Great mathematics is characterized by its aesthetics. Mathematicians delight in the elegance, economy of means, and logical inevitability of proof. It is as if the great mathematical truths can be no other way. This light of logic is also reflected back to us in the underlying structures of the physical world through the mathematics of theoretical physics." (F David Peat, "From Certainty to Uncertainty", 2002)

"Proofs should be as short, transparent, elegant, and insightful as possible." (Burkard Polster, "Q.E.D.: Beauty in Mathematical Proof", 2004)

"The concept of proof perhaps marks the true beginning of mathematics as the art of deduction rather than just numerological observation, the point at which mathematical alchemy gave way to mathematical chemistry." (Marcus du Sautoy, "The Music of the Primes", 2004)

"There is a strong parallel between mountain climbing and mathematics research. When first attempts on a summit are made, the struggle is to find any route. Once on the top, other possible routes up may be discerned and sometimes a safer or shorter route can be chosen for the descent or for subsequent ascents. In mathematics the challenge is finding a proof in the first place. Once found, almost any competent mathematician can usually find an alternative often much better and shorter proof. At least in mountaineering we know that the mountain is there and that, if we can find a way up and reach the summit, we shall triumph. In mathematics we do not always know that there is a result, or if the proposition is only a figment of the imagination, let alone whether a proof can be found." (Kathleen Ollerenshaw, "To talk of many things: An autobiography", 2004)

"Mathematicians attempt to justify their claims by proofs. The quest for cast iron rational arguments is the driving force of pure mathematics. Chains of correct deduction from what is known or assumed, lead the mathematician to a conclusion which then enters the established mathematical storehouse." (Tony Crilly, "50 Mathematical Ideas You Really Need to Know", 2007)

 "The ever-present rigorous proof is both a science and an art." (Edward B. Burger, Zero To Infinity: A History of Numbers", 2007)

"Popular accounts of mathematics often stress the discipline’s obsession with certainty, with proof. And mathematicians often tell jokes poking fun at their own insistence on precision. However, the quest for precision is far more than an end in itself. Precision allows one to reason sensibly about objects outside of ordinary experience. It is a tool for exploring possibility: about what might be, as well as what is." (Donal O’Shea, "The Poincaré Conjecture", 2007)

"Mathematicians, then, do not just care about proving theorems: they care about proving interesting, deep, fruitful theorems, by means of elegant, ingenious, explanatory, memorable, or even amusing proofs. If we wish to understand more about the character of mathematical knowledge, we ought to investigate these kinds of evaluative claims made by mathematicians." (Mary Leng ["Mathematical Knowledge", Ed. by Mary Leng, Alexander Paseau and Michael Potter], 2007)

"Why are proofs so important? Suppose our task were to construct a building. We would start with the foundations. In our case these are the axioms or definitions - everything else is built upon them. Each theorem or proposition represents a new level of knowledge and must be firmly anchored to the previous level. We attach the new level to the previous one using a proof. So the theorems and propositions are the new heights of knowledge we achieve, while the proofs are essential as they are the mortar which attaches them to the level below. Without proofs the structure would collapse." (Sidney A Morris, "Topology without Tears", 2007)

"In mathematics, it’s the limitations of a reasoned argument with the tools you have available, and with magic it’s to use your tools and sleight of hand to bring about a certain effect without the audience knowing what you’re doing. [...]When you’re inventing a trick, it’s always possible to have an elephant walk on stage, and while the elephant is in front of you, sneak something under your coat, but that’s not a good trick. Similarly with mathematical proof, it is always possible to bring out the big guns, but then you lose elegance, or your conclusions aren’t very different from your hypotheses, and it’s not a very interesting theorem." (Persi Diaconis, 2008)

"As students, we learned mathematics from textbooks. In textbooks, mathematics is presented in a rigorous and logical way: definition, theorem, proof, example. But it is not discovered that way. It took many years for a mathematical subject to be understood well enough that a cohesive textbook could be written. Mathematics is created through slow, incremental progress, large leaps, missteps, corrections, and connections." (Richard S Richeson, "Eulers Gem: The Polyhedron Formula and the birth of Topology", 2008)

"It can be asserted that a 'proof' [...] is a psychological device for convincing the reader that an assertionis true. However our view in this book is more rigid: a proof is a sequence
of applications of the rules of logic to derive the assertion from the axioms. There is no room for opinion here. The axioms are plain. The rules are rigid. A proof is like a sequence of moves in a game of chess. If the rules are followed, then the proof is correct, otherwise it is not." (Steven G Krantz, "Essentials of Topology with Applications”, 2009)

"[…] proof is the key ingredient of the emotional side of mathematics; proof is the ultimate explanation of why something is true, and a good proof often has a powerful emotional impact, boosting confidence and encouraging further questions ‘why’." (Alexandre V Borovik, "Mathematics under the Microscope: Notes on Cognitive Aspects of Mathematical Practice", 2009)

"The reasoning of the mathematician and that of the scientist are similar to a point. Both make conjectures often prompted by particular observations. Both advance tentative generalizations and look for supporting evidence of their validity. Both consider specific implications of their generalizations and put those implications to the test. Both attempt to understand their generalizations in the sense of finding explanations for them in terms of concepts with which they are already familiar. Both notice fragmentary regularities and - through a process that may include false starts and blind alleys - attempt to put the scattered details together into what appears to be a meaningful whole. At some point, however, the mathematician’s quest and that of the scientist diverge. For scientists, observation is the highest authority, whereas what mathematicians seek ultimately for their conjectures is deductive proof." (Raymond S Nickerson, "Mathematical Reasoning: Patterns, Problems, Conjectures and Proofs", 2009)

Related Posts Plugin for WordPress, Blogger...

On Leonhard Euler

"I have been able to solve a few problems of mathematical physics on which the greatest mathematicians since Euler have struggled in va...