Showing posts with label patterns. Show all posts
Showing posts with label patterns. Show all posts

05 February 2025

Out of Context: On Patterns (Definitions)

"From the smallest scales to the largest, many of nature's patterns are a result of broken symmetry; […]" (Ian Stewart & Martin Golubitsky, "Fearful Symmetry: Is God a Geometer?", 1992)

"By using mathematics to organize and systematize our ideas about patterns, we have discovered a great secret: nature's patterns are not just there to be admired, they are vital clues to the rules that govern natural processes." (Ian Stewart, "Nature's Numbers: The unreal reality of mathematics", 1995)

"When someone shows you a pattern, no matter how impressive the person’s credentials, consider the possibility that the pattern is just a coincidence. Ask why, not what. No matter what the pattern, the question is: Why should we expect to find this pattern?" (Gary Smith, "Standard Deviations", 2014)

"Don’t be fooled into thinking that a pattern is proof. We need a logical, persuasive explanation and we need to test the explanation with fresh data." (Gary Smith, "Standard Deviations", 2014)

"A pattern is a design or model that helps grasp something. Patterns help connect things that may not appear to be connected. Patterns help cut through complexity and reveal simpler understandable trends." (Anil K Maheshwari, "Business Intelligence and Data Mining", 2015)

"By using mathematics to organize and systematize our ideas about patterns, we have discovered a great secret: nature's patterns are not just there to be admired, they are vital clues to the rules that govern natural processes." (Ian Stewart, "Nature's Numbers: The unreal reality of mathematics", 1995)

"Thanks to their flexibility, the most complex models available to us can fit any patterns that appear in the data, but this means that they will also do so even when those patterns are mere phantoms and mirages in the noise." (Brian Christian & Thomas L Griffiths, "Algorithms to Live By: The Computer Science of Human Decisions", 2016)

01 December 2023

Avner Ash - Collected Quotes

"A group is a set along with a rule that tells how to combine any two elements in the set to get another element in the set. We usually use the word composition to describe the act of combining two elements of the group to get a third." (Avner Ash & Robert Gross, "Fearless Symmetry: Exposing the hidden patterns of numbers", 2006)

"A symmetry is a function that preserves what we feel is important about an object." (Avner Ash & Robert Gross, "Fearless Symmetry: Exposing the hidden patterns of numbers", 2006)

"Although it is not difficult to count the holes in a real pretzel in your hand, prior to eating it, when a surface pops out of an abstract mathematical construction it can be very difficult to figure out its properties, such as how many holes it has. The cohomology groups can help us to do so." (Avner Ash & Robert Gross, "Fearless Symmetry: Exposing the hidden patterns of numbers", 2006)

"Lie groups turn up when we study a geometric object with a lot of symmetry, such as a sphere, a circle, or flat spacetime. Because there is so much symmetry, there are many functions from the object to itself that preserve the geometry, and these functions become the elements of the group." (Avner Ash & Robert Gross, "Fearless Symmetry: Exposing the hidden patterns of numbers", 2006)

"Many people believe that all of mathematics has already been discovered and codified. Mathematicians (they think) do nothing except rearrange the material in different ways for different types of students. This seems to be the result of the cut-and-dried method of teaching mathematics in many high schools and universities. The facts are laid out in the cleanest logical order. Little attempt is made to show how someone once had to invent it all, at first in a confused way, and that only later was it possible to give it this neat form." (Avner Ash & Robert Gross, "Fearless Symmetry: Exposing the hidden patterns of numbers", 2006)

"Mathematicians are just lucky that elliptic curves are fairly simple - they only involve two variables and no powers higher than the cube - and yet are so rich." (Avner Ash & Robert Gross, "Fearless Symmetry: Exposing the hidden patterns of numbers", 2006)

"Mathematicians often get bored by a problem after they have fully understood it and have given proofs of their conjectures. Sometimes they even forget the precise details of what they have done after the lapse of years, having refocused their interest in another area. The common notion of the mathematician contemplating timeless truths, thinking over the same proof again and again - Euclid looking on beauty bare - is rarely true in any static sense." (Avner Ash & Robert Gross, "Fearless Symmetry: Exposing the hidden patterns of numbers", 2006)

"Mathematics is like a game. It has rules, and to enjoy playing or watching it, you have to know and understand the rules. Mathematicians make up the rules as they go along." (Avner Ash & Robert Gross, "Fearless Symmetry: Exposing the hidden patterns of numbers", 2006)

"One thing mathematicians do is connect concepts that occur in different trains of thought." (Avner Ash & Robert Gross, "Fearless Symmetry: Exposing the hidden patterns of numbers", 2006)

"Some number patterns, like even and odd numbers, lie on the surface. But the more you learn about numbers, both experimentally and theoretically, the more you discover patterns that are not so obvious. […] After a hidden pattern is exposed, it can be used to find more hidden patterns. At the end of a long chain of patterned reasoning, you can get to very difficult theorems, exploring facts about numbers that you otherwise would not know were true." (Avner Ash & Robert Gross, "Fearless Symmetry: Exposing the hidden patterns of numbers", 2006)

"Still, in the end, we find ourselves drawn to the beauty of the patterns themselves, and the amazing fact that we humans are smart enough to prove even a feeble fraction of all possible theorems about them. Often, greater than the contemplation of this beauty for the active mathematician is the excitement of the chase. Trying to discover first what patterns actually do or do not occur, then finding the correct statement of a conjecture, and finally proving it - these things are exhilarating when accomplished successfully. Like all risk-takers, mathematicians labor months or years for these moments of success." (Avner Ash & Robert Gross, "Fearless Symmetry: Exposing the hidden patterns of numbers", 2006)

"The set of complex numbers is another example of a field. It is handy because every polynomial in one variable with integer coefficients can be factored into linear factors if we use complex numbers. Equivalently, every such polynomial has a complex root. This gives us a standard place to keep track of the solutions to polynomial equations." (Avner Ash & Robert Gross, "Fearless Symmetry: Exposing the hidden patterns of numbers", 2006)

"The word conjecture means 'guess'. The way it is used in mathematics is 'educated guess'." (Avner Ash & Robert Gross, "Fearless Symmetry: Exposing the hidden patterns of numbers", 2006)

"There is a big debate as to whether logic is part of mathematics or mathematics is part of logic. We use logic to think. We notice that our thinking, when it is valid, goes in certain patterns. These patterns can be studied mathematically. Thus, logic is a part of mathematics, called 'mathematical logic'." (Avner Ash & Robert Gross, "Fearless Symmetry: Exposing the hidden patterns of numbers", 2006) 

"What is a group? It is just a pattern that certain things can exhibit when you have a composition law for always getting a third thing by combining any two others." (Avner Ash & Robert Gross, "Fearless Symmetry: Exposing the hidden patterns of numbers", 2006)

10 November 2023

Peter B Stevens - Collected Quotes

"All patterns, whether drawn by artists, calculated by mathematicians, or produced by natural forces are shaped by the same spatial environment. All are subject to the tyranny of space. Synthetic patterns of lines and dots are engaging in their own right but, more importantly, they speak eloquently of the order that all things inevitably share." (Peter B Stevens, "Patterns in Nature", 1974)

"Although we expect to find eddies in turbulent flow, we do not know when any specific eddy will come into being or die away . We cannot yet predict how eddies interact. Similarly, we know as a general rule that any particle within a turbulent flow gets knocked about in an aimless fashion by the swirls, so that it describes an erratic meandering path, but at any given moment we cannot predict the precise location or velocity of the particle." (Peter B Stevens, "Patterns in Nature", 1974)

"But even if we cannot predict all the details, we can predict something about the average case. We can consider the unpredictable local velocities and pressures as chance or random occurrences and then, with the aid of probability theory, take the mean of those occurrences and obtain mathematical descriptions of average motions in average flows." (Peter B Stevens, "Patterns in Nature", 1974)

"In order to describe meanders, then, we can invoke a model involving scour and centrifugal force, a model that describes the uniform expenditure of energy, or a model based on probability theory. All three models describe the same phenomenon. As far as meanders are concerned, all three models happen to be interrelated - but not out of any fundamental necessity. That is to say, the cross circulation induced by centrifugal force need not necessarily result in a uniform distribution of effort or produce a path that is especially probable. In a world of limited patterns, however, the meander answers several entirely different sets of specifications, so that scour, uniform effort, and probability produce the same design." (Peter B Stevens, "Patterns in Nature", 1974)

"The analysis of turbulence in terms of probability reveals several interesting things about eddies. For instance, the average eddy moves a distance about equal to its own diameter before it generates small eddies that move, more often than not, in the opposite direction. Those smaller eddies generate still smaller eddies and the process continues until all the energy dissipates as heat through molecular motion." (Peter B Stevens, "Patterns in Nature", 1974)

"Of all constraints of nature, the most far-reaching are imposed by space. For space itself has a structure that influences the shape of every existing thing." (Peter B Stevens, "Patterns in Nature", 1974)

"The effect of magnitude or absolute size as a determinant of form shows again how space shapes the things around us. In studying polyhedrons we are unconcerned with magnitude. We assume that a cube is a cube no matter what its size. We find, however, that the geometric relations that arise from a difference in size affect structural behavior, and that a large cube is relatively weaker than a small cube. We also find, as a corollary, that in order to maintain the same structural characteristics a difference in size must be accompanied by a difference in shape." (Peter B Stevens, "Patterns in Nature", 1974)

"The spiral is beautifully uniform; it curves around on itself in a perfectly regular manner. It can fill all of two-dimensional space, being capable of infinite expansion, and it is also quite short. But [...], as measured by the mean of distances to its center, the spiral is extremely indirect." (Peter B Stevens, "Patterns in Nature", 1974)

"Turbulence forms the primordial pattern, the chaos that was 'in the beginning'." (Peter B Stevens, "Patterns in Nature", 1974)

"We might note in passing that the lines and circles adopted by natural forms are never perfect. Neither the stream nor the meteor runs perfectly straight, nor is the pond or orbital trajectory a perfect circle. Straight lines and circles are only the pure forms. They occur under only the simplest conditions. In nature, however, conditions are never entirely simple, and any 'elementary' or 'isolated' part is embedded in a larger system that operates in turn within other still larger systems. To some extent, then, the part is acted upon by the whole - by the totality of all the systems - and it never exactly fits an easily definable pattern. The warning is clear: nature never conforms precisely to our simple models; she introduces modifications as dictated by her lawful response to a multiplicity of demands." (Peter B Stevens, "Patterns in Nature", 1974)

27 October 2021

On Patterns (1980-1989)

"Mathematics, being very different from the natural languages, has its corresponding patterns of thought. Learning these patterns is much more important than any particular result. [...] They are learned by the constant use of the language and cannot be taught in any other fashion." (Richard W Hamming, "Methods of Mathematics Applied to Calculus, Probability, and Statistics", 1985)

"Metaphor [is] a pervasive mode of understanding by which we project patterns from one domain of experience in order to structure another domain of a different kind. So conceived metaphor is not merely a linguistic mode of expression; rather, it is one of the chief cognitive structures by which we are able to have coherent, ordered experiences that we can reason about and make sense of. Through metaphor, we make use of patterns that obtain in our physical experience to organise our more abstract understanding. " (Mark Johnson, "The Body in the Mind", 1987)

"Both religion and science must preserve their autonomy and their distinctiveness. Religion is not founded on science nor is science an extension of religion. Each should possess its own principles, its pattern of procedures, its diversities of interpretation and its own conclusions." (Pope John Paul II, [Letter to Father George V Coyne], 1988)

"Metaphor has traditionally been regarded as the matrix and pattern of the figures of speech." (Marshall McLuhan & Eric McLuhan, "Laws of Media: The New Science", 1988)

"The world of science lives fairly comfortably with paradox. We know that light is a wave and also that light is a particle. The discoveries made in the infinitely small world of particle physics indicate randomness and chance, and I do not find it any more difficult to live with the paradox of a universe of randomness and chance and a universe of pattern and purpose than I do with light as a wave and light as a particle. Living with contradiction is nothing new to the human being." (Madeline L'Engle, "Two-Part Invention: The Story of a Marriage" , 1988)

"When we focus consciously on an object - and create a mental image for example - it's not because the brain pattern is a copy or neural representation of the perceived object, but because the brain experiences a special kind of interaction with that object, preparing the brain to deal with it." (Roger W Sperry, "New Mindset on Consciousness", Sunrise magazine, 1987/1988)

"As a practical matter, mathematics is a science of pattern and order. Its domain is not molecules or cells, but numbers, chance, form, algorithms, and change. As a science of abstract objects, mathematics relies on logic rather than observation as its standard of truth, yet employs observation, simulation, and even experimentation as a means of discovering truth." (National Research Council, "Everybody Counts", 1989)

"Modeling underlies our ability to think and imagine, to use signs and language, to communicate, to generalize from experience, to deal with the unexpected, and to make sense out of the raw bombardment of our sensations. It allows us to see patterns, to appreciate, predict, and manipulate processes and things, and to express meaning and purpose. In short, it is one of the most essential activities of the human mind. It is the foundation of what we call intelligent behavior and is a large part of what makes us human. We are, in a word, modelers: creatures that build and use models routinely, habitually – sometimes even compulsively – to face, understand, and interact with reality."  (Jeff Rothenberg, "The Nature of Modeling. In: Artificial Intelligence, Simulation, and Modeling", 1989)

"Some people think that mathematics is a serious business that must always be cold and dry; but we think mathematics is fun, and we aren’t ashamed to admit the fact. Why should a strict boundary line be drawn between work and play? Concrete mathematics is full of appealing patterns; the manipulations are not always easy, but the answers can be astonishingly attractive." (Donald E Knuth et al, "Concrete Mathematics: A Foundation for Computer Science", 1989)

28 September 2021

On Patterns (1940-1949)

"A mathematician, like a painter or a poet, is a maker of patterns. [...]. The mathematician's patterns, like the painter's or the poet's, must be beautiful; the ideas, like the colours or the words, must fit together in a harmonious way. Beauty is the first test: there is no permanent place in the world for ugly mathematics." (Godfrey H Hardy, "A Mathematician's Apology", 1941)

"It will probably be the new mathematical discoveries which are suggested through physics that will always be the most important, for, from the beginning Nature has led the way and established the pattern which mathematics, the Language of Nature, must follow." (George D Birkhoff, "Mathematical Nature of Physical Theories" American Scientific Vol. 31 (4), 1943)

"One may generalize upon these processes in terms of group equilibrium. The group may be said to be in equilibrium when the interactions of its members fall into the customary pattern through which group activities are and have been organized. The pattern of interactions may undergo certain modifications without upsetting the group equilibrium, but abrupt and drastic changes destroy the equilibrium." (William F Whyte, "Street Corner Society", 1943)

"Those who are content with a positivist conception of the aims of science will feel that he is in an entirely satisfactory position; he has discovered the pattern of events, and so can predict accurately; what more can he want? A mental picture would be an added luxury, but also a useless luxury. For if the picture did not bear any resemblance at all to the reality it would be valueless, and if it did it would be unintelligible […]" (James H Jeans," Physics and Philosophy" 3rd Ed., 1943)

"Without falling into the trap of attempting a precise definition, we may suggest a theory as to the general nature of symbolism, viz. that it is the ability of processes to parallel or imitate each other, or the fact that they can do so since there are recurrent patterns in reality." (Kenneth Craik, "The Nature of Explanation", 1943)

"Science in general […] does not consist in collecting what we already know and arranging it in this or that kind of pattern. It consists in fastening upon something we do not know, and trying to discover it. (Robin G Collingwood, "The Idea of History", 1946)

06 July 2021

On Algorithms II

"The vast majority of information that we have on most processes tends to be nonnumeric and nonalgorithmic. Most of the information is fuzzy and linguistic in form." (Timothy J Ross & W Jerry Parkinson, "Fuzzy Set Theory, Fuzzy Logic, and Fuzzy Systems", 2002)

"Knowledge is encoded in models. Models are synthetic sets of rules, and pictures, and algorithms providing us with useful representations of the world of our perceptions and of their patterns." (Didier Sornette, "Why Stock Markets Crash - Critical Events in Complex Systems", 2003)

"Swarm Intelligence can be defined more precisely as: Any attempt to design algorithms or distributed problem-solving methods inspired by the collective behavior of the social insect colonies or other animal societies. The main properties of such systems are flexibility, robustness, decentralization and self-organization." ("Swarm Intelligence in Data Mining", Ed. Ajith Abraham et al, 2006)

"The burgeoning field of computer science has shifted our view of the physical world from that of a collection of interacting material particles to one of a seething network of information. In this way of looking at nature, the laws of physics are a form of software, or algorithm, while the material world - the hardware - plays the role of a gigantic computer." (Paul C W Davies, "Laying Down the Laws", New Scientist, 2007)

"An algorithm refers to a successive and finite procedure by which it is possible to solve a certain problem. Algorithms are the operational base for most computer programs. They consist of a series of instructions that, thanks to programmers’ prior knowledge about the essential characteristics of a problem that must be solved, allow a step-by-step path to the solution." (Diego Rasskin-Gutman, "Chess Metaphors: Artificial Intelligence and the Human Mind", 2009)

"Programming is a science dressed up as art, because most of us don’t understand the physics of software and it’s rarely, if ever, taught. The physics of software is not algorithms, data structures, languages, and abstractions. These are just tools we make, use, and throw away. The real physics of software is the physics of people. Specifically, it’s about our limitations when it comes to complexity and our desire to work together to solve large problems in pieces. This is the science of programming: make building blocks that people can understand and use easily, and people will work together to solve the very largest problems." (Pieter Hintjens, "ZeroMQ: Messaging for Many Applications", 2012)

"These nature-inspired algorithms gradually became more and more attractive and popular among the evolutionary computation research community, and together they were named swarm intelligence, which became the little brother of the major four evolutionary computation algorithms." (Yuhui Shi, "Emerging Research on Swarm Intelligence and Algorithm Optimization", Information Science Reference, 2014)

"Again, classical statistics only summarizes data, so it does not provide even a language for asking [a counterfactual] question. Causal inference provides a notation and, more importantly, offers a solution. As with predicting the effect of interventions [...], in many cases we can emulate human retrospective thinking with an algorithm that takes what we know about the observed world and produces an answer about the counterfactual world." (Judea Pearl & Dana Mackenzie, "The Book of Why: The new science of cause and effect", 2018)

"An algorithm, meanwhile, is a step-by-step recipe for performing a series of actions, and in most cases 'algorithm' means simply 'computer program'." (Tim Harford, "The Data Detective: Ten easy rules to make sense of statistics", 2020)

"Big data is revolutionizing the world around us, and it is easy to feel alienated by tales of computers handing down decisions made in ways we don’t understand. I think we’re right to be concerned. Modern data analytics can produce some miraculous results, but big data is often less trustworthy than small data. Small data can typically be scrutinized; big data tends to be locked away in the vaults of Silicon Valley. The simple statistical tools used to analyze small datasets are usually easy to check; pattern-recognizing algorithms can all too easily be mysterious and commercially sensitive black boxes." (Tim Harford, "The Data Detective: Ten easy rules to make sense of statistics", 2020)

"Each of us is sweating data, and those data are being mopped up and wrung out into oceans of information. Algorithms and large datasets are being used for everything from finding us love to deciding whether, if we are accused of a crime, we go to prison before the trial or are instead allowed to post bail. We all need to understand what these data are and how they can be exploited." (Tim Harford, "The Data Detective: Ten easy rules to make sense of statistics", 2020)

01 July 2021

Out of Context: On Science (Definitions)

"Science is, I believe, nothing but trained and organized common sense [...]" (Thomas H Huxley, "On the Educational Value of the Natural History Sciences", 1854)

"Science is organized knowledge; and before knowledge can be organized, some of it must first be possessed." (Herbert Spencer, "The Art of Education", The North British Review, 1854)

"In its broadest sense science is organised knowledge, and its methods consist of the observation and classification of the phenomena of which we become conscious through our senses, and the investigation of the causes of which these are the effects." (Richard Strachey, Nature Vol. 12 [E], 1875)

"Science is the observation of things possible, whether present or past; prescience is the knowledge of things which may come to pass, though but slowly." (Leonardo da Vinci, "The Notebooks of Leonardo da Vinci", 1883)

"Science is not the monopoly of the naturalist or the scholar, nor is it anything mysterious or esoteric. Science is the search for truth, and truth is the adequacy of a description of facts." (Paul Carus, "Philosophy as a Science", 1909)

"Science is the only truth and it is the great lie. It knows nothing, and people think it knows everything. It is misrepresented. People think that science is electricity, automobilism, and dirigible balloons. It is something very different. It is life devouring itself. It is the sensibility transformed into intelligence. It is the need to know stifling the need to live. It is the genius of knowledge vivisecting the vital genius." (Rémy de Gourmont, "Art and Science", cca. 1905-1909)

"Science is frankly empirical in method and aim; it seeks to discover the laws of concrete being and becoming, and to formulate these in the simplest terms, which are either immediate data of experience or verifiably derived therefrom." (J Arthur Thomson, "The System of Animate Nature" Vol. 1, 1920)

"Science is simply setting out on a fishing expedition to see whether it cannot find some procedure which it can call measurement of space and some procedure which it can call the measurement of time, and something which it can call a system of forces, and something which it can call masses." (Alfred N Whitehead, "The Concept of Nature", 1920)

"Science is a magnificent force, but it is not a teacher of morals." (William J Bryan, "Undelivered Trial Summation Scopes Trial", 1925)

"Science is either an important statement of systematic theory correlating observations of a common world or is the daydream of a solitary intelligence with a taste for the daydream of publication." (Alfred N Whitehead, "Process and Reality: An Essay in Cosmology", 1929)

"Science is feasible when the variables are few and can be enumerated; when their combinations are distinct and clear." (Paul Valéry, "Moralités" ["Morality"], 1932)

"Science is the attempt to discover, by means of observation, and reasoning based upon it, first, particular facts about the world, and then laws connecting facts with one another and (in fortunate cases) making it possible to predict future occurrences." (Bertrand Russell, "Religion and Science, Grounds of Conflict", 1935)

"Science, in the broadest sense, is the entire body of the most accurately tested, critically established, systematized knowledge available about that part of the universe which has come under human observation." (Austin L Porterfield, "Creative Factors in Scientific Research", 1941)

"Physics is not about the real world, it is about ‘abstractions’ from the real world, and this is what makes it so scientific." (Anthony Standen, "Science is a Sacred Cow", 1950)

"Science, then, is the attentive consideration of common experience; it is common knowledge extended and refined." (George Santayana, "The Life of Reason, or the Phases of Human Progress", 1954)

"Science is the creation of concepts and their exploration in the facts." (Jacob Bronowski, "Science and Human Values", 1956)

"Science is the reduction of the bewildering diversity of unique events to manageable uniformity within one of a number of symbol systems [...]" (Aldous L Huxley, "Essay", Daedalus, 1962)

"Science is what scientists do. Science is knowledge, a body of information about the external world. Science is the ability to predict. Science is power, it is engineering. Science explains, or gives causes and reasons." (John Bremer "What Is Science?" [in "Notes on the Nature of Science"], 1962)

"Science is the combined effort to find out what sort of behavior ensues when various conditions are fulfilled." (H Rom Harré, "Philosophical Issues and Conceptual Change", Theory Into Practice Vol. 10 (2), 1971)

"Science is a product of the human mind, but this product is as objective as a cathedral."  (Karl R Popper, "The Logic and Evolution of Scientific Theory", [in "All Life is Problem Solving", 1999] 1972)

"Science is systematic organisation of knowledge about the universe on the basis of explanatory hypotheses which are genuinely testable." (Francisco J Ayala, "Studies in the Philosophy of Biology: Reduction and Related Problems", 1974)

"Within a Metaphysics of Quality, science is a set of static intellectual patterns describing this reality, but the patterns are not the reality they describe." (Robert M Pirsig, "Zen and the Art of Motorcycle Maintenance", 1974)

"Science is a quintessentially human activity, not a mechanized, robot-like accumulation of objective information, leading by laws of logic to inescapable interpretation." (Stephen J Gould, "Ever Since Darwin", 1977)

"Engineering or Technology is the making of things that did not previously exist, whereas science is the discovering of things that have long existed." (David Billington, "The Tower and the Bridge: The New Art of Structural Engineering", 1983)

"Science is human experience systematically extended (by intent, methodology and instrumentation) for the purpose of learning more about the natural world and for the critical empirical testing and possible falsification of all ideas about the natural world." (Robert E Kofahl, Correctly Redefining Distorted Science: A Most Essential Task", Creation Research Society Quarterly Vol. 23, 1986)

"Science is a mechanism. It's a way of trying to improve your knowledge of nature. It's a system for testing your thoughts against the universe and seeing whether they match." (Isaac Asimov, [Interview by Bill Moyers] 1988)

"Science is more than a mere attempt to describe nature as accurately as possible. Frequently the real message is well hidden, and a law that gives a poor approximation to nature has more significance than one which works fairly well but is poisoned at the root." (Robert H March, "Physics for Poets", 1996)

"Science is like photographing a series of close-ups with your back to the sun. No matter which way you move, your shadow always falls across the scene you photograph. No matter what you do, you can never efface yourself from the photographed scene." (F David Peat, "From Certainty to Uncertainty", 2002)

"Science is that story our society tells itself about the cosmos." (F David Peat, "From Certainty to Uncertainty", 2002)

"Science is the art of the appropriate approximation." (Byron K Jennings, "On the Nature of Science", Physics in Canada Vol. 63 (1), 2007)

"Science is not only the enterprise of harnessing nature to serve the practical needs of humankind. It is also part of man’s unending search for knowledge about the universe and his place within it." (Henry P Stapp, "Mindful Universe: Quantum Mechanics and the Participating Observer", 2007)

"Science is about discovery, but it is also about communication. An idea can hardly be said to exist if you do not awaken that same idea in someone else." (Marcus du Sautoy, "Symmetry: A Journey into the Patterns of Nature", 2008)

"Science isn’t about being right. It is about convincing others of the correctness of an idea through a methodology all will accept using data everyone can trust. New ideas take time to be accepted because they compete with others that have already passed the test." (Tom Koch, "Commentary: Nobody loves a critic: Edmund A Parkes and John Snow’s cholera", International Journal of Epidemiology Vol. 42 (6), 2013)

"Science, at its core, is simply a method of practical logic that tests hypotheses against experience." (John M Greer, "After Progress: Reason and Religion at the End of the Industrial Age", 2015)

"Science is an endeavor to understand and describe the real world out there to (at best) alleviate and enrich human existence." (Achim Zielesny, "From Curve Fitting to Machine Learning" 2nd Ed., 2016)

"Science is a game - but a game with reality, a game with sharpened knives." (Erwin Schrödinger)

"Science is not a technique or a body of knowledge, though it uses both. It is rather an attitude of inquiry, or observation and reasoning, with respect to the world. It can be developed, not by memorizing facts or juggling formulas to get an answer, but only by actual practice of scientific observation and reasoning." (Karl T Compton)

"Science is the knowledge of the many, orderly and methodically-arranged, so as to become comprehended by one." (Sir John Herschel)

17 June 2021

On Knowledge (2000-2009)

"Storytelling is the art of unfolding knowledge in a way that makes each piece contribute to a larger truth." (Philip Gerard, "Writing a Book That Makes a Difference", 2000)

"There is a strong tendency today to narrow specialization. Because of the exponential growth of information, we can afford (in terms of both economics and time) preparation of specialists in extremely narrow fields, the various branches of science and engineering having their own particular realms. As the knowledge in these fields grows deeper and broader, the individual's field of expertise has necessarily become narrower. One result is that handling information has become more difficult and even ineffective." (Semyon D Savransky, "Engineering of Creativity", 2000)

"All human knowledge - including statistics - is created  through people's actions; everything we know is shaped by our language, culture, and society. Sociologists call this the social construction of knowledge. Saying that knowledge is socially constructed does not mean that all we know is somehow fanciful, arbitrary, flawed, or wrong. For example, scientific knowledge can be remarkably accurate, so accurate that we may forget the people and social processes that produced it." (Joel Best, "Damned Lies and Statistics: Untangling Numbers from the Media, Politicians, and Activists", 2001)

"Defined from a societal standpoint, information may be seen as an entity which reduces maladjustment between system and environment. In order to survive as a thermodynamic entity, all social systems are dependent upon an information flow. This explanation is derived from the parallel between entropy and information where the latter is regarded as negative entropy (negentropy). In more common terms information is a form of processed data or facts about objects, events or persons, which are meaningful for the receiver, inasmuch as an increase in knowledge reduces uncertainty." (Lars Skyttner, "General Systems Theory: Ideas and Applications", 2001)

"Knowledge is factual when evidence supports it and we have great confidence in its accuracy. What we call 'hard fact' is information supported by  strong, convincing evidence; this means evidence that, so far as we know, we cannot deny, however we examine or test it. Facts always can be questioned, but they hold up under questioning. How did people come by this information? How did they interpret it? Are other interpretations possible? The more satisfactory the answers to such questions, the 'harder' the facts."(Joel Best, Damned Lies and Statistics: Untangling Numbers from the Media, Politicians, and Activists, 2001)

"Knowledge maps are node-link representations in which ideas are located in nodes and connected to other related ideas through a series of labeled links. They differ from other similar representations such as mind maps, concept maps, and graphic organizers in the deliberate use of a common set of labeled links that connect ideas. Some links are domain specific (e.g., function is very useful for some topic domains...) whereas other links (e.g., part) are more broadly used. Links have arrowheads to indicate the direction of the relationship between ideas." (Angela M. O’Donnell et al, "Knowledge Maps as Scaffolds for Cognitive Processing", Educational Psychology Review Vol. 14 (1), 2002) 

"Knowledge is encoded in models. Models are synthetic sets of rules, and pictures, and algorithms providing us with useful representations of the world of our perceptions and of their patterns." (Didier Sornette, "Why Stock Markets Crash - Critical Events in Complex Systems", 2003)

"The networked world continuously refines, reinvents, and reinterprets knowledge, often in an autonomic manner." (Donald M Morris et al, "A revolution in knowledge sharing", 2003) 

"A mental model is conceived […] as a knowledge structure possessing slots that can be filled not only with empirically gained information but also with ‘default assumptions’ resulting from prior experience. These default assumptions can be substituted by updated information so that inferences based on the model can be corrected without abandoning the model as a whole. Information is assimilated to the slots of a mental model in the form of ‘frames’ which are understood here as ‘chunks’ of knowledge with a well-defined meaning anchored in a given body of shared knowledge." (Jürgen Renn, "Before the Riemann Tensor: The Emergence of Einstein’s Double Strategy", 2005)

"Evolution moves towards greater complexity, greater elegance, greater knowledge, greater intelligence, greater beauty, greater creativity, and greater levels of subtle attributes such as love. […] Of course, even the accelerating growth of evolution never achieves an infinite level, but as it explodes exponentially it certainly moves rapidly in that direction." (Ray Kurzweil, "The Singularity is Near", 2005)

“It makes no sense to seek a single best way to represent knowledge - because each particular form of expression also brings its particular limitations. For example, logic-based systems are very precise, but they make it hard to do reasoning with analogies. Similarly, statistical systems are useful for making predictions, but do not serve well to represent the reasons why those predictions are sometimes correct.” (Marvin Minsky, "The Emotion Machine: Commonsense Thinking, Artificial Intelligence, and the Future of the Human Mind", 2006)

"Information is just bits of data. Knowledge is putting them together. Wisdom is transcending them." (Ram Dass, "One-Liners: A Mini-Manual for a Spiritual Life (ed. Harmony", 2007)

"Science is not only the enterprise of harnessing nature to serve the practical needs of humankind. It is also part of man’s unending search for knowledge about the universe and his place within it." (Henry P Stapp, "Mindful Universe: Quantum Mechanics and the Participating Observer", 2007)

"Critical thinking is essentially a questioning, challenging approach to knowledge and perceived wisdom. It involves ideas and information from an objective position and then questioning this information in the light of our own values, attitudes and personal philosophy." Brenda Judge et al, "Critical Thinking Skills for Education Students", 2009)

"Equations seem like treasures, spotted in the rough by some discerning individual, plucked and examined, placed in the grand storehouse of knowledge, passed on from generation to generation. This is so convenient a way to present scientific discovery, and so useful for textbooks, that it can be called the treasure-hunt picture of knowledge." (Robert P Crease, "The Great Equations", 2009)

"Traditional statistics is strong in devising ways of describing data and inferring distributional parameters from sample. Causal inference requires two additional ingredients: a science-friendly language for articulating causal knowledge, and a mathematical machinery for processing that knowledge, combining it with data and drawing new causal conclusions about a phenomenon."(Judea Pearl, "Causal inference in statistics: An overview", Statistics Surveys 3, 2009)

On Knowledge (1930-1939)

"The final truth about phenomena resides in the mathematical description of it; so long as there is no imperfection in this, our knowledge is complete. We go beyond the mathematical formula at our own risk; we may find a [nonmathematical] model or picture that helps us to understand it, but we have no right to expect this, and our failure to find such a model or picture need not indicate that either our reasoning or our knowledge is at fault." (James Jeans, "The Mysterious Universe", 1930)

"Scientific discovery and scientific knowledge have been achieved only by those who have gone in pursuit of them without any practical purpose whatsoever in view." (Max Planck, "Where is Science Going?", 1932)

"As facts and knowledge accumulate, the claim of the scientist to an understanding of the world in a certain sense diminishes." (Werner K Heisenberg, "Zur Geschichte der physikalischen Naturerklärung", 1933)

"The urge to knowledge is so deeply rooted in man that it can scarcely be omitted from a list of life's important needs." (Hans Reichenbach, "Atom and Cosmos: The World of Modern Physics", 1933)

"Maximal knowledge of a total system does not necessarily include total knowledge of all its parts, not even when these are fully separated from each other and at the moment are not influencing each other at all. Thus it may be that some part of what one knows may pertain to relations […] between the two subsystems (we shall limit ourselves to two), as follows: if a particular measurement on the first system yields this result, then for a particular measurement on the second the valid expectation statistics are such and such; but if the measurement in question on the first system should have that result, then some other expectation holds for that one the second. […] In this way, any measurement process at all or, what amounts to the same, any variable at all of the second system can be tied to the not-yet-known value of any variable at all of the first, and of course vice versa also." (Erwin Schrödinger, "The Present Situation in Quantum Mechanics", 1935)

"The laws of science are the permanent contributions to knowledge - the individual pieces that are fitted together in an attempt to form a picture of the physical universe in action. As the pieces fall into place, we often catch glimpses of emerging patterns, called theories; they set us searching for the missing pieces that will fill in the gaps and complete the patterns. These theories, these provisional interpretations of the data in hand, are mere working hypotheses, and they are treated with scant respect until they can be tested by new pieces of the puzzle." (Edwin P Whipple, "Experiment and Experience", [Commencement Address, California Institute of Technology] 1938)

"We have discovered that it is actually an aid in the search for knowledge to understand the nature of the knowledge we seek." (Arthur S Eddington, "The Philosophy of Physical Science", 1938)

"[…] reality is a system, completely ordered and fully intelligible, with which thought in its advance is more and more identifying itself. We may look at the growth of knowledge […] as an attempt by our mind to return to union with things as they are in their ordered wholeness. […] and if we take this view, our notion of truth is marked out for us. Truth is the approximation of thought to reality […] Its measure is the distance thought has travelled […] toward that intelligible system […] The degree of truth of a particular proposition is to be judged in the first instance by its coherence with experience as a whole, ultimately by its coherence with that further whole, all comprehensive and fully articulated, in which thought can come to rest." (Brand Blanshard, "The Nature of Thought" Vol. II, 1939) 

"The failure of the social sciences to think through and to integrate their several responsibilities for the common problem of relating the analysis of parts to the analysis of the whole constitutes one of the major lags crippling their utility as human tools of knowledge." (Robert S Lynd, "Knowledge of What?", 1939)

On Knowledge (1960-1969)

"Any pattern of activity in a network, regarded as consistent by some observer, is a system, Certain groups of observers, who share a common body of knowledge, and subscribe to a particular discipline, like 'physics' or 'biology' (in terms of which they pose hypotheses about the network), will pick out substantially the same systems. On the other hand, observers belonging to different groups will not agree about the activity which is a system." (Gordon Pask, "The Natural History of Networks", 1960)

"The most important maxim for data analysis to heed, and one which many statisticians seem to have shunned is this: ‘Far better an approximate answer to the right question, which is often vague, than an exact answer to the wrong question, which can always be made precise.’ Data analysis must progress by approximate answers, at best, since its knowledge of what the problem really is will at best be approximate." (John W Tukey, "The Future of Data Analysis", Annals of Mathematical Statistics, Vol. 33, No. 1, 1962)

"Incomplete knowledge must be considered as perfectly normal in probability theory; we might even say that, if we knew all the circumstances of a phenomenon, there would be no place for probability, and we would know the outcome with certainty." (Félix E Borel, Probability and Certainty", 1963)

"When a science approaches the frontiers of its knowledge, it seeks refuge in allegory or in analogy." (Erwin Chargaff, "Essays on Nucleic Acids", 1963)

"In its efforts to learn as much as possible about nature, modem physics has found that certain things can never be ‘known’ with certainty. Much of our knowledge must always remain uncertain. The most we can know is in terms of probabilities." (Richard P Feynman, "The Feynman Lectures on Physics", 1964)

"A model is a useful (and often indispensable) framework on which to organize our knowledge about a phenomenon. […] It must not be overlooked that the quantitative consequences of any model can be no more reliable than the a priori agreement between the assumptions of the model and the known facts about the real phenomenon. When the model is known to diverge significantly from the facts, it is self-deceiving to claim quantitative usefulness for it by appeal to agreement between a prediction of the model and observation." (John R Philip, 1966)

"It is a commonplace of modern technology that there is a high measure of certainty that problems have solutions before there is knowledge of how they are to be solved." (John K Galbraith, "The New Industrial State", 1967)

"The aim of science is not so much to search for truth, or even truths, as to classify our knowledge and to establish relations between observable phenomena in order to be able to predict the future in a certain measure and to explain the sequence of phenomena in relation to ourselves." (Pierre L du Noüy, "Between Knowing and Believing", 1967)

"It [knowledge] is clearly related to information, which we can now measure; and an economist especially is tempted to regard knowledge as a kind of capital structure, corresponding to information as an income flow. Knowledge, that is to say, is some kind of improbable structure or stock made up essentially of patterns - that is, improbable arrangements, and the more improbable the arrangements, we might suppose, the more knowledge there is." (Kenneth E Boulding, "Beyond Economics: Essays on Society", 1968)

"Knowing reality means constructing systems of transformations that correspond, more or less adequately, to reality. They are more or less isomorphic to transformations of reality. The transformational structures of which knowledge consists are not copies of the transformations in reality; they are simply possible isomorphic models among which experience can enable us to choose. Knowledge, then, is a system of transformations that become progressively adequate." (Jean Piaget, "Genetic Epistemology", 1968)

"Scientific knowledge is not created solely by the piecemeal mining of discrete facts by uniformly accurate and reliable individual scientific investigations. The process of criticism and evaluation, of analysis and synthesis, are essential to the whole system. It is impossible for each one of us to be continually aware of all that is going on around us, so that we can immediately decide the significance of every new paper that is published. The job of making such judgments must therefore be delegated to the best and wisest among us, who speak, not with their own personal voices, but on behalf of the whole community of Science. […] It is impossible for the consensus - public knowledge - to be voiced at all, unless it is channeled through the minds of selected persons, and restated in their words for all to hear." (John M Ziman, "Public Knowledge: An Essay Concerning the Social Dimension of Science", 1968)

"The idea of knowledge as an improbable structure is still a good place to start. Knowledge, however, has a dimension which goes beyond that of mere information or improbability. This is a dimension of significance which is very hard to reduce to quantitative form. Two knowledge structures might be equally improbable but one might be much more significant than the other." (Kenneth E Boulding, "Beyond Economics: Essays on Society", 1968)

"Discovery always carries an honorific connotation. It is the stamp of approval on a finding of lasting value. Many laws and theories have come and gone in the history of science, but they are not spoken of as discoveries. […] Theories are especially precarious, as this century profoundly testifies. World views can and do often change. Despite these difficulties, it is still true that to count as a discovery a finding must be of at least relatively permanent value, as shown by its inclusion in the generally accepted body of scientific knowledge." (Richard J. Blackwell, "Discovery in the Physical Sciences", 1969)

"It is not enough to observe, experiment, theorize, calculate and communicate; we must also argue, criticize, debate, expound, summarize, and otherwise transform the information that we have obtained individually into reliable, well established, public knowledge." (John M Ziman, "Information, Communication, Knowledge", Nature Vol. 224 (5217), 1969)

"Models constitute a framework or a skeleton and the flesh and blood will have to be added by a lot of common sense and knowledge of details."(Jan Tinbergen, "The Use of Models: Experience," 1969)

"The 'flow of information' through human communication channels is enormous. So far no theory exists, to our knowledge, which attributes any sort of unambiguous measure to this 'flow'." (Anatol Rapoport, "Modern Systems Research for the Behavioral Scientist", 1969)

14 June 2021

On Puzzles (1990-1999)

"The voyage of discovery into our own solar system has taken us from clockwork precision into chaos and complexity. This still unfinished journey has not been easy, characterized as it is by twists, turns, and surprises that mirror the intricacies of the human mind at work on a profound puzzle. Much remains a mystery. We have found chaos, but what it means and what its relevance is to our place in the universe remains shrouded in a seemingly impenetrable cloak of mathematical uncertainty." (Ivars Peterson, "Newton’s Clock", 1993)

"Each of nature's patterns is a puzzle, nearly always a deep one. Mathematics is brilliant at helping us to solve puzzles. It is a more or less systematic way of digging out the rules and structures that lie behind some observed pattern or regularity, and then using those rules and structures to explain what's going on." (Ian Stewart, "Nature's Numbers: The unreal reality of mathematics", 1995)

"However mathematics starts, whether it is in counting and measuring in everyday life, or in puzzles and riddles, or in scientific queries about projectiles, floating bodies, levers and balances, or magnetic lines of force, it eventually becomes detached from its roots and develops a life of its own. It becomes more powerful, because it can be applied not just to the situations in which it originated but to all other comparable situations. It also becomes more abstract, and more game-like." (David Wells, "You Are a Mathematician: A wise and witty introduction to the joy of numbers", 1995)

"No, nature is, in its own subtle way, simple. However, those simplicities do not present themselves to us directly. Instead, nature leaves clues for the mathematical detectives to puzzle over. It's a fascinating game, even to a spectator. And it's an absolutely irresistible one if you are a mathematical Sherlock Holmes." (Ian Stewart, "Nature's Numbers: The unreal reality of mathematics", 1995)

"Puzzle composers share another feature with mathematicians. They know that, generally speaking, the simpler a puzzle is to express, the more attractive it is likely to be found: similarly, simplicity is for both a desirable feature of the solution. Especially satisfying solutions are often described as 'elegant', a word that - no surprise here - is also used by scientists, engineers and designers, indeed by anyone with a problem to solve. However, simplicity is by no means the only reward of success. Far from it! Mathematicians (and scientists and others) can reasonably expect two further returns: they are (in no particular order) firstly the power to do things, and secondly the perception of connections which were never before suspected, leading in turn to the insight and illumination that mathematicians expect from their best arguments." (David Wells, "You Are a Mathematician: A wise and witty introduction to the joy of numbers", 1995) 

"When we visually perceive the world, we do not just process information; we have a subjective experience of color, shape, and depth. We have experiences associated with other senses (think of auditory experiences of music, or the ineffable nature of smell experiences), with bodily sensations (e.g., pains, tickles, and orgasms), with mental imagery (e.g., the colored shapes that appear when one tubs one's eyes), with emotion (the sparkle of happiness, the intensity of anger, the weight of despair), and with the stream of conscious thought." (David Chalmers, "The Puzzle of Conscious Experience", Scientific American, 1995)

"The art of science is knowing which observations to ignore and which are the key to the puzzle." (Edward W Kolb, "Blind Watchers of the Sky", 1996)

"Most people think of science as a series of steps forged in concrete, but it’s not. It’s a puzzle, and not all of the pieces will ever be firmly in place. When you’re able to fit some of the together, to see an answer, it’s thrilling." (Nora Roberts, "Homeport", 1998)

"A vision is a clear mental picture of a desired future outcome. If you have ever put together a large 1,000-piece jigsaw puzzle, the chances are you used the picture on the top of the puzzle box to guide the placement of the pieces. That picture on the top of the box is the end result or the vision of what you are trying to turn into a reality. It is much more difficult - if not impossible - to put the jigsaw puzzle together without ever looking at the picture." (Jane Flaherty & Peter B Stark, "The Manager's Pocket Guide to Leadership Skills", 1999)

"Accurate estimates depend at least as much upon the mental model used in forming the picture as upon the number of pieces of the puzzle that have been collected." (Richards J. Heuer Jr, "Psychology of Intelligence Analysis", 1999)

08 June 2021

On Patterns (1960-1969)

"Any pattern of activity in a network, regarded as consistent by some observer, is a system, Certain groups of observers, who share a common body of knowledge, and subscribe to a particular discipline, like 'physics' or 'biology' (in terms of which they pose hypotheses about the network), will pick out substantially the same systems. On the other hand, observers belonging to different groups will not agree about the activity which is a system." (Gordon Pask, The Natural History of Networks, 1960)

"It is of our very nature to see the universe as a place that we can talk about. In particular, you will remember, the brain tends to compute by organizing all of its input into certain general patterns. It is natural for us, therefore, to try to make these grand abstractions, to seek for one formula, one model, one God, around which we can organize all our communication and the whole business of living." (John Z Young, "Doubt and Certainty in Science: A Biologist’s Reflections on the Brain", 1960)

"How can a modern anthropologist embark upon a generalization with any hope of arriving at a satisfactory conclusion? By thinking of the organizational ideas that are present in any society as a mathematical pattern." (Edmund R Leach, "Rethinking Anthropology", 1961)

"Mathematics is a creation of the mind. To begin with, there is a collection of things, which exist only in the mind, assumed to be distinguishable from one another; and there is a collection of statements about these things, which are taken for granted. Starting with the assumed statements concerning these invented or imagined things, the mathematician discovers other statements, called theorems, and proves them as necessary consequences. This, in brief, is the pattern of mathematics. The mathematician is an artist whose medium is the mind and whose creations are ideas." (Hubert S Wall, "Creative Mathematics", 1963)

"The mark of our time is its revulsion against imposed patterns." (Marshall McLuhan, "Understanding Media", 1964)

"The 'message' of any medium or technology is the change of scale or pace or pattern that it introduces into human affairs." (Marshall McLuhan, "Understanding Media", 1964)

"Without the hard little bits of marble which are called 'facts' or 'data' one cannot compose a mosaic; what matters, however, are not so much the individual bits, but the successive patterns into which you arrange them, then break them up and rearrange them." (Arthur Koestler, "The Act of Creation", 1964)

"The notion of a fuzzy set provides a convenient point of departure for the construction of a conceptual framework which parallels in many respects the framework used in the case of ordinary sets, but is more general than the latter and, potentially, may prove to have a much wider scope of applicability, particularly in the fields of pattern classification and information processing. Essentially, such a framework provides a natural way of dealing with problems in which the source of imprecision is the absence of sharply denned criteria of class membership rather than the presence of random variables." (Lotfi A Zadeh, "Fuzzy Sets", 1965)

"As perceivers we select from all the stimuli falling on our senses only those which interest us, and our interests are governed by a pattern-making tendency, sometimes called a schema. In a chaos of shifting impressions each of us constructs a stable world in which objects have recognisable shapes, are located in depth and have permanence." (Mary Douglas, "Purity and Danger", 1966)

"System theory is basically concerned with problems of relationships, of structure, and of interdependence rather than with the constant attributes of objects. In general approach it resembles field theory except that its dynamics deal with temporal as well as spatial patterns. Older formulations of system constructs dealt with the closed systems of the physical sciences, in which relatively self-contained structures could be treated successfully as if they were independent of external forces. But living systems, whether biological organisms or social organizations, are acutely dependent on their external environment and so must be conceived of as open systems." (Daniel Katz, "The Social Psychology of Organizations", 1966)

"[…] there is perhaps a difference between the ideas which are associated in the sense of their patterns being tired to the original one and available in connexion with it, and being actually associated or aroused. Our mental modelling of the outer world may imitate it and its sequences from moment to moment, but only that which is fairly frequent, or fits into other patterns, will remain for long, and of that only a portion will arise in response to other ideas. " (Kenneth J W Craik, "The Nature of Psychology", 1966)

"It [knowledge] is clearly related to information, which we can now measure; and an economist especially is tempted to regard knowledge as a kind of capital structure, corresponding to information as an income flow. Knowledge, that is to say, is some kind of improbable structure or stock made up essentially of patterns - that is, improbable arrangements, and the more improbable the arrangements, we might suppose, the more knowledge there is." (Kenneth Boulding, "Beyond Economics: Essays on Society", 1968)

"The central task of a natural science is to make the wonderful commonplace: to show that complexity, correctly viewed, is only a mask for simplicity; to find pattern hidden in apparent chaos. […] This is the task of natural science: to show that the wonderful is not incomprehensible, to show how it can be comprehended - but not to destroy wonder. For when we have explained the wonderful, unmasked the hidden pattern, a new wonder arises at how complexity was woven out of simplicity. The aesthetics of natural science and mathematics is at one with the aesthetics of music and painting - both inhere in the discovery of a partially concealed pattern." (Herbert A Simon, "The Sciences of the Artificial", 1968)

"Faced with information overload, we have no alternative but pattern-recognition."(Marshall McLuhan, "Counterblast", 1969) 

"The central task of a natural science is to make the wonderful commonplace: to show that complexity, correctly viewed, is only a mask for simplicity; to find pattern hidden in apparent chaos." (Herbert A Simon, "The Sciences of the Artificial", 1969)

"Visual thinking calls, more broadly, for the ability to see visual shapes as images of the patterns of forces that underlie our existence - the functioning of minds, of bodies or machines, the structure of societies or ideas." (Rudolf Arnheim, "Visual Thinking", 1969)

On Patterns (1950-1959)

"Without facts we have no science. Facts are to the scientist what words are to the poet. The scientist has a love of facts, even isolated facts, similar to a poet’s love of words. But a collection of facts is not a science any more than a dictionary is poetry. Around his facts the scientist weaves a logical pattern or theory which gives the facts meaning, order and significance." (Isidor Isaac Rabi, "Faith in Science", Atlantic Monthly , Vol. 187, 1951)

"Culture consists of patterns, explicit and implicit, of and for behavior acquired and transmitted by symbols, constituting the distinctive achievement of human groups, including their embodiments in artifacts; the essential core of culture consists of traditional (i.e., historically derived and selected) ideas and especially their attached values; culture systems may, on the one hand, be considered as products of action, on the other as conditioning elements of further action." (Alfred L Kroeber & Clyde Kluckhohn, "Culture", 1952)

"Feedback is a method of controlling a system by reinserting into it the results of its past performance. If these results are merely used as numerical data for the criticism of the system and its regulation, we have the simple feedback of the control engineers. If, however, the information which proceeds backward from the performance is able to change the general method and pattern of performance, we have a process which may be called learning." (Norbert Wiener, 1954)

"The methods of science may be described as the discovery of laws, the explanation of laws by theories, and the testing of theories by new observations. A good analogy is that of the jigsaw puzzle, for which the laws are the individual pieces, the theories local patterns suggested by a few pieces, and the tests the completion of these patterns with pieces previously unconsidered." (Edwin P Hubble, "The Nature of Science and Other Lectures", 1954)

"Abstractions are wonderfully clever tools for taking things apart and for arranging things in patterns but they are very little use in putting things together and no use at all when it comes to determining what things are for." (Archibald MacLeish, "Why Do We Teach Poetry?", The Atlantic Monthly Vol. 197 (3), 1956)

"For understanding the general principles of dynamic systems, therefore, the concept of feedback is inadequate in itself. What is important is that complex systems, richly cross-connected internally, have complex behaviours, and that these behaviours can be goal-seeking in complex patterns." (W Ross Ashby, "An Introduction to Cybernetics", 1956)

"The essential vision of reality presents us not with fugitive appearances but with felt patterns of order which have coherence and meaning for the eye and for the mind. Symmetry, balance and rhythmic sequences express characteristics of natural phenomena: the connectedness of nature - the order, the logic, the living process. Here art and science meet on common ground." (Gyorgy Kepes, "The New Landscape: In Art and Science", 1956) 

"Mathematics are the result of mysterious powers which no one understands, and which the unconscious recognition of beauty must play an important part. Out of an infinity of designs a mathematician chooses one pattern for beauty's sake and pulls it down to earth." (Marston Morse, 1959)

"One of mankind’s earliest intellectual endeavors was the attempt to gather together the seemingly overwhelming variety presented by nature into an orderly pattern. The desire to classify - to impose order on chaos and then to form patterns out of this order on which to base ideas and conclusions - remains one of our strongest urges." (Roger L Batten, 1959)

"Time series analysis often requires more knowledge of the data and relevant information about their background than it does of statistical techniques. Whereas the data in some other fields may be controlled so as to increase their representativeness, economic data are so changeable in their nature that it is usually impossible to sort out the separate effects of the various influences. Attempts to isolate cyclical, seasonal and irregular, or random movements, are made primarily in the hope that some underlying pattern of change over time may be revealed."  (Alfred R Ilersic, "Statistics", 1959)

On Patterns (2000-2009)

"In a linear world of equilibrium and predictability, the sparse research into an evidence base for management prescriptions and the confused findings it produces would be a sign of incompetence; it would not make much sense. Nevertheless, if organizations are actually patterns of nonlinear interaction between people; if small changes could produce widespread major consequences; if local interaction produces emergent global pattern; then it will not be possible to provide a reliable evidence base. In such a world, it makes no sense to conduct studies looking for simple causal relationships between an action and an outcome. I suggest that the story of the last few years strongly indicates that human action is nonlinear, that time and place matter a great deal, and that since this precludes simple evidence bases we do need to rethink the nature of organizations and the roles of managers and leaders in them." (Ralph D Stacey, "Complexity and Organizational Reality", 2000)

"The central proposition in [realistic thinking] is that human actions and interactions are processes, not systems, and the coherent patterning of those processes becomes what it becomes because of their intrinsic capacity, the intrinsic capacity of interaction and relationship, to form coherence. That emergent form is radically unpredictable, but it emerges in a controlled or patterned way because of the characteristic of relationship itself, creation and destruction in conditions at the edge of chaos." (Ralph D Stacey et al, "Complexity and Management: Fad or Radical Challenge to Systems Thinking?", 2000)

"Although the detailed moment-to-moment behavior of a chaotic system cannot be predicted, the overall pattern of its 'random' fluctuations may be similar from scale to scale. Likewise, while the fine details of a chaotic system cannot be predicted one can know a little bit about the range of its 'random' fluctuation." (F David Peat, "From Certainty to Uncertainty", 2002)

"There are endless examples of elaborate structures and apparently complex processes being generated through simple repetitive rules, all of which can be easily simulated on a computer. It is therefore tempting to believe that, because many complex patterns can be generated out of a simple algorithmic rule, all complexity is created in this way." (F David Peat, "From Certainty to Uncertainty", 2002)

"Randomness is a difficult notion for people to accept. When events come in clusters and streaks, people look for explanations and patterns. They refuse to believe that such patterns - which frequently occur in random data - could equally well be derived from tossing a coin. So it is in the stock market as well." (Didier Sornette, "Why Stock Markets Crash: Critical events in complex financial systems", 2003)

"Learning is the process of creating networks. Nodes are external entities which we can use to form a network. Or nodes may be people, organizations, libraries, web sites, books, journals, database, or any other source of information. The act of learning (things become a bit tricky here) is one of creating an external network of nodes - where we connect and form information and knowledge sources. The learning that happens in our heads is an internal network (neural). Learning networks can then be perceived as structures that we create in order to stay current and continually acquire, experience, create, and connect new knowledge (external). And learning networks can be perceived as structures that exist within our minds (internal) in connecting and creating patterns of understanding." (George Siemens, "Knowing Knowledge", 2006)

"Some number patterns, like even and odd numbers, lie on the surface. But the more you learn about numbers, both experimentally and theoretically, the more you discover patterns that are not so obvious. […] After a hidden pattern is exposed, it can be used to find more hidden patterns. At the end of a long chain of patterned reasoning, you can get to very difficult theorems, exploring facts about numbers that you otherwise would not know were true." (Avner Ash & Robert Gross, "Fearless Symmetry: Exposing the hidden patterns of numbers", 2006)

"Still, in the end, we find ourselves drawn to the beauty of the patterns themselves, and the amazing fact that we humans are smart enough to prove even a feeble fraction of all possible theorems about them. Often, greater than the contemplation of this beauty for the active mathematician is the excitement of the chase. Trying to discover first what patterns actually do or do not occur, then finding the correct statement of a conjecture, and finally proving it - these things are exhilarating when accomplished successfully. Like all risk-takers, mathematicians labor months or years for these moments of success." (Avner Ash & Robert Gross, "Fearless Symmetry: Exposing the hidden patterns of numbers", 2006)

"There is a big debate as to whether logic is part of mathematics or mathematics is part of logic. We use logic to think. We notice that our thinking, when it is valid, goes in certain patterns. These patterns can be studied mathematically. Thus, logic is a part of mathematics, called 'mathematical logic'." (Avner Ash & Robert Gross, "Fearless Symmetry: Exposing the hidden patterns of numbers", 2006) 

"The system is highly sensitive to some small changes and blows them up into major alterations in weather patterns. This is popularly known as the butterfly effect in that it is possible for a butterfly to flap its wings in São Paolo, so making a tiny change to air pressure there, and for this tiny change to escalate up into a hurricane over Miami. You would have to measure the flapping of every butterfly’s wings around the earth with infinite precision in order to be able to make long-term forecasts. The tiniest error made in these measurements could produce spurious forecasts. However, short-term forecasts are possible because it takes time for tiny differences to escalate."  (Ralph D Stacey, "Strategic Management and Organisational Dynamics: The Challenge of Complexity" 5th Ed. , 2007)

"Perception requires imagination because the data people encounter in their lives are never complete and always equivocal. [...] We also use our imagination and take shortcuts to fill gaps in patterns of nonvisual data. As with visual input, we draw conclusions and make judgments based on uncertain and incomplete information, and we conclude, when we are done analyzing the patterns, that out picture is clear and accurate. But is it?" (Leonard Mlodinow, "The Drunkard’s Walk: How Randomness Rules Our Lives", 2008)

"Why is the human need to be in control relevant to a discussion of random patterns? Because if events are random, we are not in control, and if we are in control of events, they are not random. There is therefore a fundamental clash between our need to feel we are in control and our ability to recognize randomness. That clash is one of the principal reasons we misinterpret random events."  (Leonard Mlodinow, "The Drunkard’s Walk: How Randomness Rules Our Lives", 2008)

"In emergent processes, the whole is greater than the sum of the parts. A mathematical phenomenon that appears in certain dynamic systems also occurs within biological systems, from molecular interactions within the cells to the cognitive processes that we use to move within society. [...] Emergent patterns of ideas, beauty, desires, or tragicomedy wait, ready to trap the next traveler in their complex domain of neatly patterned squares - the never-ending world of chess metaphors." (Diego Rasskin-Gutman, "Chess Metaphors: Artificial Intelligence and the Human Mind", 2009)

"Obviously, the final goal of scientists and mathematicians is not simply the accumulation of facts and lists of formulas, but rather they seek to understand the patterns, organizing principles, and relationships between these facts to form theorems and entirely new branches of human thought." (Clifford A Pickover, "The Math Book", 2009)

"The master of chess is deeply familiar with these patterns and knows very well the position that would be beneficial to reach. The rest is thinking in a logical way (calculating) about how each piece should be moved to reach the new pattern that has already taken shape in the chess player’s mind. This way of facing chess is closely related to the solving of theorems in mathematics. For example, a mathematician who wishes to prove an equation needs to imagine how the terms on each side of the equal sign can be manipulated so that one is reduced to the other. The enterprise is far from easy, to judge by the more than two hundred years that have been needed to solve theorems such as that of Fermat (z^n = x^n + y^n), using diverse tricks to prove the equation." (Diego Rasskin-Gutman, "Chess Metaphors: Artificial Intelligence and the Human Mind", 2009)

On Patterns (1970-1979)

"Self-organization can be defined as the spontaneous creation of a globally coherent pattern out of local interactions. Because of its distributed character, this organization tends to be robust, resisting perturbations. The dynamics of a self-organizing system is typically non-linear, because of circular or feedback relations between the components. Positive feedback leads to an explosive growth, which ends when all components have been absorbed into the new configuration, leaving the system in a stable, negative feedback state. Non-linear systems have in general several stable states, and this number tends to increase (bifurcate) as an increasing input of energy pushes the system farther from its thermodynamic equilibrium." (Francis Heylighen, "The Science Of Self-Organization And Adaptivity", 1970)

"Without the hard little bits of marble which are called 'facts' or 'data' one cannot compose a mosaic; what matters, however, are not so much the individual bits, but the successive patterns into which you arrange them, then break them up and rearrange them." (Arthur Koestler, "The Act of Creation", 1970) 

"To do science is to search for repeated patterns, not simply to accumulate facts, and to do the science of geographical ecology is to search for patterns of plants and animal life that can be put on a map." (Robert H. MacArthur, "Geographical Ecology", 1972)

"There is no reason to assume that the universe has the slightest interest in intelligence -  or even in life. Both may be random accidental by-products of its operations like the beautiful patterns on a butterfly's wings. The insect would fly just as well without them […]" (Arthur C Clarke, "The Lost Worlds of 2001", 1972)

"Within a Metaphysics of Quality, science is a set of static intellectual patterns describing this reality, but the patterns are not the reality they describe." (Robert M Pirsig, "Zen and the Art of Motorcycle Maintenance", 1974)

"A pattern has an integrity independent of the medium by virtue of which you have received the information that it exists. Each of the chemical elements is a pattern integrity. Each individual is a pattern integrity. The pattern integrity of the human individual is evolutionary and not static." (Buckminster Fuller, "Synergetics: Explorations in the Geometry of Thinking", 1975)

"First, nature's line patterns are not all of the same sort; the triple junctions generic in mud cracks cannot occur with caustics. Second, the geometrical optics of cylindrically symmetric artifacts such as telescopes, where departures from the ideal point focus are treated as 'aberrations', is very different from the geometrical optics of nature, where the generic forms of caustic surfaces are governed by the mathematics of catastrophe theory." (Michael V Berry & John F Nye, "Fine Structure in Caustic Junctions", Nature Vol. 267 (3606), 1977)

"All nature is a continuum. The endless complexity of life is organized into patterns which repeat themselves - theme and variations - at each level of system. These similarities and differences are proper concerns for science. From the ceaseless streaming of protoplasm to the many-vectored activities of supranational systems, there are continuous flows through living systems as they maintain their highly organized steady states." (James G Miller, "Living Systems", 1978)

"Prime numbers have always fascinated mathematicians, professional and amateur alike. They appear among the integers, seemingly at random, and yet not quite: there seems to be some order or pattern, just a little below the surface, just a little out of reach." (Underwood Dudley, "Elementary Number Theory", 1978)

"The unfoldings are called catastrophes because each of them has regions where a dynamic system can jump suddenly from one state to another, although the factors controlling the process change continuously. Each of the seven catastrophes represents a pattern of behavior determined only by the number of control factors, not by their nature or by the interior mechanisms that connect them to the system's behavior. Therefore, the elementary catastrophes can be models for a wide variety of processes, even those in which we know little about the quantitative laws involved." (Alexander Woodcock & Monte Davis, "Catastrophe Theory", 1978)

"Yet wherever the cracks appear, they show a tendency to extend towards each other, to form characteristic networks, to form specific types of junctions. The location, the magnitude, and the timing of the cracks (their quantitative aspects) are beyond calculation, but their patterns of growth and the topology of their joining (the qualitative aspects) recur again and again." (Alexander Woodcock & Monte Davis, "Catastrophe Theory", 1978)

On Patterns (2010-2019)

"Because the question for me was always whether that shape we see in our lives was there from the beginning or whether these random events are only called a pattern after the fact. Because otherwise we are nothing." (Cormac McCarthy, "All the Pretty Horses", 2010)

"The human mind delights in finding pattern - so much so that we often mistake coincidence or forced analogy for profound meaning. No other habit of thought lies so deeply within the soul of a small creature trying to make sense of a complex world not constructed for it." (Stephen J Gould, "The Flamingo's Smile: Reflections in Natural History", 2010)

"What advantages do diagrams have over verbal descriptions in promoting system understanding? First, by providing a diagram, massive amounts of information can be presented more efficiently. A diagram can strip down informational complexity to its core - in this sense, it can result in a parsimonious, minimalist description of a system. Second, a diagram can help us see patterns in information and data that may appear disordered otherwise. For example, a diagram can help us see mechanisms of cause and effect or can illustrate sequence and flow in a complex system. Third, a diagram can result in a less ambiguous description than a verbal description because it forces one to come up with a more structured description." (Robbie T Nakatsu, "Diagrammatic Reasoning in AI", 2010)

"A surprising proportion of mathematicians are accomplished musicians. Is it because music and mathematics share patterns that are beautiful?" (Martin Gardner, "The Dover Math and Science Newsletter", 2011)

"It is the consistency of the information that matters for a good story, not its completeness. Indeed, you will often find that knowing little makes it easier to fit everything you know into a coherent pattern." (Daniel Kahneman, "Thinking, Fast and Slow", 2011)

"Knowing the importance of luck, you should be particularly suspicious when highly consistent patterns emerge from the comparison of successful and less successful firms. In the presence of randomness, regular patterns can only be mirages." (Daniel Kahneman, "Thinking, Fast and Slow", 2011)

"Once a myth becomes established, it forms part of our mental model of the world and alters our perception, the way our brains interpret the fleeting patterns our eyes pick up." (Jeremy Wade, "River Monsters: True Stories of the Ones that Didn't Get Away", 2011)

"Randomness might be defined in terms of order - its absence, that is. […] Everything we care about lies somewhere in the middle, where pattern and randomness interlace." (James Gleick, "The Information: A History, a Theory, a Flood", 2011)

"Equations have hidden powers. They reveal the innermost secrets of nature. […] The power of equations lies in the philosophically difficult correspondence between mathematics, a collective creation of human minds, and an external physical reality. Equations model deep patterns in the outside world. By learning to value equations, and to read the stories they tell, we can uncover vital features of the world around us." (Ian Stewart, "In Pursuit of the Unknown", 2012)

"Finding patterns is easy in any kind of data-rich environment; that's what mediocre gamblers do. The key is in determining whether the patterns represent signal or noise." (Nate Silver, "The Signal and the Noise: Why So Many Predictions Fail-but Some Don't", 2012)

"Mathematical intuition is the mind’s ability to sense form and structure, to detect patterns that we cannot consciously perceive. Intuition lacks the crystal clarity of conscious logic, but it makes up for that by drawing attention to things we would never have consciously considered." (Ian Stewart, "Visions of Infinity", 2013)

"Proof, in fact, is the requirement that makes great problems problematic. Anyone moderately competent can carry out a few calculations, spot an apparent pattern, and distil its essence into a pithy statement. Mathematicians demand more evidence than that: they insist on a complete, logically impeccable proof. Or, if the answer turns out to be negative, a disproof. It isn’t really possible to appreciate the seductive allure of a great problem without appreciating the vital role of proof in the mathematical enterprise. Anyone can make an educated guess. What’s hard is to prove it’s right. Or wrong." (Ian Stewart, "Visions of Infinity", 2013)

"Swarm intelligence illustrates the complex and holistic way in which the world operates. Order is created from chaos; patterns are revealed; and systems are free to work out their errors and problems at their own level. What natural systems can teach humanity is truly amazing." (Lawrence K Samuels, "Defense of Chaos: The Chaology of Politics, Economics and Human Action", 2013)

"To put it simply, we communicate when we display a convincing pattern, and we discover when we observe deviations from our expectations. These may be explicit in terms of a mathematical model or implicit in terms of a conceptual model. How a reader interprets a graphic will depend on their expectations. If they have a lot of background knowledge, they will view the graphic differently than if they rely only on the graphic and its surrounding text." (Andrew Gelman & Antony Unwin, "Infovis and Statistical Graphics: Different Goals, Different Looks", Journal of Computational and Graphical Statistics Vol. 22(1), 2013)

"Another way to secure statistical significance is to use the data to discover a theory. Statistical tests assume that the researcher starts with a theory, collects data to test the theory, and reports the results - whether statistically significant or not. Many people work in the other direction, scrutinizing the data until they find a pattern and then making up a theory that fits the pattern." (Gary Smith, "Standard Deviations", 2014)

"Intersections of lines, for example, remain intersections, and the hole in a torus (doughnut) cannot be transformed away. Thus a doughnut may be transformed topologically into a coffee cup (the hole turning into a handle) but never into a pancake. Topology, then, is really a mathematics of relationships, of unchangeable, or 'invariant', patterns." (Fritjof Capra, "The Systems View of Life: A Unifying Vision", 2014)

"One of the remarkable features of these complex systems created by replicator dynamics is that infinitesimal differences in starting positions create vastly different patterns. This sensitive dependence on initial conditions is often called the butterfly-effect aspect of complex systems - small changes in the replicator dynamics or in the starting point can lead to enormous differences in outcome, and they change one’s view of how robust the current reality is. If it is complex, one small change could have led to a reality that is quite different." (David Colander & Roland Kupers, "Complexity and the art of public policy : solving society’s problems from the bottom up", 2014)

"[…] regard it in fact as the great advantage of the mathematical technique that it allows us to describe, by means of algebraic equations, the general character of a pattern even where we are ignorant of the numerical values which will determine its particular manifestation." (Friedrich A von Hayek, "The Market and Other Orders", 2014)

"We are genetically predisposed to look for patterns and to believe that the patterns we observe are meaningful. […] Don’t be fooled into thinking that a pattern is proof. We need a logical, persuasive explanation and we need to test the explanation with fresh data." (Gary Smith, "Standard Deviations", 2014)

"We are hardwired to make sense of the world around us - to notice patterns and invent theories to explain these patterns. We underestimate how easily pat - terns can be created by inexplicable random events - by good luck and bad luck." (Gary Smith, "Standard Deviations", 2014)

"A pattern is a design or model that helps grasp something. Patterns help connect things that may not appear to be connected. Patterns help cut through complexity and reveal simpler understandable trends. […] Patterns can be temporal, which is something that regularly occurs over time. Patterns can also be spatial, such as things being organized in a certain way. Patterns can be functional, in that doing certain things leads to certain effects. Good patterns are often symmetric. They echo basic structures and patterns that we are already aware of." (Anil K Maheshwari, "Business Intelligence and Data Mining", 2015)

"The human mind builds up theories by recognising familiar patterns and glossing over details that are well understood, so that it can concentrate on the new material. In fact it is limited by the amount of new information it can hold at any one time, and the suppression of familiar detail is often essential for a grasp of the total picture. In a written proof, the step-by-step logical deduction is therefore foreshortened where it is already a part of the reader's basic technique, so that they can comprehend the overall structure more easily." (Ian Stewart & David Tall, "The Foundations of Mathematics" 2nd Ed., 2015)

"Why do mathematicians care so much about pi? Is it some kind of weird circle fixation? Hardly. The beauty of pi, in part, is that it puts infinity within reach. Even young children get this. The digits of pi never end and never show a pattern. They go on forever, seemingly at random - except that they can’t possibly be random, because they embody the order inherent in a perfect circle. This tension between order and randomness is one of the most tantalizing aspects of pi." (Steven Strogatz, "Why PI Matters" 2015)

"Without chaos there would be no creation, no structure and no existence. After all, order is merely the repetition of patterns; chaos is the process that establishes those patterns. Without this creative self-organizing force, the universe would be devoid of biological life, the birth of stars and galaxies - everything we have come to know. (Lawrence K Samuels, "Chaos Gets a Bad Rap: Importance of Chaology to Liberty", 2015)

"A mental representation is a mental structure that corresponds to an object, an idea, a collection of information, or anything else, concrete or abstract, that the brain is thinking about. […] Because the details of mental representations can differ dramatically from field to field, it’s hard to offer an overarching definition that is not too vague, but in essence these representations are preexisting patterns of information - facts, images, rules, relationships, and so on - that are held in long-term memory and that can be used to respond quickly and effectively in certain types of situations." (Anders Ericsson & Robert Pool," Peak: Secrets from  the  New  Science  of  Expertise", 2016)

"String theory today looks almost fractal. The more closely people explore any one corner, the more structure they find. Some dig deep into particular crevices; others zoom out to try to make sense of grander patterns. The upshot is that string theory today includes much that no longer seems stringy. Those tiny loops of string whose harmonics were thought to breathe form into every particle and force known to nature (including elusive gravity) hardly even appear anymore on chalkboards at conferences." (K C Cole, "The Strange Second Life of String Theory", Quanta Magazine", 2016)

"The relationship of math to the real world has been a conundrum for philosophers for centuries, but it is also an inspiration for poets. The patterns of mathematics inhabit a liminal space - they were initially derived from the natural world and yet seem to exist in a separate, self-contained system standing apart from that world. This makes them a source of potential metaphor: mapping back and forth between the world of personal experience and the world of mathematical patterns opens the door to novel connections." (Alice Major, "Mapping from e to Metaphor", 2018)

"Apart from the technical challenge of working with the data itself, visualization in big data is different because showing the individual observations is just not an option. But visualization is essential here: for analysis to work well, we have to be assured that patterns and errors in the data have been spotted and understood. That is only possible by visualization with big data, because nobody can look over the data in a table or spreadsheet." (Robert Grant, "Data Visualization: Charts, Maps and Interactive Graphics", 2019)

07 June 2021

On Patterns (1990-1999)

"Mathematics is an exploratory science that seeks to understand every kind of pattern - patterns that occur in nature, patterns invented by the human mind, and even patterns created by other patterns." (Lynn A Steen, "The Future of Mathematics Education", 1990)

"Phenomena having uncertain individual outcomes but a regular pattern of outcomes in many repetitions are called random. 'Random' is not a synonym for 'haphazard' but a description of a kind of order different from the deterministic one that is popularly associated with science and mathematics. Probability is the branch of mathematics that describes randomness." (David S Moore, "Uncertainty", 1990)

"Systems thinking is a framework for seeing interrelationships rather than things, for seeing patterns rather than static snapshots. It is a set of general principles spanning fields as diverse as physical and social sciences, engineering and management." (Peter Senge, "The Fifth Discipline", 1990)

"The term chaos is used in a specific sense where it is an inherently random pattern of behaviour generated by fixed inputs into deterministic (that is fixed) rules (relationships). The rules take the form of non-linear feedback loops. Although the specific path followed by the behaviour so generated is random and hence unpredictable in the long-term, it always has an underlying pattern to it, a 'hidden' pattern, a global pattern or rhythm. That pattern is self-similarity, that is a constant degree of variation, consistent variability, regular irregularity, or more precisely, a constant fractal dimension. Chaos is therefore order (a pattern) within disorder (random behaviour)." (Ralph D Stacey, "The Chaos Frontier: Creative Strategic Control for Business", 1991)

"Chaos demonstrates that deterministic causes can have random effects […] There's a similar surprise regarding symmetry: symmetric causes can have asymmetric effects. […] This paradox, that symmetry can get lost between cause and effect, is called symmetry-breaking. […] From the smallest scales to the largest, many of nature's patterns are a result of broken symmetry; […]" (Ian Stewart & Martin Golubitsky, "Fearful Symmetry: Is God a Geometer?", 1992)

"In everyday language, the words 'pattern' and 'symmetry' are used almost interchangeably, to indicate a property possessed by a regular arrangement of more-or-less identical units […]” (Ian Stewart & Martin Golubitsky, “Fearful Symmetry: Is God a Geometer?”, 1992)

"Scientists have discovered many peculiar things, and many beautiful things. But perhaps the most beautiful and the most peculiar thing that they have discovered is the pattern of science itself. Our scientific discoveries are not independent isolated facts; one scientific generalization finds its explanation in another, which is itself explained by yet another. By tracing these arrows of explanation back toward their source we have discovered a striking convergent pattern - perhaps the deepest thing we have yet learned about the universe." (Steven Weinberg, "Dreams of a Final Theory: The Scientist’s Search for the Ultimate Laws of Nature", 1992)

"Searching for patterns is a way of thinking that is essential for making generalizations, seeing relationships, and understanding the logic and order of mathematics. Functions evolve from the investigation of patterns and unify the various aspects of mathematics." (Marilyn Burns, "About Teaching Mathematics: A K–8 Resource", 1992)

"Symmetry is bound up in many of the deepest patterns of Nature, and nowadays it is fundamental to our scientific understanding of the universe. Conservation principles, such as those for energy or momentum, express a symmetry that (we believe) is possessed by the entire space-time continuum: the laws of physics are the same everywhere." (Ian Stewart & Martin Golubitsky, "Fearful Symmetry: Is God a Geometer?", 1992)

"World view, a concept borrowed from cultural anthropology, refers to the culturally dependent, generally subconscious, fundamental organization of the mind. This conceptual organization manifests itself as a set of presuppositions that predispose one to feel, think, and act in predictable patterns." (Kenneth G Tobin, "The practice of constructivism in science education", 1993)

"[For] us to be able to speak and understand novel sentences, we have to store in our heads not just the words of our language but also the patterns of sentences possible in our language. These patterns, in turn, describe not just patterns of words but also patterns of patterns. Linguists refer to these patterns as the rules of language stored in memory; they refer to the complete collection of rules as the mental grammar of the language, or grammar for short." (Ray Jackendoff, "Patterns in the Mind", 1994)

"A neural network is characterized by A) its pattern of connections between the neurons (called its architecture), B) its method of determining the weights on the connections (called its training, or learning, algorithm), and C) its activation function." (Laurene Fausett, "Fundamentals of Neural Networks", 1994)

"At the other far extreme, we find many systems ordered as a patchwork of parallel operations, very much as in the neural network of a brain or in a colony of ants. Action in these systems proceeds in a messy cascade of interdependent events. Instead of the discrete ticks of cause and effect that run a clock, a thousand clock springs try to simultaneously run a parallel system. Since there is no chain of command, the particular action of any single spring diffuses into the whole, making it easier for the sum of the whole to overwhelm the parts of the whole. What emerges from the collective is not a series of critical individual actions but a multitude of simultaneous actions whose collective pattern is far more important. This is the swarm model." (Kevin Kelly, "Out of Control: The New Biology of Machines, Social Systems and the Economic World", 1995)

"Each of nature's patterns is a puzzle, nearly always a deep one. Mathematics is brilliant at helping us to solve puzzles. It is a more or less systematic way of digging out the rules and structures that lie behind some observed pattern or regularity, and then using those rules and structures to explain what's going on." (Ian Stewart, "Nature's Numbers: The unreal reality of mathematics", 1995)

"Human mind and culture have developed a formal system of thought for recognizing, classifying, and exploiting patterns. We call it mathematics. By using mathematics to organize and systematize our ideas about patterns, we have discovered a great secret: nature's patterns are not just there to be admired, they are vital clues to the rules that govern natural processes." (Ian Stewart, "Nature's Numbers: The unreal reality of mathematics", 1995)

"Patterns possess utility as well as beauty. Once we have learned to recognize a background pattern, exceptions suddenly stand out." (Ian Stewart, "Nature's Numbers: The unreal reality of mathematics", 1995)

"Self-organization refers to the spontaneous formation of patterns and pattern change in open, nonequilibrium systems. […] Self-organization provides a paradigm for behavior and cognition, as well as the structure and function of the nervous system. In contrast to a computer, which requires particular programs to produce particular results, the tendency for self-organization is intrinsic to natural systems under certain conditions." (J A Scott Kelso, "Dynamic Patterns : The Self-organization of Brain and Behavior", 1995)

"Symmetry is basically a geometrical concept. Mathematically it can be defined as the invariance of geometrical patterns under certain operations. But when abstracted, the concept applies to all sorts of situations. It is one of the ways by which the human mind recognizes order in nature. In this sense symmetry need not be perfect to be meaningful. Even an approximate symmetry attracts one's attention, and makes one wonder if there is some deep reason behind it." (Eguchi Tohru & ?K Nishijima , "Broken Symmetry: Selected Papers Of Y Nambu", 1995)

"Whatever the reasons, mathematics definitely is a useful way to think about nature. What do we want it to tell us about the patterns we observe? There are many answers. We want to understand how they happen; to understand why they happen, which is different; to organize the underlying patterns and regularities in the most satisfying way; to predict how nature will behave; to control nature for our own ends; and to make practical use of what we have learned about our world. Mathematics helps us to do all these things, and often it is indispensable." (Ian Stewart, "Nature's Numbers: The unreal reality of mathematics", 1995)

"If we are to have meaningful, connected experiences; ones that we can comprehend and reason about; we must be able to discern patterns to our actions, perceptions, and conceptions. Underlying our vast network of interrelated literal meanings (all of those words about objects and actions) are those imaginative structures of understanding such as schema and metaphor, such as the mental imagery that allows us to extrapolate a path, or zoom in on one part of the whole, or zoom out until the trees merge into a forest." (William H Calvin, "The Cerebral Code", 1996)

"The methods of science include controlled experiments, classification, pattern recognition, analysis, and deduction. In the humanities we apply analogy, metaphor, criticism, and (e)valuation. In design we devise alternatives, form patterns, synthesize, use conjecture, and model solutions." (Béla H Bánáthy, "Designing Social Systems in a Changing World", 1996)

"The more complex the network is, the more complex its pattern of interconnections, the more resilient it will be." (Fritjof Capra, "The Web of Life: A New Scientific Understanding of Living Systems", 1996)

"The role of science, like that of art, is to blend proximate imagery with more distant meaning, the parts we already understand with those given as new into larger patterns that are coherent enough to be acceptable as truth. Biologists know this relation by intuition during the course of fieldwork, as they struggle to make order out of the infinitely varying patterns of nature." (Edward O Wilson, "In Search of Nature", 1996)

"Mathematics can function as a telescope, a microscope, a sieve for sorting out the signal from the noise, a template for pattern perception, a way of seeking and validating truth. […] A knowledge of the mathematics behind our ideas can help us to fool ourselves a little less often, with less drastic consequences." (K C Cole, "The Universe and the Teacup: The Mathematics of Truth and Beauty", 1997)

"Mathematics is a way of thinking that can help make muddy relationships clear. It is a language that allows us to translate the complexity of the world into manageable patterns. In a sense, it works like turning off the houselights in a theater the better to see a movie. Certainly, something is lost when the lights go down; you can no longer see the faces of those around you or the inlaid patterns on the ceiling. But you gain a far better view of the subject at hand." (K C Cole, "The Universe and the Teacup: The Mathematics of Truth and Beauty", 1997)

"A formal system consists of a number of tokens or symbols, like pieces in a game. These symbols can be combined into patterns by means of a set of rules which defines what is or is not permissible (e.g. the rules of chess). These rules are strictly formal, i.e. they conform to a precise logic. The configuration of the symbols at any specific moment constitutes a ‘state’ of the system. A specific state will activate the applicable rules which then transform the system from one state to another. If the set of rules governing the behaviour of the system are exact and complete, one could test whether various possible states of the system are or are not permissible." (Paul Cilliers, "Complexity and Postmodernism: Understanding Complex Systems", 1998)

"Mathematics, in the common lay view, is a static discipline based on formulas taught in the school subjects of arithmetic, geometry, algebra, and calculus. But outside public view, mathematics continues to grow at a rapid rate, spreading into new fields and spawning new applications. The guide to this growth is not calculation and formulas but an open-ended search for pattern." (Lynn A Steen, "The Future of Mathematics Education", 1998)

"A neural network consists of large numbers of simple neurons that are richly interconnected. The weights associated with the connections between neurons determine the characteristics of the network. During a training period, the network adjusts the values of the interconnecting weights. The value of any specific weight has no significance; it is the patterns of weight values in the whole system that bear information. Since these patterns are complex, and are generated by the network itself (by means of a general learning strategy applicable to the whole network), there is no abstract procedure available to describe the process used by the network to solve the problem. There are only complex patterns of relationships." (Paul Cilliers, "Complexity and Postmodernism: Understanding Complex Systems", 1998)

"Mathematics has traditionally been described as the science of number and shape. […] When viewed in this broader context, we see that mathematics is not just about number and shape but about pattern and order of all sorts. Number and shape - arithmetic and geometry - are but two of many media in which mathematicians work. Active mathematicians seek patterns wherever they arise." (Lynn A Steen, "The Future of Mathematics Education", 1998)

"Often, we use the word random loosely to describe something that is disordered, irregular, patternless, or unpredictable. We link it with chance, probability, luck, and coincidence. However, when we examine what we mean by random in various contexts, ambiguities and uncertainties inevitably arise. Tackling the subtleties of randomness allows us to go to the root of what we can understand of the universe we inhabit and helps us to define the limits of what we can know with certainty." (Ivars Peterson, "The Jungles of Randomness: A Mathematical Safari", 1998)

"Sequences of random numbers also inevitably display certain regularities. […] The trouble is, just as no real die, coin, or roulette wheel is ever likely to be perfectly fair, no numerical recipe produces truly random numbers. The mere existence of a formula suggests some sort of predictability or pattern." (Ivars Peterson, "The Jungles of Randomness: A Mathematical Safari", 1998)

"We use mathematics and statistics to describe the diverse realms of randomness. From these descriptions, we attempt to glean insights into the workings of chance and to search for hidden causes. With such tools in hand, we seek patterns and relationships and propose predictions that help us make sense of the world."  (Ivars Peterson, "The Jungles of Randomness: A Mathematical Safari", 1998)

"Complexity is looking at interacting elements and asking how they form patterns and how the patterns unfold. It’s important to point out that the patterns may never be finished. They’re open-ended. In standard science this hit some things that most scientists have a negative reaction to. Science doesn’t like perpetual novelty." (W Brian Arthur, 1999)

"Randomness is the very stuff of life, looming large in our everyday experience. […] The fascination of randomness is that it is pervasive, providing the surprising coincidences, bizarre luck, and unexpected twists that color our perception of everyday events." (Edward Beltrami, "Chaos and Order in Mathematics and Life", 1999)

"The first view of randomness is of clutter bred by complicated entanglements. Even though we know there are rules, the outcome is uncertain. Lotteries and card games are generally perceived to belong to this category. More troublesome is that nature's design itself is known imperfectly, and worse, the rules may be hidden from us, and therefore we cannot specify a cause or discern any pattern of order. When, for instance, an outcome takes place as the confluence of totally unrelated events, it may appear to be so surprising and bizarre that we say that it is due to blind chance." (Edward Beltrami. "What is Random?: Chance and Order in Mathematics and Life", 1999)

Related Posts Plugin for WordPress, Blogger...

On Leonhard Euler

"I have been able to solve a few problems of mathematical physics on which the greatest mathematicians since Euler have struggled in va...