Showing posts with label laws. Show all posts
Showing posts with label laws. Show all posts

02 December 2024

Occam's Razor = The Law of Parsimony (1500 - 1899)

"We are to admit no more causes of natural things than such as are both true and sufficient to explain their appearances. Therefore, to the same natural effects we must, as far as possible, assign the same causes." (Isaac Newton, "Philosophiæ Naturalis Principia Mathematica" ["Mathematical Principles of Natural Philosophy"], 1687) 

"Entia non sunt multiplicanda praeter necessitatem."
"Entities are not to be multiplied beyond what is necessary." (John Ponce, cca. 17th century)

"Parsimony is enough to make the master of the golden mines as poor as he that has nothing; for a man may be brought to a morsel of bread by parsimony as well as profusion." (Henry Home [Lord Kames] ," Introduction to the Art of Thinking", 1761)

"Mere parsimony is not economy. Expense, and great expense, may be an essential part in true economy." (Edmund Burke, "A Letter to a Noble Lord", 1796)

"It is, after all, a principle of logic not to multiply entities unnecessarily." (Antoine-Laurent Lavoisier, "Réflexions sur le phlogistique", 1862)

"The first obligation of Simplicity is that of using the simplest means to secure the fullest effect." (George H Lewes, "The Principles of Success in Literature", 1865)

"In no case may we interpret an action [of an animal] as the outcome of the exercise of a higher psychical faculty, if it can be interpreted as the outcome of the exercise of one which stands lower in the psychological scale." (Conwy Lloyd Morgan, "An Introduction to Comparative Psychology", 1894) [Morgan's canon, the principle of parsimony in animal research]

"The question is therefore to demonstrate all geometrical truths with the smallest possible number of assumptions." (Augustus de Morgan, "On the Study and Difficulties of Mathematics", 1898)

"Scientists must use the simplest means of arriving at their results and exclude everything not perceived by the senses." (Ernst Mach)

Occam's Razor = The Law of Parsimony (1950 - 1999)

"Nonbeing must in some sense be, otherwise what is it that there is not? This tangled doctrine might be nicknamed Plato's beard; historically it has proved tough, frequently dulling the edge of Occam's razor." (Willard van Orman Quine, "On What There Is" From a Logical Point of View: Nine Logico-Philosophical Essays", 1953)

"[…] the grand aim of all science […] is to cover the greatest possible number of empirical facts by logical deductions from the smallest possible number of hypotheses or axioms.” (Albert Einstein, 1954)

"The principle of parsimony is valid esthetically in that the artist must not go beyond what is needed for his purpose. (Rudolf Arnheim," Art and Visual Perception: A Psychology of the Creative Eye", 1954)

"Our craving for generality has [as one] source […] our preoccupation with the method of science. I mean the method the method of reducing the explanation of natural phenomena to the smallest possible number of primitive natural laws; and, in mathematics, of unifying the treatment of different topics by using a generalization." (Ludwig Wittgenstein, "The Blue and Brown Books", 1958)

"[…] entities must not be reduced to the point of inadequacy and, more generally, that it is in vain to try to do with fewer what requires more." (Karl Menger, "A Counterpart of Occam's Razor in Pure and Applied Mathematics Ontological Uses", Synthese Vol. 12 (4), 1960)

"Let us consider, for a moment, the world as described by the physicist. It consists of a number of fundamental particles which, if shot through their own space, appear as waves, and are thus [...] of the same laminated structure as pearls or onions, and other wave forms called electromagnetic which it is convenient, by Occam’s razor, to consider as travelling through space with a standard velocity. All these appear bound by certain natural laws which indicate the form of their relationship." (G Spencer-Brown, "Laws of Form", 1969)

"For if as scientists we seek simplicity, then obviously we try the simplest surviving theory first, and retreat from it only when it proves false. Not this course, but any other, requires explanation. If you want to go somewhere quickly, and several alternate routes are equally likely to be open, no one asks why you take the shortest. The simplest theory is to be chosen not because it is the most likely to be true but because it is scientifically the most rewarding among equally likely alternatives. We aim at simplicity and hope for truth." (Nelson Goodman, "Problems and Projects", 1972)

"As glimpsed by physicists, Nature's rules are simple, but also intricate: Different rules are subtly related to each other. The intricate relations between the rules produce interesting effects in many physical situations. [...] Nature's design is not only simple, but minimally so, in the sense that were the design any simpler, the universe would be a much duller place." (Anthony Zee, "Fearful Symmetry: The Search for Beauty in Modern Physics", 1986)

"A mechanistic model has the following advantages: 1. It contributes to our scientific understanding of the phenomenon under study. 2. It usually provides a better basis for extrapolation (at least to conditions worthy of further experimental investigation if not through the entire range of all input variables). 3. It tends to be parsimonious (i. e, frugal) in the use of parameters and to provide better estimates of the response." (George E P Box, "Empirical Model-Building and Response Surfaces", 1987)

"I seek […] to show that - other things being equal - the simplest hypothesis proposed as an explanation of phenomena is more likely to be the true one than is any other available hypothesis, that its predictions are more likely to be true than those of any other available hypothesis, and that it is an ultimate a priori epistemic principle that simplicity is evidence for truth." (Richard Swinburne, "Simplicity as Evidence for Truth", 1997)

"Were it not for Occam's Razor, which always demands simplicity, I'd be tempted to believe that human beings are more influenced by distant causes than immediate ones. This would especially be true of overeducated people, who are capable of thinking past the immediate, of becoming obsessed by the remote. It's the old stuff, the conflicts we've never come to terms with, that sneaks up on us, half forgotten, insisting upon action."(Richard Russo,"Straight Man", 1997)

"It is part of the lore of science that the most parsimonious explanation of observed facts is to be preferred over convoluted and long-winded theories. Ptolemaic epicycles gave way to the Copernican system largely on this premise, and in general, scientific inquiry is governed by the oft-quoted dictum of the medieval cleric William of Occam that 'nunquam ponenda est pluralitas sine necesitate' , which may be paraphrased as 'choose the simplest explanation for the observed facts' ." (Edward Beltrami, "What is Random?: Chaos and Order in Mathematics and Life", 1999)

Occam's Razor = The Law of Parsimony (2000-)

"A smaller model with fewer covariates has two advantages: it might give better predictions than a big model and it is more parsimonious (simpler). Generally, as you add more variables to a regression, the bias of the predictions decreases and the variance increases. Too few covariates yields high bias; this called underfitting. Too many covariates yields high variance; this called overfitting. Good predictions result from achieving a good balance between bias and variance. […] fiding a good model involves trading of fit and complexity." (Larry A Wasserman, "All of Statistics: A concise course in statistical inference", 2004)

"Mathematics is not about abstract entities alone but is about relation of abstract entities with real entities. […] Adequacy relations between abstract and real entities provide space or opportunity where mathematical and logical thought operates parsimoniously." (Navjyoti Singh, "Classical Indian Mathematical Thought", 2005)

"The model theory postulates that mental models are parsimonious. They represent what is possible, but not what is impossible, according to assertions. This principle of parsimony minimizes the load on working memory, and so it applies unless something exceptional occurs to overrule it." (Philip N Johnson-Laird, Mental Models, Sentential Reasoning, and Illusory Inferences, [in "Mental Models and the Mind"], 2006)

"Two systems concepts lie at the disposal of the architect to reflect the beauty of harmony: parsimony and variety. The law of parsimony states that given several explanations of a specific phenomenon, the simplest is probably the best. […] On the other hand, the law of requisite variety states that for a system to survive in its environment the variety of choice that the system is able to make must equal or exceed the variety of influences that the environment can impose on the system." (John Boardman & Brian Sauser, "Systems Thinking: Coping with 21st Century Problems", 2008)

"What advantages do diagrams have over verbal descriptions in promoting system understanding? First, by providing a diagram, massive amounts of information can be presented more efficiently. A diagram can strip down informational complexity to its core - in this sense, it can result in a parsimonious, minimalist description of a system. Second, a diagram can help us see patterns in information and data that may appear disordered otherwise. For example, a diagram can help us see mechanisms of cause and effect or can illustrate sequence and flow in a complex system. Third, a diagram can result in a less ambiguous description than a verbal description because it forces one to come up with a more structured description." (Robbie T Nakatsu, "Diagrammatic Reasoning in AI", 2010)

"In my view, the argument from parsimony is really no argument at all - it typically functions only to shut down more interesting discussion. If history is any guide, it's never a good idea to assume that a scientific problem is cornered." (David Eagleman, "Incognito: The Secret Lives of the Brain", 2011)

"Scientists often talk of parsimony (as in 'the simplest explanation is probably correct', also known as Occam’s razor), but we should not get seduced by the apparent elegance of argument from parsimony; this line of reasoning has failed in the past at least as many times as it has succeeded. For example, it is more parsimonious to assume that the sun goes around the Earth, that atoms at the smallest scale operate in accordance with the same rules that objects at larger scales follow, and that we perceive what is really out there. All of these positions were long defended by argument from parsimony, and they were all wrong. In my view, the argument from parsimony is really no argument at all - it typically functions only to shut down more interesting discussion. If history is any guide, it’s never a good idea to assume that a scientific problem is cornered." (David Eagleman, "Incognito: The Secret Lives of the Brain", 2011)

"What can be done with fewer [assumptions] is done in vain with more." (Alan Baker, "Simplicity", The Stanford Encyclopedia of Philosophy, 2012)

21 April 2024

On Laws V: The Law of Statistical Regularity

"This statistical regularity in moral affairs fully establishes their being under the presidency of law. Man is seen to be an enigma only as an individual: in the mass he is a mathematical problem." (Robert Chambers, "Vestiges of the Natural History of Creation", 1844) 

"the law of statistical regularity lays down that the moderately large number of items chosen at random from a large group are almost sure on the average to possess the characteristics of the large group." (Willford I King, "The Elements of Statistical Method", 1912)

"The principle underlying sampling is that a set of objects taken at random from a larger group tends to reproduce the characteristics of that larger group: this is called the Law of Statistical Regularity. There are exceptions to this rule, and a certain amount of judgment must be exercised, especially when there are a few abnormally large items in the larger group. With erratic data, the accuracy of sampling can often be tested by comparing several samples. On the whole, the larger the sample the more closely will it tend to resemble the population from which it is taken; too small a sample would not give reliable results." (Lewis R Connor, "Statistics in Theory and Practice", 1932)

"It is the task of science, as a collective human undertaking, to describe from the external side, (on which alone agreement is possible), such statistical regularity as there is in a world in which every event has a unique aspect, and to indicate where possible the limits of such description. It is not part of its task to make imaginative interpretation of the internal aspect of reality - what it is like, for example, to be a lion, an ant or an ant hill, a liver cell, or a hydrogen ion. The only qualification is in the field of introspective psychology in which each human being is both observer and observed, and regularities may be established by comparing notes. Science is thus a limited venture. It must act as if all phenomena were deterministic at least in the sense of determinable probabilities." (Sewall Wright, "Gene and Organism", American Naturalist 87, 1953)

"The epistemological value of probability theory is based on the fact that chance phenomena, considered collectively and on a grand scale, create non-random regularity." (Andrey Kolmogorov, "Limit Distributions for Sums of Independent Random Variables", 1954)

"Any observed statistical regularity will tend to collapse once pressure is placed upon it for control purposes." (Charles A E Goodhart, "Problems of Monetary Management: the U.K. Experience", 1975)

 "The law of statistical regularity lays down that a group of objects chosen at random from a larger group tends to possess the characteristics of that large group (universe)." (Lewis R Connor)

24 September 2023

On Laws IV: The Laws of Nature

"Nature always uses the simplest means to accomplish its effects." (Pierre L Maupertuis, "Accord between different laws of Nature that seemed incompatible", Mémoires de l'académie royale des sciences, 1744)

"The supreme Being is everywhere; but He is not equally visible everywhere. Let us seek Him in the simplest things, in the most fundamental laws of Nature, in the universal rules by which movement is conserved, distributed or destroyed; and let us not seek Him in phenomena that are merely complex consequences of these laws." (Pierre L Maupertuis, "Les Loix du Mouvement et du Repos, déduites d'un Principe Métaphysique", 1746)

"Especially when we investigate the general laws of Nature, induction has very great power; & there is scarcely any other method beside it for the discovery of these laws. By its assistance, even the ancient philosophers attributed to all bodies extension, figurability, mobility, & impenetrability; & to these properties, by the use of the same method of reasoning, most of the later philosophers add inertia & universal gravitation. Now, induction should take account of every single case that can possibly happen, before it can have the force of demonstration; such induction as this has no place in establishing the laws of Nature. But use is made of an induction of a less rigorous type ; in order that this kind of induction may be employed, it must be of such a nature that in all those cases particularly, which can be examined in a manner that is bound to lead to a definite conclusion as to whether or no the law in question is followed, in all of them the same result is arrived at; & that these cases are not merely a few. Moreover, in the other cases, if those which at first sight appeared to be contradictory, on further & more accurate investigation, can all of them be made to agree with the law; although, whether they can be made to agree in this way better than in any Other whatever, it is impossible to know directly anyhow. If such conditions obtain, then it must be considered that the induction is adapted to establishing the law." (Roger J Boscovich, "De Lege Continuitatis" ["On the law of continuity"], 1754)

"Systems in physical science […] are no more than appropriate instruments to aid the weakness of our organs: they are, properly speaking, approximate methods which put us on the path to the solution of the problem; these are the hypotheses which, successively modified, corrected, and changed in proportion as they are found false, should lead us infallibly one day, by a process of exclusion, to the knowledge of the true laws of nature." (Antoine L Lavoisier, "Mémoires de l’Académie Royale des Sciences", 1777)

"[…] we are far from having exhausted all the applications of analysis to geometry, and instead of believing that we have approached the end where these sciences must stop because they  have reached the limit of the forces of the human spirit, we ought to avow rather we are only at the first steps of an immense career. These new [practical] applications, independently of the utility which they may have in themselves, are necessary to the progress of analysis in general; they give birth to questions which one would not think to propose; they demand that one create new methods. Technical processes are the children of need; one can say the same for the methods of the most abstract sciences. But we owe the latter to the needs of a more noble kind, the need to discover the new truths or to know better the laws of nature." (Nicolas de Condorcet, 1781)

"The laws of nature are the rules according to which the effects are produced; but there must be a cause which operates according to these rules." (Thomas Reid, "Essays on the Intellectual Powers of Man", 1785)

"The end of natural philosophy is to increase either the knowledge or power of man, and enable him to understand the ways and procedure of nature. By discovering the laws of nature, he acquires knowledge, and obtains power; for when these laws are discovered, he can use them as rules of practice, to equal, subdue, or even excel nature by art." (George Adams, "Lectures on Natural and Experimental Philosophy" Vol. 2, 1794)

"[…] we must not measure the simplicity of the laws of nature by our facility of conception; but when those which appear to us the most simple, accord perfectly with observations of the phenomena, we are justified in supposing them rigorously exact." (Pierre-Simon Laplace, "The System of the World", 1809)

"In all speculations on the origin, or agents that have produced the changes on this globe, it is probable that we ought to keep within the boundaries of the probable effects resulting from the regular operations of the great laws of nature which our experience and observation have brought within the sphere of our knowledge. When we overleap those limits, and suppose a total change in nature's laws, we embark on the sea of uncertainty, where one conjecture is perhaps as probable as another; for none of them can have any support, or derive any authority from the practical facts wherewith our experience has brought us acquainted." (William Maclure, "Observations on the Geology of the United States of America", 1817)

"There are no rules or models; that is, there are no rules except general laws of nature which hover over art and special laws which apply to specific subjects." (Victor M Hugo, "Cromwell", 1827)

"Every theorem in geometry is a law of external nature, and might have been ascertained by generalizing from observation and experiment, which in this case resolve themselves into comparisons and measurements. But it was found practicable, and being practicable was desirable, to deduce these truths by ratiocination from a small number of general laws of nature, the certainty and universality of which was obvious to the most careless observer, and which compose the first principles and ultimate premises of the science." (John S Mill, "A System of Logic, Ratiocinative and Inductive", 1843)

"The Laws of Nature are merely truths or generalized facts, in regard to matter, derived by induction from experience, observation, arid experiment. The laws of mathematical science are generalized truths derived from the consideration of Number and Space." (Charles Davies, "The Logic and Utility of Mathematics", 1850)

"If we knew all the laws of Nature, we should need only one fact, or the description of one actual phenomenon, to infer all the particular results at that point. Now we know only a few laws, and our result is vitiated, not, of course, by any confusion or irregularity in Nature, but by our ignorance of essential elements in the calculation. Our notions of law and harmony are commonly confined to those instances which we detect; but the harmony which results from a far greater number of seemingly conflicting, but really concurring, laws, which we have not detected, is still more wonderful. The particular laws are as our points of view, as to the traveler, a mountain outline varies with every step, and it has an infinite number of profiles, though absolutely but one form. Even when cleft or bored through it is not comprehended in its entireness." (Henry D Thoreau, "Walden; or, Life in the Woods", 1854)

"This science, Geometry, is one of indispensable use and constant reference, for every student of the laws of nature; for the relations of space and number are the alphabet in which those laws are written. But besides the interest and importance of this kind which geometry possesses, it has a great and peculiar value for all who wish to understand the foundations of human knowledge, and the methods by which it is acquired. For the student of geometry acquires, with a degree of insight and clearness which the unmathematical reader can but feebly imagine, a conviction that there are necessary truths, many of them of a very complex and striking character; and that a few of the most simple and self-evident truths which it is possible for the mind of man to apprehend, may, by systematic deduction, lead to the most remote and unexpected results." (William Whewell, "The Philosophy of the Inductive Sciences", 1858)

"A law of nature, however, is not a mere logical conception that we have adopted as a kind of memoria technical to enable us to more readily remember facts. We of the present day have already sufficient insight to know that the laws of nature are not things which we can evolve by any speculative method. On the contrary, we have to discover them in the facts; we have to test them by repeated observation or experiment, in constantly new cases, under ever-varying circumstances; and in proportion only as they hold good under a constantly increasing change of conditions, in a constantly increasing number of cases with greater delicacy in the means of observation, does our confidence in their trustworthiness rise." (Hermann von Helmholtz, "Popular Lectures on Scientific Subjects", 1873)

"Our books of science, as they improve in accuracy, are in danger of losing the freshness and vigor and readiness to appreciate the real laws of Nature, which is a marked merit in the ofttimes false theories of the ancients." (Henry D Thoreau, "A Week on the Concord and Merrimack Rivers", 1873)

"The history of thought should warn us against concluding that because the scientific theory of the world is the best that has yet been formulated, it is necessarily complete and final. We must remember that at bottom the generalizations of science or, in common parlance, the laws of nature are merely hypotheses devised to explain that ever-shifting phantasmagoria of thought which we dignify with the high-sounding names of the world and the universe." (Sir James G Frazer, "The Golden Bough: A Study in Magic and Religion", 1890)

"The strongest use of the symbol is to be found in its magical power of doubling the actual universe, and placing by its side an ideal universe, its exact counterpart, with which it can be compared and contrasted, and, by means of curiously connecting fibres, form with it an organic whole, from which modern analysis has developed her surpassing geometry." (Benjamin Peirce, "On the Uses and Transformations of Linear Algebra", 1875)

"The history of thought should warn us against concluding that because the scientific theory of the world is the best that has yet been formulated, it is necessarily complete and final. We must remember that at bottom the generalizations of science or, in common parlance, the laws of nature are merely hypotheses devised to explain that ever-shifting phantasmagoria of thought which we dignify with the high-sounding names of the world and the universe." (Sir James G Frazer, "The Golden Bough: A Study in Magic and Religion", 1890)

"Education is the instruction of the intellect in the laws of Nature, under which name I include not merely things and their forces, but men and their ways; and the fashioning of the affections and of the will into an earnest and loving desire to move in harmony with those laws." (Thomas H Huxley, "Science and Education", 1891)

"The laws of nature are drawn from experience, but to express them one needs a special language: for, ordinary language is too poor and too vague to express relations so subtle, so rich, so precise. Here then is the first reason why a physicist cannot dispense with mathematics: it provides him with the one language he can speak […]. Who has taught us the true analogies, the profound analogies which the eyes do not see, but which reason can divine? It is the mathematical mind, which scorns content and clings to pure form." (Henri Poincaré, "The Value of Science", 1905)

"Pythagoras says that number is the origin of all things, and certainly the law of number is the key that unlocks the secrets of the universe. But the law of number possesses an immanent order, which is at first sight mystifying, but on a more intimate acquaintance we easily understand it to be intrinsically necessary; and this law of number explains the wondrous consistency of the laws of nature. (Paul Carus, "Reflections on Magic Squares", Monist Vol. 16, 1906)

"An exceedingly small cause which escapes our notice determines a considerable effect that we cannot fail to see, and then we say the effect is due to chance. If we knew exactly the laws of nature and the situation of the universe at the initial moment, we could predict exactly the situation of that same universe at a succeeding moment. But even if it were the case that the natural laws had no longer any secret for us, we could still only know the initial situation 'approximately'. If that enabled us to predict the succeeding situation with 'the same approximation', that is all we require, and we should say that the phenomenon had been predicted, that it is governed by laws. But it is not always so; it may happen that small differences in the initial conditions produce very great ones in the final phenomena. A small error in the former will produce an enormous error in the latter. Prediction becomes impossible, and we have the fortuitous phenomenon. (Jules H Poincaré, "Science and Method", 1908)

"The regularities in the phenomena which physical science endeavors to uncover are called the laws of nature. The name is actually very appropriate. Just as legal laws regulate actions and behavior under certain conditions but do not try to regulate all action and behavior, the laws of physics also determine the behavior of its objects of interest only under certain well-defined conditions but leave much freedom otherwise." (Eugene P Wigner, "Events, Laws of Nature, and Invariance principles", [Nobel lecture] 1914)

"But it is just this characteristic of simplicity in the laws of nature hitherto discovered which it would be fallacious to generalize, for it is obvious that simplicity has been a part cause of their discovery, and can, therefore, give no ground for the supposition that other undiscovered laws are equally simple." (Bertrand Russell, "'On the Scientific Method in Philosophy", 1918)

"The laws of nature cannot be intelligently applied until they are understood, and in order to understand them, many experiments bearing upon the ultimate nature of things must be made, in order that all may be combined in a far-reaching generalization impossible without the detailed knowledge upon which it rests." (Theodore W Richards, "The Problem of Radioactive Lead", 1918)

"'Causation' has been popularly used to express the condition of association, when applied to natural phenomena. There is no philosophical basis for giving it a wider meaning than partial or absolute association. In no case has it been proved that there is an inherent necessity in the laws of nature. Causation is correlation. [...] perfect correlation, when based upon sufficient experience, is causation in the scientific sense." (Henry E. Niles, "Correlation, Causation and Wright's Theory of 'Path Coefficients'", Genetics, 1922)

"Architecture is the first manifestation of man creating his own universe, creating it in the image of nature, submitting to the laws of nature, the laws which govern our own nature, our universe. The laws of gravity, of statics and of dynamics, impose themselves by a reductio ad absurdum: everything must hold together or it will collapse." (Charles-Edouard Jeanneret [Le Corbusier], "Towards a New Architecture", 1923)

"For establishing the laws of nature one resorts (not deliberately but involuntarily) to the simplest formulas that seem to describe the phenomena with reasonable accuracy. […] Even those laws of nature that are the most general and important for the world view have always been proved experimentally only in a confined ambit and with limited accuracy. […] The exact formulation of the laws of nature by simple formulas is based on the desire to master external phenomena with the simplest tools possible." (Felix Klein, "Elementary Mathematics from a Higher Standpoint" Vol III: "Precision Mathematics and Approximation Mathematics", 1928)

"It goes without saying that the laws of nature are in themselves independent of the properties of the instruments with which they are measured. Therefore in every observation of natural phenomena we must remember the principle that the reliability of the measuring apparatus must always play an important role." (Max Planck,"Where is Science Going?", 1932)

"Pure mathematics is, in its way, the poetry of logical ideas. One seeks the most general ideas of operation which will bring together in simple, logical and unified form the largest possible circle of formal relationships. In this effort toward logical beauty spiritual formulas are discovered necessary for the deeper penetration into the laws of nature." (Albert Einstein, [Obituary for Emmy Noether], 1935)

"The researcher worker, in his efforts to express the fundamental laws of Nature in mathematical form, should strive mainly for mathematical beauty. He should still take simplicity into consideration in a subordinate way to beauty. […] It often happens that the requirements of simplicity and beauty are the same, but where they clash the latter must take precedence." (Paul A M Dirac, "The Relation Between Mathematics and Physics", Proceedings of the Royal Society , Volume LIX, 1939)

"The fundamental difference between engineering with and without statistics boils down to the difference between the use of a scientific method based upon the concept of laws of nature that do not allow for chance or uncertainty and a scientific method based upon the concepts of laws of probability as an attribute of nature." (Walter A Shewhart, 1940)

"The laws of nature may be operative up to a certain limit, beyond which they turn against themselves to give birth to the absurd." (Albert Camus, "The Myth of Sisyphus", 1942)

"The responsibility for the creation of new scientific knowledge - and for most of its application - rests on that small body of men and women who understand the fundamental laws of nature and are skilled in the techniques of scientific research. We shall have rapid or slow advance on any scientific frontier depending on the number of highly qualified and trained scientists exploring it."(Vannevar Bush, "Science: The Endless Frontier", 1945)

"In classical physics, most of the fundamental laws of nature were concerned either with the stability of certain configurations of bodies, e.g. the solar system, or else with the conservation of certain properties of matter, e.g. mass, energy, angular momentum or spin. The outstanding exception was the famous Second Law of Thermodynamics, discovered by Clausius in 1850. This law, as usually stated, refers to an abstract concept called entropy, which for any enclosed or thermally isolated system tends to increase continually with lapse of time. In practice, the most familiar example of this law occurs when two bodies are in contact: in general, heat tends to flow from the hotter body to the cooler. Thus, while the First Law of Thermodynamics, viz. the conservation of energy, is concerned only with time as mere duration, the Second Law involves the idea of trend." (Gerald J Whitrow, "The Structure of the Universe: An Introduction to Cosmology", 1949)

"We have assumed that the laws of nature must be capable of expression in a form which is invariant for all possible transformations of the space-time co-ordinates." (Gerald J Whitrow, "The Structure of the Universe: An Introduction to Cosmology", 1949)

"The world is not made up of empirical facts with the addition of the laws of nature: what we call the laws of nature are conceptual devices by which we organize our empirical knowledge and predict the future." (Richard B Braithwaite, "Scientific Explanation", 1953)

"The enormous usefulness of mathematics in natural sciences is something bordering on the mysterious, and there is no rational explanation for it. It is not at all natural that ‘laws of nature’ exist, much less that man is able to discover them. The miracle of the appropriateness of the language of mathematics for the formulation of the laws of physics is a wonderful gift which we neither understand nor deserve." (Eugene P Wigner, "The Unreasonable Effectiveness of Mathematics in the Natural Sciences," 1960)

"We know many laws of nature and we hope and expect to discover more. Nobody can foresee the next such law that will be discovered. Nevertheless, there is a structure in laws of nature which we call the laws of invariance. This structure is so far-reaching in some cases that laws of nature were guessed on the basis of the postulate that they fit into the invariance structure." (Eugene P Wigner, "The Role of Invariance Principles in Natural Philosophy", 1963)

"It is now natural for us to try to derive the laws of nature and to test their validity by means of the laws of invariance, rather than to derive the laws of invariance from what we believe to be the laws of nature." (Eugene P Wigner, "Symmetries and Reflections", 1967)

"The laws of nature 'discovered' by science are merely mathematical or mechanical models that describe how nature behaves, not why, nor what nature 'actually' is. Science strives to find representations that accurately describe nature, not absolute truths. This fact distinguishes science from religion." (George O Abell, "Exploration of the Universe", 1969)

"[...] it seems self-evident that mathematics is not likely to be much help in discovering laws of nature. If a mathematician wants to make a contribution on this (and I admit it is the highest) level, he will have to master so much experimental material and train himself to think in a way so different from the one he has been accustomed to that he will, in effect, cease to be a mathematician." (Mark Kac, "On Applying Mathematics: Reflections and Examples", Quarterly of Applied Mathematics, 1972)

"Laws of nature are human inventions, like ghosts. Laws of logic, or mathematics are also human inventions, like ghosts. The whole blessed thing is a human invention, including the idea that it isn't a human invention." (Robert M Pirsig, "Zen and the Art of Motorcycle Maintenance", 1974)

"It was mathematics, the non-empirical science par excellence, wherein the mind appears to play only with itself, that turned out to be the science of sciences, delivering the key to those laws of nature and the universe that are concealed by appearances." (Hannah Arendt, "The Life of the Mind", 1977)

"The ideas that are basic to [my work] often bear witness to my amazement and wonder at the laws of nature which operate in the world around us. He who wonders discovers that this is in itself a wonder. By keenly confronting the enigmas that surround us, and by considering and analyzing the observations that I had made, I ended up in the domain of mathematics." (Maurits C Escher, "The Graphic Work", 1978)

"Our form of life depends, in delicate and subtle ways, on several apparent ‘coincidences’ in the fundamental laws of nature which make the Universe tick. Without those coincidences, we would not be here to puzzle over the problem of their existence […] What does this mean? One possibility is that the Universe we know is a highly improbable accident, ‘just one of those things’." (John R Gribbin, "Genesis: The Origins of Man and the Universe", 1981)

"Scientific theories must tell us both what is true in nature, and how we are to explain it. I shall argue that these are entirely different functions and should be kept distinct. […] Scientific theories are thought to explain by dint of the descriptions they give of reality. […] The covering-law model supposes that all we need to know are the laws of nature - and a little logic, perhaps a little probability theory - and then we know which factors can explain which others." (Nancy Cartwright, "How the Laws of Physics Lie", 1983)

"Human beings are very conservative in some ways and virtually never change numerical conventions once they grow used to them. They even come to mistake them for laws of nature." (Isaac Asimov, "Foundation and Earth", 1986)

"Where chaos begins, classical science stops. For as long as the world has had physicists inquiring into the laws of nature, it has suffered a special ignorance about disorder in the atmosphere, in the fluctuations of the wildlife populations, in the oscillations of the heart and the brain. The irregular side of nature, the discontinuous and erratic side these have been puzzles to science, or worse, monstrosities." (James Gleick, "Chaos", 1987)

"The principle of maximum diversity operates both at the physical and at the mental level. It says that the laws of nature and the initial conditions are such as to make the universe as interesting as possible.  As a result, life is possible but not too easy. Always when things are dull, something new turns up to challenge us and to stop us from settling into a rut. Examples of things which make life difficult are all around us: comet impacts, ice ages, weapons, plagues, nuclear fission, computers, sex, sin and death.  Not all challenges can be overcome, and so we have tragedy. Maximum diversity often leads to maximum stress. In the end we survive, but only by the skin of our teeth." (Freeman J Dyson, "Infinite in All Directions", 1988)

"In practice, the intelligibility of the world amounts to the fact that we find it to be algorithmically compressible. We can replace sequences of facts and observational data by abbreviated statements which contain the same information content. These abbreviations we often call 'laws of Nature.' If the world were not algorithmically compressible, then there would exist no simple laws of nature. Instead of using the law of gravitation to compute the orbits of the planets at whatever time in history we want to know them, we would have to keep precise records of the positions of the planets at all past times; yet this would still not help us one iota in predicting where they would be at any time in the future. This world is potentially and actually intelligible because at some level it is extensively algorithmically compressible. At root, this is why mathematics can work as a description of the physical world. It is the most expedient language that we have found in which to express those algorithmic compressions." (John D Barrow, "New Theories of Everything", 1991)

"Somehow the breathless world that we witness seems far removed from the timeless laws of Nature which govern the elementary particles and forces of Nature. The reason is clear. We do not observe the laws of Nature: we observe their outcomes. Since these laws find their most efficient representation as mathematical equations, we might say that we see only the solutions of those equations not the equations themselves. This is the secret which reconciles the complexity observed in Nature with the advertised simplicity of her laws." (John D Barrow, "New Theories of Everything", 1991)

"How surprising it is that the laws of nature and the initial conditions of the universe should allow for the existence of beings who could observe it. Life as we know it would be impossible if any one of several physical quantities had slightly different values." (Steven Weinberg, Life in the Quantum Universe", Scientific American, 1995)

"It suggests to me that consciousness and our ability to do mathematics are no mere accident, no trivial detail, no insignificant by-product of evolution that is piggy-backing on some other mundane property. It points to what I like to call the cosmic connection, the existence of a really deep relationship between minds that can do mathematics and the underlying laws of nature that produce them. We have a closed system of consistency here: the laws of physics produce complex systems, and these complex systems lead to consciousness, which then produces mathematics, which can encode [...] the very laws of physics that gave rise to it." (Paul Davies, "Are We Alone?: Philosophical Implications of the Discovery of Extraterrestrial Life", 1995)

"Riemann concluded that electricity, magnetism, and gravity are caused by the crumpling of our three-dimensional universe in the unseen fourth dimension. Thus a 'force' has no independent life of its own; it is only the apparent effect caused by the distortion of geometry. By introducing the fourth spatial dimension, Riemann accidentally stumbled on what would become one of the dominant themes in modern theoretical physics, that the laws of nature appear simple when expressed in higher-dimensional space. He then set about developing a mathematical language in which this idea could be expressed." (Michio Kaku, "Hyperspace", 1995)

"The problems associated with the initial singularity of the universe bring us to what is called the theory of everything. It is an all-encompassing theory that would completely explain me origin of the universe and everything in it. It would bring together general relativity and quantum mechanics, and explain everything there is to know about the elementary particles of the universe, and the four basic forces of nature (gravitational, electromagnetic, weak, and strong nuclear forces). Furthermore, it would explain the basic laws of nature and the fundamental constants of nature such as the speed of light and Planck's constant." (Barry R Parker, "Chaos in the Cosmos: The stunning complexity of the universe", 1996)

"Knowledge is encoded in models. Models are synthetic sets of rules, pictures, and algorithms providing us with useful representations of the world of our perceptions and of their patterns. As argued by philosophers and shown by scientists, we do not have access to 'reality', only to some of its manifestations, whose regularities are used to determine rules, which when widely applicable become 'laws of nature'. These laws are constantly tested in the scientific march, and they evolve, develop and transmute as the frontier of knowledge recedes further away."  (Burton G Malkiel, "A Random Walk Down Wall Street", 1999)

"Chaos theory reconciles our intuitive sense of free will with the deterministic laws of nature. However, it has an even deeper philosophical ramification. Not only do we have freedom to control our actions, but also the sensitivity to initial conditions implies that even our smallest act can drastically alter the course of history, for better or for worse. Like the butterfly flapping its wings, the results of our behavior are amplified with each day that passes, eventually producing a completely different world than would have existed in our absence!" (Julien C Sprott, "Strange Attractors: Creating Patterns in Chaos", 2000)

"We have come, in our time, to systematize our understanding of the rules of nature. We say that these rules are the laws of physics. The language of the laws of nature is mathematics. We acknowledge that our understanding of the laws is still incomplete, yet we know how to proceed to enlarge our understanding by means of the 'scientific method' - a logical process of observation and reason that distills the empirically true statements we can make about nature." (Leon M Lederman & Christopher T Hill, "Symmetry and the Beautiful Universe", 2004)

"The reality is that without mathematics, modern-day cosmologists could not have progressed even one step in attempting to understand the laws of nature. Mathematics provides the solid scaffolding that holds together any theory of the universe. […] Mathematics appears to be almost too effective in describing and explaining not only the cosmos at large, but even some of the most chaotic of human enterprises." (Mario Livio, "Is God a Mathematician?", 2011)

"Symmetries are transformations that keep certain parameters (properties, equations, and so on) invariant, that is, the parameters they refer to are conserved under these transformations. It is to be expected, therefore, that the identification of conserved quantities is inseparable from the identification of fundamental symmetries in the laws of nature. Symmetries single out 'privileged' operations, conservation laws single out 'privileged' quantities or properties that correspond to these operations. Yet the specific connections between a particular symmetry and the invariance it entails are far from obvious. For instance, the isotropy of space (the indistinguishability of its directions) is intuitive enough, but the conservation of angular momentum based on that symmetry, and indeed, the concept of angular momentum, are far less intuitive." (Yemima Ben-Menahem, "Causation in Science", 2018)

"It is impossible to transcend the laws of nature. You can only determine that your understanding of nature has changed." (Nick Powers)

"Modern man lacks a unified conception of the world. He lives in a dual world: in his environment, which is naturally given to him, and, at the same time, in the world which since the beginning of the modern era has been created for him by sciences founded upon the principle that the laws of nature are, in essence, mathematical. The non-unity which has thus come to penetrate our entire life is the true source of the spiritual crisis we are going through today." (Jan Patočka) 

"Nothing is too wonderful to be true, if it be consistent with the laws of nature, and in such things as these, experiment is the best test of such consistency." (Michael Faraday)

"The highest triumph of the human mind, the true knowledge of the most general laws of nature, ought not to remain the private possession of a privileged class of learned men, but ought to become the common property of all mankind."  (Ernst Häckel)

"The laws of nature are but the mathematical thoughts of God." (Euclid)

"The laws of Nature are written in the language of mathematics […]" (Galileo Galilei)

"The secret of nature is symmetry. When searching for new and more fundamental laws of nature, we should search for new symmetries." (David Gross)

On Laws III: The Laws of Chance

"The facts of greatest outcome are those we think simple; maybe they really are so, because they are influenced only by a small number of well-defined circumstances, maybe they take on an appearance of simplicity because the various circumstances upon which they depend obey the laws of chance and so come to mutually compensate." (Henri Poincaré, "The Foundations of Science", 1913)

"It is easy without any very profound logical analysis to perceive the difference between a succession of favorable deviations from the laws of chance, and on the other hand, the continuous and cumulative action of these laws. It is on the latter that the principle of Natural Selection relies." (Sir Ronald A Fisher, "The Genetical Theory of Natural Selection", 1930)

"In a sense, of course, probability theory in the form of the simple laws of chance is the key to the analysis of warfare; […] My own experience of actual operational research work, has however, shown that its is generally possible to avoid using anything more sophisticated. […] In fact the wise operational research worker attempts to concentrate his efforts in finding results which are so obvious as not to need elaborate statistical methods to demonstrate their truth. In this sense advanced probability theory is something one has to know about in order to avoid having to use it." (Patrick M S Blackett, "Operations Research", Physics Today, 1951)

"Indeed, the laws of chance are just as necessary as the causal laws themselves." (David Bohm, "Causality and Chance in Modern Physics", 1957)

"Can there be laws of chance? The answer, it would seem should be negative, since chance is in fact defined as the characteristic of the phenomena which follow no law, phenomena whose causes are too complex to permit prediction." (Félix E Borel, "Probabilities and Life", 1962)

"[In quantum mechanics] we have the paradoxical situation that observable events obey laws of chance, but that the probability for these events itself spreads according to laws which are in all essential features causal laws." (Max Born, Natural Philosophy of Cause and Chance, 1949)

"[...] the conception of chance enters in the very first steps of scientific activity in virtue of the fact that no observation is absolutely correct. I think chance is a more fundamental conception that causality; for whether in a concrete case, a cause-effect relation holds or not can only be judged by applying the laws of chance to the observation." (Max Born, 1949)

On Laws II: The Laws of Probability

"The laws of probability, so true in general, so fallacious in particular." (Edward Gibbon, "Memoirs of My Life", 1774)

"The second law of thermodynamics appears solely as a law of probability, entropy as a measure of the probability, and the increase of entropy is equivalent to a statement that more probable events follow less probable ones." (Max Planck, "A Survey of Physics", 1923)

"The concepts which now prove to be fundamental to our understanding of nature- a space which is finite; a space which is empty, so that one point [of our 'material' world] differs from another solely in the properties of space itself; four-dimensional, seven- and more dimensional spaces; a space which for ever expands; a sequence of events which follows the laws of probability instead of the law of causation - or alternatively, a sequence of events which can only be fully and consistently described by going outside of space and time - all these concepts seem to my mind to be structures of pure thought, incapable of realisation in any sense which would properly be described as material." (James Jeans, "The Mysterious Universe", 1930)

"The fundamental difference between engineering with and without statistics boils down to the difference between the use of a scientific method based upon the concept of laws of nature that do not allow for chance or uncertainty and a scientific method based upon the concepts of laws of probability as an attribute of nature." (Walter A Shewhart, 1940)

"[...] the whole course of events is determined by the laws of probability; to a state in space there corresponds a definite probability, which is given by the de Brogile wave associated with the state." (Max Born, "Atomic Physics", 1957)

"We can never achieve absolute truth but we can live hopefully by a system of calculated probabilities. The law of probability gives to natural and human sciences - to human experience as a whole - the unity of life we seek." (Agnes E Meyer, "Education for a New Morality", 1957)

"People are entirely too disbelieving of coincidence. They are far too ready to dismiss it and to build arcane structures of extremely rickety substance in order to avoid it. I, on the other hand, see coincidence everywhere as an inevitable consequence of the laws of probability, according to which having no unusual coincidence is far more unusual than any coincidence could possibly be." (Isaac Asimov, "The Planet That Wasn't", 1976)

"I take the view that life is a nonspiritual, almost mathematical property that can emerge from network-like arrangements of matter. It is sort of like the laws of probability; if you get enough components together, the system will behave like this, because the law of averages dictates so. Life results when anything is organized according to laws only now being uncovered; it follows rules as strict as those that light obeys." (Kevin Kelly, "Out of Control: The New Biology of Machines, Social Systems and the Economic World", 1995)

"So we pour in data from the past to fuel the decision-making mechanisms created by our models, be they linear or nonlinear. But therein lies the logician's trap: past data from real life constitute a sequence of events rather than a set of independent observations, which is what the laws of probability demand. [...] It is in those outliers and imperfections that the wildness lurks." (Peter L Bernstein, "Against the Gods: The Remarkable Story of Risk", 1996)

"The possibility of translating uncertainties into risks is much more restricted in the propensity view. Propensities are properties of an object, such as the physical symmetry of a die. If a die is constructed to be perfectly symmetrical, then the probability of rolling a six is 1 in 6. The reference to a physical design, mechanism, or trait that determines the risk of an event is the essence of the propensity interpretation of probability. Note how propensity differs from the subjective interpretation: It is not sufficient that someone’s subjective probabilities about the outcomes of a die roll are coherent, that is, that they satisfy the laws of probability. What matters is the die’s design. If the design is not known, there are no probabilities." (Gerd Gigerenzer, "Calculated Risks: How to know when numbers deceive you", 2002)

"In the laws of probability theory, likelihood distributions are fixed properties of a hypothesis. In the art of rationality, to explain is to anticipate. To anticipate is to explain." (Eliezer S Yudkowsky, "A Technical Explanation of Technical Explanation", 2005)

18 January 2023

Out of Context: On Laws (Definitions)

"Laws are generally found to be nets of such a texture, as the little creep through, the great break through, and the middle-sized are alone entangled in." (William Shenstone, "Works in Verse and Prose", 1764)

"The laws of nature are the rules according to which the effects are produced; but there must be a cause which operates according to these rules." (Thomas Reid, "Essays on the Intellectual Powers of Man", 1785)

"[...] law is the expression of the will of God." (Agnes M Clerke, "Problems in Astrophysics", 1903)

"[...] laws are only approximations." (William James, "Pragmatism: A New Name for Some Old Ways of Thinking", 1914)

"Scientific laws, when we have reason to think them accurate, are different in form from the common-sense rules which have exceptions: they are always, at least in physics, either differential equations, or statistical averages." (Bertrand A Russell, "The Analysis of Matter", 1927)

"Natural law is not applicable to the unseen world behind the symbols, because it is unadapted to anything except symbols, and its perfection is a perfection of symbolic linkage." (Arthur S Eddington, "Science and the Unseen World", 1929)

"Being built on concepts, hypotheses, and experiments, laws are no more accurate or trustworthy than the wording of the definitions and the accuracy and extent of the supporting experiments." (Gerald Holton, "Introduction to Concepts and Theories in Physical Science", 1952)

"It seems to be one of the fundamental features of nature that fundamental physical laws are described in terms of a mathematical theory of great beauty and power, needing quite a high standard of mathematics for one to understand it." (Paul Dirac, "The Evolution of the Physicist's Picture of Nature", 1963)

"A law is a permanent cause-and-effect relation of phenomena or processes. A law is a necessary, essential, stable and repetitive relation among phenomena." (Dmitry A Novikov, "Cybernetics: From Past to Future", 2016)

14 August 2022

Laws II: The Law of Large Numbers

"[…] probability as a measurable degree of certainty; necessity and chance; moral versus mathematical expectation; a priori an a posteriori probability; expectation of winning when players are divided according to dexterity; regard of all available arguments, their valuation, and their calculable evaluation; law of large numbers […]" (Jacob Bernoulli, "Ars Conjectandi" ["The Art of Conjecturing"], 1713)

"Things of all kinds are subject to a universal law which may be called the law of large numbers. It consists in the fact that, if one observes very considerable numbers of events of the same nature, dependent on constant causes and causes which vary irregularly, sometimes in one direction, sometimes in the other, it is to say without their variation being progressive in any definite direction, one shall find, between these numbers, relations which are almost constant." (Siméon-Denis Poisson, "Poisson’s Law of Large Numbers", 1837)

"It is a common fallacy to believe that the law of large numbers acts as a force endowed with memory seeking to return to the original state, and many wrong conclusions have been drawn from this assumption." (William Feller, "An Introduction To Probability Theory And Its Applications", 1950)

“We know the laws of trial and error, of large numbers and probabilities. We know that these laws are part of the mathematical and mechanical fabric of the universe, and that they are also at play in biological processes. But, in the name of the experimental method and out of our poor knowledge, are we really entitled to claim that everything happens by chance, to the exclusion of all other possibilities?” (Albert Claude, [Nobel Prize Lecture], 1974)

"The law of truly large numbers states: With a large enough sample, any outrageous thing is likely to happen." (Frederick Mosteller, Methods for Studying Coincidences Journal of the American Statistical Association, Volume 84, 1989)

"All the law [of large numbers] tells us is that the average of a large number of throws will be more likely than the average of a small number of throws to differ from the true average by less than some stated amount. And there will always be a possibility that the observed result will differ from the true average by a larger amount than the specified bound." (Peter L Bernstein, "Against the Gods: The Remarkable Story of Risk", 1996)

"Jacob Bernoulli's theorem for calculating probabilities a posteriori is known as the Law of Large Numbers. Contrary to the popular view, this law does not provide a method for validating observed facts, which are only an incomplete representation of the whole truth. Nor does it say that an increasing number of observations will increase the probability that what you see is what you are going to get. The law is not a design for improving the quality of empirical tests […]." (Peter L Bernstein, "Against the Gods: The Remarkable Story of Risk", 1996)

"The Law of Large Numbers does not tell you that the average of your throws will approach 50% as you increase the number of throws; simple mathematics can tell you that, sparing you the tedious business of tossing the coin over and over. Rather, the law states that increasing the number of throws will correspondingly increase the probability that the ratio of heads thrown to total throws will vary from 50% by less than some stated amount, no matter how small. The word 'vary' is what matters. The search is not for the true mean of 50% but for the probability that the error between the observed average and the true average will be less than, say, 2% - in other words, that increasing the number of throws will increase the probability that the observed average will fall within 2% of the true average." (Peter L Bernstein, "Against the Gods: The Remarkable Story of Risk", 1996)

"The law of small numbers is not really a law. It is a sarcastic name describing the misguided attempt to apply the law of large numbers when the numbers aren't large." (Leonard Mlodinow, "The Drunkard’s Walk: How Randomness Rules Our Lives", 2008)

"The law of large numbers is a law of mathematical statistics. It states that when random samples are sufficiently large they match the population extremely closely. […] The 'law' of small numbers is a widespread human misconception that even small samples match the population closely." (Geoff Cumming, "Understanding the New Statistics", 2012)

13 August 2022

On Laws I: The Law of Averages

"Except under controlled conditions, or in circumstances where it is possible to ignore individuals and consider only large numbers and the law of averages, any kind of accurate foresight is impossible." (Aldous Huxley, "Time Must Have a Stop", 1944)

"A misunderstanding of Bernoulli’s theorem is responsible for one of the commonest fallacies in the estimation of probabilities, the fallacy of the maturity of chances. When a coin has come down heads twice in succession, gamblers sometimes say that it is more likely to come down tails next time because ‘by the law of averages’ (whatever that may mean) the proportion of tails must be brought right some time." (William Kneale, "Probability and Induction", 1949)

"Only when there is a substantial number of trials involved is the law of averages a useful description or prediction." (Darell Huff, "How to Lie with Statistics", 1954)

"The equanimity of your average tosser of coins depends upon a law, or rather a tendency, or let us say a probability, or at any rate a mathematically calculable chance, which ensures that he will not upset himself by losing too much nor upset his opponent by winning too often." (Tom Stoppard, "Rosencrantz and Guildenstern Are Dead", 1967)

"This faulty intuition as well as many modern applications of probability theory are under the strong influence of traditional misconceptions concerning the meaning of the law of large numbers and of a popular mystique concerning a so-called law of averages." (William Feller, "An Introduction to Probability Theory and Its Applications", 1968)

"I take the view that life is a nonspiritual, almost mathematical property that can emerge from networklike arrangements of matter. It is sort of like the laws of probability; if you get enough components together, the system will behave like this, because the law of averages dictates so. Life results when anything is organized according to laws only now being uncovered; it follows rules as strict as those that light obeys." (Kevin Kelly, "Out of Control: The New Biology of Machines, Social Systems and the Economic World", 1995)

"The slightly chaotic character of mind goes even deeper, to a degree our egos may find uncomfortable. It is very likely that intelligence, at bottom, is a probabilistic or statistical phenomenon — on par with the law of averages. The distributed mass of ricocheting impulses which form the foundation of intelligence forbid deterministic results for a given starting point. Instead of repeatable results, outcomes are merely probabilistic. Arriving at a particular thought, then, entails a bit of luck." (Kevin Kelly, "Out of Control: The New Biology of Machines, Social Systems and the Economic World", 1995)

"Losing streaks and winning streaks occur frequently in games of chance, as they do in real life. Gamblers respond to these events in asymmetric fashion: they appeal to the law of averages to bring losing streaks to a speedy end. And they appeal to that same law of averages to suspend itself so that winning streaks will go on and on. The law of averages hears neither appeal. The last sequence of throws of the dice conveys absolutely no information about what the next throw will bring. Cards, coins, dice, and roulette wheels have no memory." (Peter L Bernstein, "Against the Gods: The Remarkable Story of Risk", 1996)

"However, random walk theory also tells us that the chance that the balance never returns to zero - that is, that H stays in the lead for ever - is 0. This is the sense in which the 'law of averages' is true. If you wait long enough, then almost surely the numbers of heads and tails will even out. But this fact carries no implications about improving your chances of winning, if you're betting on whether H or T turns up. The probabilities are unchanged, and you don't know how long the 'long run' is going to be. Usually it is very long indeed." (Ian Stewart, The Magical Maze: Seeing the world through mathematical eyes", 1997)

"The basis of many misconceptions about probability is a belief in something usually referred to as 'the law of averages', which alleges that any unevenness in random events gets ironed out in the long run. For example, if a tossed coin keeps coming up heads, then it is widely believed that at some stage there will be a predominance of tails to balance things out." (Ian Stewart, The Magical Maze: Seeing the world through mathematical eyes", 1997)

"The 'law of averages' asserts itself not by removing imbalances, but by swamping them. Random walk theory tells us that if you wait long enough - on average, infinitely long - then eventually the numbers will balance out. If you stop at that very instant, then you may imagine that your intuition about a 'law of averages' is justified. But you're cheating: you stopped when you got the answer you wanted. Random walk theory also tells us that if you carry on for long enough, you will reach a situation where the number of H's is a billion more than the number of T's." (Ian Stewart, The Magical Maze: Seeing the world through mathematical eyes", 1997)

"People sometimes appeal to the 'law of averages' to justify their faith in the gambler’s fallacy. They may reason that, since all outcomes are equally likely, in the long run they will come out roughly equal in frequency. However, the next throw is very much in the short run and the coin, die or roulette wheel has no memory of what went before." (Alan Graham, "Developing Thinking in Statistics", 2006)

"Another kind of error possibly related to the use of the representativeness heuristic is the gambler’s fallacy, otherwise known as the law of averages. If you are playing roulette and the last four spins of the wheel have led to the ball’s landing on black, you may think that the next ball is more likely than otherwise to land on red. This cannot be. The roulette wheel has no memory. The chance of black is just what it always is. The reason people tend to think otherwise may be that they expect the sequence of events to be representative of random sequences, and the typical random sequence at roulette does not have five blacks in a row." (Jonathan Baron, "Thinking and Deciding" 4th Ed, 2008)

"The 'law of averages' asserts that an event is more likely if it has not occurred for a long time. Perhaps belief in this bit of folk wisdom is based on confusion of different types of experiments." (Glenn Ledder, "Mathematics for the Life Sciences: Calculus, Modeling, Probability, and Dynamical Systems", 2013)

"A very different - and very incorrect - argument is that successes must be balanced by failures (and failures by successes) so that things average out. Every coin flip that lands heads makes tails more likely. Every red at roulette makes black more likely. […] These beliefs are all incorrect. Good luck will certainly not continue indefinitely, but do not assume that good luck makes bad luck more likely, or vice versa." (Gary Smith, "Standard Deviations", 2014)

"[…] many gamblers believe in the fallacious law of averages because they are eager to find a profitable pattern in the chaos created by random chance." (Gary Smith, "Standard Deviations", 2014)


07 August 2022

On Conservation Laws (1950-1999)

"In conventional statistical mechanics the energy plays a preferred role among all dynamical quantities because it is conserved both in the time development of isolated systems and in the interaction of different systems. Since, however, the principles of maximum-entropy inference are independent of any physical properties, it appears that in subjective statistical mechanics all measurable quantities may be treated on the same basis, subject to certain precautions." (Edwin T Jaynes, "Information Theory and Statistical Mechanics" I, 1956)

"It is common knowledge today that in general a symmetry principle (or equivalently an invariance principle) generates a conservation law. For example, the invariance of physical laws under space displacement has as a consequence the conservation of momentum, the invariance under space rotation has as a consequence the conservation of angular momentum." (Chen-Ning Yang, "The Law of Parity Conservation and Other Symmetry Laws of Physics", [Nobel lecture] 1957)

"Whereas the continuous symmetries always lead to conservation laws in classical mechanics, a discrete symmetry does not. With the introduction of quantum mechanics, however, this difference between the discrete and continuous symmetries disappears. The law of right-left symmetry then leads also to a conservation law: the conservation of parity." (Chen-Ning Yang, "The Law of Parity Conservation and Other Symmetry Laws of Physics", [Nobel lecture] 1957)

"The law of causality is no longer applied in quantum theory and the law of conservation of matter is no longer true for the elementary particles." (Werner K Heisenberg, "Physics and Philosophy: The revolution in modern science", 1958)

"In the everyday world, energy is always unalterably fixed; the law of energy conservation is a cornerstone of classical physics. But in the quantum microworld, energy can appear and disappear out of nowhere in a spontaneous and unpredictable fashion." (Paul C W Davies, "God and the New Physics", 1983)

"There is a fact, or if you wish, a law governing all natural phenomena that are known to date. There is no known exception to this law - it is exact as far as we know. The law is called the conservation of energy. It states that there is a certain quantity, which we call energy, that does not change in the manifold changes which nature undergoes. That is a most abstract idea, because it is a mathematical principle; it says that there is a numerical quantity which does not change when something happens." (Richard P Feynman et al, "The Feynman Lectures on Physics" Vol. 1, 1983)

"The most abstract conservation laws of physics come into their being in describing equilibrium in the most extreme conditions. They are the most rigorous conservation laws, the last to break down. The more extreme the conditions, the fewer the conserved structures. [...] In a deep sense, we understand the interior of the sun better that the interior of the earth, and the early stages of the big bang best of all." (Frank Wilczek, "Longing for the Harmonies: Themes and Variations from Modern Physics", 1987)

"What is conserved, in modern physics, is not any particular substance or material but only much more abstract entities such as energy, momentum, and electric charge. The permanent aspects of reality are not particular materials or structures but rather the possible forms of structures and the rules for their transformation." (Frank Wilczek, "Longing for the Harmonies: Themes and Variations from Modern Physics", 1987)

06 August 2022

On Conservation Laws (2000-)

"Perhaps the most profound synthesis of physical sciences came from the realization that everything could be understood from 'conservation laws' and symmetry principals." (Didier Sornette, "Why Stock Markets Crash: Critical Events in Complex Systems", 2003)

"According to a 'sociological' view of mathematics, a system, in general, should be able to do whatever is permitted by the laws governing it: the normal state of anarchy is chaos! From this point of view, we should expect that, in the absence of conservation laws, typical motions should be dense in the space available to them; Kolomogorov’s theorem denies this, saying that when the laws are relaxed a bit, the majority of motions stay 'pretty much' where they were, as if in fear of a non-existent police force." (John H Hubbard, "The KAM Theorem", 2004)

"A great deal of the results in many areas of physics are presented in the form of conservation laws, stating that some quantities do not change during evolution of the system. However, the formulations in cybernetical physics are different. Since the results in cybernetical physics establish how the evolution of the system can be changed by control, they should be formulated as transformation laws, specifying the classes of changes in the evolution of the system attainable by control function from the given class, i.e., specifying the limits of control." (Alexander L Fradkov, "Cybernetical Physics: From Control of Chaos to Quantum Control", 2007)

"Each of the most basic physical laws that we know corresponds to some invariance, which in turn is equivalent to a collection of changes which form a symmetry group. […] whilst leaving some underlying theme unchanged. […] for example, the conservation of energy is equivalent to the invariance of the laws of motion with respect to translations backwards or forwards in time […] the conservation of linear momentum is equivalent to the invariance of the laws of motion with respect to the position of your laboratory in space, and the conservation of angular momentum to an invariance with respect to directional orientation [...] discovery of conservation laws indicated that Nature possessed built-in sustaining principles which prevented the world from just ceasing to be." (John D Barrow, "New Theories of Everything", 2007)

"The methodology of feedback design is borrowed from cybernetics (control theory). It is based upon methods of controlled system model’s building, methods of system states and parameters estimation (identification), and methods of feedback synthesis. The models of controlled system used in cybernetics differ from conventional models of physics and mechanics in that they have explicitly specified inputs and outputs. Unlike conventional physics results, often formulated as conservation laws, the results of cybernetical physics are formulated in the form of transformation laws, establishing the possibilities and limits of changing properties of a physical system by means of control." (Alexander L Fradkov, "Cybernetical Physics: From Control of Chaos to Quantum Control", 2007)

"Entanglement (non-separability) has been interpreted in several non-physical ways, including recourse to telekinesis; it has also been claimed that it refutes realism and confirms holism. In my view, all entanglement does is to confirm the thesis Once a system, always a system. However, this is not an independent postulate, but a consequence of conservation laws." (Mario Bunge, "Matter and Mind: A Philosophical Inquiry", 2010)

"Symmetries are transformations that keep certain parameters (properties, equations, and so on) invariant, that is, the parameters they refer to are conserved under these transformations. It is to be expected, therefore, that the identification of conserved quantities is inseparable from the identification of fundamental symmetries in the laws of nature. Symmetries single out 'privileged' operations, conservation laws single out 'privileged' quantities or properties that correspond to these operations. Yet the specific connections between a particular symmetry and the invariance it entails are far from obvious. For instance, the isotropy of space (the indistinguishability of its directions) is intuitive enough, but the conservation of angular momentum based on that symmetry, and indeed, the concept of angular momentum, are far less intuitive." (Yemima Ben-Menahem, "Causation in Science", 2018)

05 August 2022

On Conservation Laws (-1949)

"A true philosopher does not engage in vain disputes about the nature of motion; rather, he wishes to know the laws by which it is distributed, conserved or destroyed, knowing that such laws is the basis for all natural philosophy." (Pierre L Maupertuis, "Les Loix du Mouvement et du Repos, déduites d'un Principe Métaphysique", 1746) 

"The supreme Being is everywhere; but He is not equally visible everywhere. Let us seek Him in the simplest things, in the most fundamental laws of Nature, in the universal rules by which movement is conserved, distributed or destroyed; and let us not seek Him in phenomena that are merely complex consequences of these laws." (Pierre L Maupertuis, "Les Loix du Mouvement et du Repos, déduites d'un Principe Métaphysique", 1746) 

"Nature as a whole possesses a store of force which cannot in any way be either increased or diminished [...] therefore, the quantity of force in Nature is just as eternal and unalterable as the quantity of matter [...]. I have named [this] general law 'The Principle of the Conservation of Force'." (Hermann von Helmholtz, "Uber die Erhaltung der Kraft", 1847)

"Energy really is only an integral; now, what we want to have is a substantial definition, like that of Leibniz, and this demand is justifiable to a certain degree, since our very conviction of the conservation of energy rests in great part on this foundation. [..] And so the manuals of physics contain really two discordant definitions of energy, the first which is verbal, intelligible, capable of establishing our conviction, and false; and the second which is mathematical, exact, but lacking verbal expression." (Emile Meyerson, "Identity & Reality", 1908)

"The miracles of religion are to be discredited, not because we cannot conceive of them, but because they run counter to all the rest of our knowledge; while the mysteries of science, such as chemical affinity, the conservation of energy, the indivisibility of the atom, the change of the non-living into the living […] extend the boundaries of our knowledge, though the modus operandi of the changes remains hidden." (John Burroughs, "Scientific Faith", The Atlantic Monthly, 1915)

"The most important result of a general character to which the special theory has led is concerned with the conception of mass. Before the advent of relativity, physics recognized two conservation laws of fundamental importance, namely, the law of conservation of energy and the law of the conservation of mass; these two fundamental laws appeared to be quite independent of each other. By means of the theory of relativity they have been united into one law." (Albert Einstein, 1920)

"Matter [...] could be measured as a quantity and [...] its characteristic expression as a substance was the Law of Conservation of Matter [...] This, which has hitherto represented our knowledge of space and matter, and which was in many quarters claimed by philosophers as a priori knowledge, absolutely general and necessary, stands to-day a tottering structure." (Hermann Weyl, "Space, Time, Matter", 1922)

06 July 2021

On Algorithms I

"Mathematics is an aspect of culture as well as a collection of algorithms." (Carl B Boyer, "The History of the Calculus and Its Conceptual Development", 1959)

"An algorithm must be seen to be believed, and the best way to learn what an algorithm is all about is to try it." (Donald E Knuth, The Art of Computer Programming Vol. I, 1968)

"Scientific laws give algorithms, or procedures, for determining how systems behave. The computer program is a medium in which the algorithms can be expressed and applied. Physical objects and mathematical structures can be represented as numbers and symbols in a computer, and a program can be written to manipulate them according to the algorithms. When the computer program is executed, it causes the numbers and symbols to be modified in the way specified by the scientific laws. It thereby allows the consequences of the laws to be deduced." (Stephen Wolfram, "Computer Software in Science and Mathematics", 1984)

"Algorithmic complexity theory and nonlinear dynamics together establish the fact that determinism reigns only over a quite finite domain; outside this small haven of order lies a largely uncharted, vast wasteland of chaos." (Joseph Ford, "Progress in Chaotic Dynamics: Essays in Honor of Joseph Ford's 60th Birthday", 1988)

"On this view, we recognize science to be the search for algorithmic compressions. We list sequences of observed data. We try to formulate algorithms that compactly represent the information content of those sequences. Then we test the correctness of our hypothetical abbreviations by using them to predict the next terms in the string. These predictions can then be compared with the future direction of the data sequence. Without the development of algorithmic compressions of data all science would be replaced by mindless stamp collecting - the indiscriminate accumulation of every available fact. Science is predicated upon the belief that the Universe is algorithmically compressible and the modern search for a Theory of Everything is the ultimate expression of that belief, a belief that there is an abbreviated representation of the logic behind the Universe's properties that can be written down in finite form by human beings." (John D Barrow, New Theories of Everything", 1991)

"Algorithms are a set of procedures to generate the answer to a problem." (Stuart Kauffman, "At Home in the Universe: The Search for Laws of Complexity", 1995)

"Let us regard a proof of an assertion as a purely mechanical procedure using precise rules of inference starting with a few unassailable axioms. This means that an algorithm can be devised for testing the validity of an alleged proof simply by checking the successive steps of the argument; the rules of inference constitute an algorithm for generating all the statements that can be deduced in a finite number of steps from the axioms." (Edward Beltrami, "What is Random?: Chaos and Order in Mathematics and Life", 1999)

"Heuristics are rules of thumb that help constrain the problem in certain ways (in other words they help you to avoid falling back on blind trial and error), but they don't guarantee that you will find a solution. Heuristics are often contrasted with algorithms that will guarantee that you find a solution - it may take forever, but if the problem is algorithmic you will get there. However, heuristics are also algorithms." (S Ian Robertson, "Problem Solving", 2001)

"An algorithm is a simple rule, or elementary task, that is repeated over and over again. In this way algorithms can produce structures of astounding complexity." (F David Peat, "From Certainty to Uncertainty", 2002)

"Many people have strong intuitions about whether they would rather have a vital decision about them made by algorithms or humans. Some people are touchingly impressed by the capabilities of the algorithms; others have far too much faith in human judgment. The truth is that sometimes the algorithms will do better than the humans, and sometimes they won’t. If we want to avoid the problems and unlock the promise of big data, we’re going to need to assess the performance of the algorithms on a case-by-case basis. All too often, this is much harder than it should be. […] So the problem is not the algorithms, or the big datasets. The problem is a lack of scrutiny, transparency, and debate." (Tim Harford, "The Data Detective: Ten easy rules to make sense of statistics", 2020)

04 July 2021

Thermodynamics IV

"It is impossible by means of inanimate material agency, to derive mechanical effect from any portion of matter by cooling it below the temperature of the coldest of the surrounding objects. [Footnote: ] If this axiom be denied for all temperatures, it would have to be admitted that a self-acting machine might be set to work and produce mechanical effect by cooling the sea or earth, with no limit but the total loss of heat from the earth and sea, or in reality, from the whole material world." (William Thomson, "On the Dynamical Theory of Heat with Numerical Results Deduced from Mr Joule's Equivalent of a Thermal Unit and M. Regnault's Observations on Steam", Transactions of the Royal Society of Edinburgh, 1851)

"Though the ultimate state of the universe may be its vital and psychical extinction, there is nothing in physics to interfere with the hypothesis that the penultimate state might be the millennium - in other words a state in which a minimum of difference of energy - level might have its exchanges so skillfully canalises that a maximum of happy and virtuous consciousness would be the only result." (William James, [Letter to Henry Adams] 1910)" (William James, [Letter to Henry Adams] 1910)

"Organic evolution has its physical analogue in the universal law that the world tends, in all its parts and particles, to pass from certain less probable to certain more probable configurations or states. This is the second law of thermodynamics." (D'Arcy Wentworth Thompson, "On Growth and Form", 1917)

"In classical physics, most of the fundamental laws of nature were concerned either with the stability of certain configurations of bodies, e.g. the solar system, or else with the conservation of certain properties of matter, e.g. mass, energy, angular momentum or spin. The outstanding exception was the famous Second Law of Thermodynamics, discovered by Clausius in 1850. This law, as usually stated, refers to an abstract concept called entropy, which for any enclosed or thermally isolated system tends to increase continually with lapse of time. In practice, the most familiar example of this law occurs when two bodies are in contact: in general, heat tends to flow from the hotter body to the cooler. Thus, while the First Law of Thermodynamics, viz. the conservation of energy, is concerned only with time as mere duration, the Second Law involves the idea of trend." (Gerald J Whitrow, "The Structure of the Universe: An Introduction to Cosmology", 1949)

"The second law of thermodynamics provides a more modem (and a more discouraging) example of the maximum principle: the entropy (disorder) of the universe tends toward a maximum." (James R Newman, "The World of Mathematics" Vol. II, 1956)

"[...] thermodynamics knows of no such notion as the 'entropy of a physical system'. Thermodynamics does have the concept of the entropy of a thermodynamic system; but a given physical system corresponds to many different thermodynamic systems." (Edwin T Jaynes, "Gibbs vs Boltzmann Entropies", 1964)

"'You cannot base a general mathematical theory on imprecisely defined concepts. You can make some progress that way; but sooner or later the theory is bound to dissolve in ambiguities which prevent you from extending it further.' Failure to recognize this fact has another unfortunate consequence which is, in a practical sense, even more disastrous: 'Unless the conceptual problems of a field have been clearly resolved, you cannot say which mathematical problems are the relevant ones worth working on; and your efforts are more than likely to be wasted.'" (Edwin T Jaynes, "Foundations of Probability Theory and Statistical Mechanics", 1967)

"There is no end to this search for the ultimate ‘true’ entropy until we have reached the point where we control the location of each atom independently. But just at that point the notion of entropy collapses, and we are no longer talking thermodynamics." (Edwin T Jaynes, "Papers on Probability, Statistics, and Statistical Physics", 1983)

"No one has yet succeeded in deriving the second law from any other law of nature. It stands on its own feet. It is the only law in our everyday world that gives a direction to time, which tells us that the universe is moving toward equilibrium and which gives us a criteria for that state, namely, the point of maximum entropy, of maximum probability. The second law involves no new forces. On the contrary, it says nothing about forces whatsoever." (Brian L Silver, "The Ascent of Science", 1998)

17 June 2021

On Knowledge (1800-1824)

"Knowledge is only real and can only be set forth fully in the form of science, in the form of system." (G W Friedrich Hegel, "The Phenomenology of Mind", 1807)

"It is not knowledge, but the act of learning, not possession but the act of getting there, which grants the greatest enjoyment. When I have clarified and exhausted a subject, then I turn away from it, in order to go into darkness again; the never satisfied man is so strange if he has completed a structure, then it is not in order to dwell in it peacefully, but in order to begin another. I imagine the world conqueror must feel thus, who, after one kingdom is scarcely conquered, stretched out his arms for others." (Carl F Gauss, [Letter to Farkas Bolyai] 1808)

"Thus then does the Doctrine of Knowledge, which in its substance is the realisation of the absolute Power of intelligising which has now been defined, end with the recognition of itself as a mere Schema in a Doctrine of Wisdom, although indeed a necessary and indispensable means to such a Doctrine: - a Schema, the sole aim of which is, with the knowledge thus acquired, - by which knowledge alone a Will, clear and intelligible to itself and reposing upon itself without wavering or perplexity, is possible, - to return wholly into Actual Life; - not into the Life of blind and irrational Instinct which we have laid bare in all its nothingness, but into the Divine Life which shall become visible to us." (Johann G Fichte, "Outline of the Doctrine of Knowledge", 1810)

"The most important questions of life are, for the most part, really only problems of probability. Strictly speaking one may even say that nearly all our knowledge is problematical; and in the small number of things which we are able to know with certainty, even in the mathematical sciences themselves, induction and analogy, the principal means for discovering truth, are based on probabilities, so that the entire system of human knowledge is connected with this theory." (Pierre-Simon Laplace, "Theorie Analytique des Probabilités", 1812)

"One may even say, strictly speaking, that almost all our knowledge is only probable; and in the small number of things that we are able to know with certainty, in the mathematical sciences themselves, the principal means of arriving at the truth - induction and analogy - are based on probabilities, so that the whole system of human knowledge is tied up with the theory set out in this essay." (Pierre-Simon Laplace, "Philosophical Essay on Probabilities", 1814) 

"[...] all knowledge, and especially the weightiest knowledge of the truth, to which only a brief triumph is allotted between the two long periods in which it is condemned as paradoxical or disparaged as trivial." (Arthur Schopenhauer, "The World as Will and Representation", 1819)

"The highest knowledge can be nothing more than the shortest and clearest road to truth; all the rest is pretension, not performance, mere verbiage and grandiloquence, from which we can learn nothing." (Charles C Colton, "Lacon", 1820)

"We [...] are profiting not only by the knowledge, but also by the ignorance, not only by the discoveries, but also by the errors of our forefathers; for the march of science, like that of time, has been progressing in the darkness, no less than in the light." (Charles C Colton, "Lacon", 1820)

"The aim of every science is foresight. For the laws of established observation of phenomena are generally employed to foresee their succession. All men, however little advanced make true predictions, which are always based on the same principle, the knowledge of the future from the past." (Auguste Compte, "Plan des travaux scientifiques nécessaires pour réorganiser la société", 1822)

On Knowledge (1825-1849)

"It is true that of far the greater part of things, we must content ourselves with such knowledge as description may exhibit, or analogy supply; but it is true likewise, that these ideas are always incomplete, and that at least, till we have compared them with realities, we do not know them to be just. As we see more, we become possessed of more certainties, and consequently gain more principles of reasoning, and found a wider base of analogy." (Samuel Johnson, 1825)

"The first steps in the path of discovery, and the first approximate measures, are those which add most to the existing knowledge of mankind." (Charles Babbage, "Reflections on the Decline of Science in England", 1830)

"Our knowledge of circumstances has increased, but our uncertainty, instead of having diminished, has only increased. The reason of this is, that we do not gain all our experience at once, but by degrees; so our determinations continue to be assailed incessantly by fresh experience; and the mind, if we may use the expression, must always be under arms." (Carl von Clausewitz, "On War", 1832)

"Truth in itself is rarely sufficient to make men act. Hence the step is always long from cognition to volition, from knowledge to ability. The most powerful springs of action in men lie in his emotions." (Carl von Clausewitz, "On War", 1832)

"Science and knowledge are subject, in their extension and increase, to laws quite opposite to those which regulate the material world. Unlike the forces of molecular attraction, which cease at sensible distances; or that of gravity, which decreases rapidly with the increasing distance from the point of its origin; the farther we advance from the origin of our knowledge, the larger it becomes, and the greater power it bestows upon its cultivators, to add new fields to its dominions." (Charles Babbage, "On the Economy of Machinery and Manufactures", 1832)

"The peculiar character of mathematical truth is that it is necessarily and inevitably true; and one of the most important lessons which we learn from our mathematical studies is a knowledge that there are such truths." (William Whewell, "Principles of English University Education", 1838)

"[…] in order that the facts obtained by observation and experiment may be capable of being used in furtherance of our exact and solid knowledge, they must be apprehended and analysed according to some Conception which, applied for this purpose, gives distinct and definite results, such as can be steadily taken hold of and reasoned from […]" (William Whewell, "The Philosophy of the Inductive Sciences Founded Upon their History" Vol. 2, 1840)

"But a thousand unconnected observations have no more value, as a demonstrative proof, than a single one. If we do not succeed in discovering causes by our researches, we have no right to create them by the imagination; we must not allow mere fancy to proceed beyond the bounds of our knowledge."(Justus von Liebig, "The Lancet", 1844)

"[…] there do exist among us doctrines of solid and acknowledged certainty, and truths of which the discovery has been received with universal applause. These constitute what we commonly term Sciences; and of these bodies of exact and enduring knowledge, we have within our reach so large and varied a collection, that we may examine them, and the history of their formation, with good prospect of deriving from the study such instruction as we seek." (William Whewell, "The Philosophy of the Inductive Sciences Founded upon Their History" Vol. 1, 1847)
Related Posts Plugin for WordPress, Blogger...

On Leonhard Euler

"I have been able to solve a few problems of mathematical physics on which the greatest mathematicians since Euler have struggled in va...