Showing posts with label number theory. Show all posts
Showing posts with label number theory. Show all posts

01 November 2021

Misquoted: Gauss on the Queen of Mathematics

The following two quotes from Carl Friedrich Gauss are frequently met in books on Mathematics and Science (sometimes with slight differences in formulation as they were translated from German):

"Mathematics is the Queen of the Sciences, and Arithmetic the Queen of Mathematics." 
"Mathematics is the Queen of the Sciences, and Number Theory the Queen of Mathematics."

The earliest occurrence of the quotes I met first in Eric T Bell's "Mathematics: Queen & Servant of Science" (1951), which is probably one of the most quoted sources for the quotes:

"Mathematics is Queen of the Sciences and Arithmetic the Queen of Mathematics. She often condescends to render service to astronomy and other natural sciences, but under all  circumstances the first place is her due."

However, doing a little research I found an earlier reference in John T Merz' "European Thought in the Nineteenth Century" Vol II (1903), who cites Sartorius von Waltershausen's "Gauss zum Gedächtniss" (1856) as source:

"Mathematics is the Queen of the Sciences, and arithmetic the Queen of Mathematics. She frequently condescends to do service for astronomy and other natural sciences, but to her belongs, under all circumstances, the foremost place."

Arithmetic, at least the way introduced in schools, is the study of numbers and their properties in report with the basic operations (addition, subtraction, multiplication, division, exponentiation and extraction of roots). In exchange, Number Theory appeared while studying the intrinsic properties of integers and integer-valued functions, what is known also as Higher Arithmetic. Even if the earliest discoveries date from early antiquity, the basis were put by Fermat, Euler, Gauss and others mathematicians, incorporating over time domains like Complex Analysis, Group theory or Galois theory.

According to Merriam-Webster, "Number Theory" was used for the first time around 1864 and it took some time until it was incorporated in mathematical texts. Arithmetic and Number Theory become synonymous in the 20th century (which might be strange for some). Thus, in some occurrence of the quote "Arithmetic" was replaced by "Number Theory" to reflect nowadays’ interpretation of Gauss' words. The two quotes seem to mean the same thing, though they probably need to be interpreted upon case through the historical context.  

'Queen' is used here metaphorically as an analogy between the meanings associated with a queen (ruler, fertility, authority), respectively the roles taken by Mathematics and Arithmetic in science. Therefore, a science considered as a queen could be seen as having a high fecundity of ideas and authority in another field. As "Queen of Science" were considered also Metaphysics (Immanuel Kant), Philosophy and even Theology. Also Physics and Chemistry have a statute of royalty.

The importance of Higher Arithmetic in respect to Mathematics, is stressed by Gauss in a letter to Dirichlet from 1838: 

"I place this part of Mathematics above all others (and have always done so)."

The idea is reiterated by David Hilbert half of century later:

"We thus see how arithmetic, the queen of mathematical science, has conquered large domains and has assumed the leadership. That this was not done earlier and more completely, seems to me to depend on the fact that the theory of numbers has only in quite recent times arrived at maturity." (David Hilbert, "Theorie der Algebraischen Zahlkörper", Bericht der Mathematiker-Vereinigung,' vol. IV, 1897)

Paraphrasing Godfrey H Hardy, even if Number Theory began as an experimental science, its role in the further development of Mathematics is important, worthily of the status of a 'queen'.

Previous Post <<||>> Next Post

07 August 2021

George B Mathews - Collected Quotes

"A great deal of misunderstanding is avoided if it be remembered that the terms infinity, infinite, zero, infinitesimal must be interpreted in connexion with their context, and admit a variety of meanings according to the way in which they are defined." (George B Mathews, "Theory of Numbers", 1892)

"As Gauss first pointed out, the problem of cyclotomy, or division of the circle into a number of equal parts, depends in a very remarkable way upon arithmetical considerations. We have here the earliest and simplest example of those relations of the theory of numbers to transcendental analysis, and even to pure geometry, which so often unexpectedly present themselves, and which, at first sight, are so mysterious." (George B Mathews, "Theory of Numbers", 1892)

"It may fairly be said that the germs of the modern algebra of linear substitutions and concomitants are to be found in the fifth section of the Disquisitiones Arithmeticae; and inversely, every advance in the algebraic theory of forms is an acquisition to the arithmetical theory." (George B Mathews, "Theory of Numbers", 1892)

"Strictly speaking, the theory of numbers has nothing to do with negative, or fractional, or irrational quantities, as such. No theorem which cannot be expressed without reference to these notions is purely arithmetical: and no proof of an arithmetical theorem, can be considered finally satisfactory if it intrinsically depends upon extraneous analytical theories."  (George B Mathews, "Theory of Numbers", 1892)

"The invention of the symbol ≡ by Gauss affords a striking example of the advantage which may be derived from an appropriate notation, and marks an epoch in the development of the science of arithmetic." (George B Mathews, "Theory of Numbers", 1892)

"That a formal science like algebra, the creation of our abstract thought, should thus, in a sense, dictate the laws of its own being, is very remarkable. It has required the experience of centuries for us to realize the full force of this appeal." (George B Mathews)



Number Theory II

"Number theory is revealed in its entire simplicity and natural beauty when the field of arithmetic is extended to the imaginary numbers" (Carl F Gauss, "Disquisitiones arithmeticae" ["Arithmetical Researches"], 1801)

"Arithmetic does not present to us that feeling of continuity which is such a precious guide; each whole number is separate from the next of its kind and has in a sense individuality; each in a manner is an exception and that is why general theorems are rare in the theory of numbers; and that is why those theorems which may exist are more hidden and longer escape those who are searching for them." (Henri Poincaré, "Annual Report of the Board of Regents of the Smithsonian Institution", 1909)

"The theory of numbers is unrivalled for the number and variety of its results and for the beauty and wealth of its demonstrations. The Higher Arithmetic seems to include most of the romance of mathematics." (Louis Mordell, 1917)

"The theory of numbers is the last great uncivilized continent of mathematics. It is split up into innumerable countries, fertile enough in themselves, but all the more or less indifferent to one another’s welfare and without a vestige of a central, intelligent government. If any young Alexander is weeping for a new world to conquer, it lies before him." (Eric T Bell, "The Queen of the Sciences", 1931)

"On the basis of what has been proved so far, it remains possible that there may exist (and even be empirically discoverable) a theorem-proving machine which in fact is equivalent to mathematical intuition, but cannot be proved to be so, nor even be proved to yield only correct theorems of finitary number theory." (Kurt Gödel, 1951)

"No branch of number theory is more saturated with mystery than the study of prime numbers: those exasperating, unruly integerst hat refuse to be divided evenly by any integers except themselves and 1. Some problems concerning primes are so simple that a child can understand them and yet so deep and far from solved that many mathematicians now suspect they have no solution. Perhaps they are ‘undecidable’. Perhaps number theory, like quantum mechanics, has its own uncertainty principle that makes it necessary, in certain areas, to abandon exactness for probabilistic formulations." (Martin Gardner, "The remarkable lore of the prime numbers", Scientific American, 1964)

"At first glance the theory of numbers is deprived of any geometricity. But this is actually not the case. At the contemporary stage of development of computers it has become possible to explain to a wide range of readers that visual geometry helps not only to illustrate some abstract situations from the number theory, but sometimes also to solve new problems." (Anatolij Fomenko, "Visual Geometry and Topology", 1994)

"To some extent the beauty of number theory seems to be related to the contradiction between the simplicity of the integers and the complicated structure of the primes, their building blocks. This has always attracted people." (Andreas Knauf, "Number Theory, Dynamical Systems and Statistical Mechanics", 1998)

"The seeming absence of any ascertained organizing principle in the distribution or the succession of the primes had bedeviled mathematicians for centuries and given Number Theory much of its fascination. Here was a great mystery indeed, worthy of the most exalted intelligence: since the primes are the building blocks of the integers and the integers the basis of our logical understanding of the cosmos, how is it possible that their form is not determined by law? Why isn't 'divine geometry' apparent in their case?" (Apostolos Doxiadis, "Uncle Petros and Goldbach's Conjecture", 2000)

"While number theory looks for patterns in sequences of numbers, dynamical systems actually produce sequences of numbers [...]. The two merge when mathematicians look for number-theoretic patterns hidden in those sequences." (Kelsey Houston-Edwards, "Mathematicians Set Numbers in Motion to Unlock Their Secrets", Quanta Magazine, 2021)

02 May 2020

On Numbers: Perfect Numbers II

"It is the greatest that will ever be discovered, for, as they [perfect numbers] are merely curious without being useful, it is not likely that any person will attempt to find one beyond it." (Peter Barlow, "Theory of Numbers", 1811)

“The Perfect numbers are also like the virtues, few in number; whilst the other two classes are like the vices - numerous, inordinate and indefinite.” (W Wynn Westcott, “Numbers: Their Occult Power and Mystic Virtues”, 1911)

“The theory of numbers is particularly liable to the accusation that some of its problems are the wrong sort of questions to ask. I do not myself think the danger is serious; either a reasonable amount of concentration leads to new ideas or methods of obvious interest, or else one just leaves the problem alone. ‘Perfect numbers’ certainly never did any good, but then they never did any particular harm.” (John E Littlewood, “A Mathematician’s Miscellany”, 1953)
”Maybe some simple combination of a dozen or so primes in fact yield an odd perfect number!” (Stan Wagon, “The evidence: perfect numbers”, Mathematical Intelligencer 7(2), 1985)

”Yet, I believe the problem stands like a unconquerable fortress. For all that is known, it would be almost by luck that an odd perfect number would be found. On the other hand, nothing that has been proved is promising to show that odd perfect numbers do not exist. New ideas are required.” (Paulo Ribenboim, “The New Book of Prime Number Records”, 1996)

“We should not leave unmentioned the principal numbers […] those which are called ‘perfect numbers’. These have parts which are neither larger nor smaller than the number itself, such as the number six, whose parts, three, two, and one, add up to exactly the same sum as the number itself. For the same reason twenty-eight, four hundred ninety-six, and eight thousand one hundred twenty-eight are called perfect numbers.” (Stanley J Bezuszka & Margaret J Kenney, ”Even perfect numbers”, Math. Teacher 90, 1997)

”Throughout both ancient and modern history the feverish hunt for perfect numbers became a religion.” (Clifford A Pickover, “Wonders of Numbers: Adventures in Mathematics, Mind, and Meaning”, 2001)

"One would be hard put to find a set of whole numbers with a more fascinating history and more elegant properties surrounded by greater depths of mystery - and more totally useless - than the perfect numbers." (Martin Gardner)

Previous Post <<||>> Next Post

Resources:Wikipedia (2018) List of perfect numbers [Online] Available from: https://en.wikipedia.org/wiki/List_of_perfect_numbers

11 December 2019

Carl B Pomerance - Collected Quotes

"Factoring big numbers is a strange kind of mathematics that closely resembles the experimental sciences, where nature has the last and definitive word. […] as with the experimental sciences, both rigorous and heuristic analyses can be valuable in understanding the subject and moving it forward. And, as with the experimental sciences, there is sometimes a tension between pure and applied practitioners." (Carl B Pomerance, "A Tale of Two Sieves", The Notices of the American Mathematical Society 43, 1996)

"Maybe so, but something is going on with the primes." (Carl B Pomerance, [lecture] 1997) [response to Albert Einstein's "God doesn't play dice"]

"With randomness it is very unlikely to be embarrassed, but even if you get embarrassed, you can't replicate it'' (Carl B Pomerance, [lecture] 1997)

"Theorems are fun especially when you are the prover, but then the pleasure fades. What keeps us going are the unsolved problems." (Carl B Pomerance, 2000)


"Prime numbers belong to an exclusive world of intellectual conceptions. We speak of those marvelous notions that enjoy simple, elegant description, yet lead to extreme - one might say unthinkable - complexity in the details. The basic notion of primality can be accessible to a child, yet no human mind harbors anything like a complete picture. In modern times, while theoreticians continue to grapple with the profundity of the prime numbers, vast toil and resources have been directed toward the computational aspect, the task of finding, characterizing, and applying the primes in other domains." (Richard Crandall & Carl B Pomerance, "Prime Numbers: A Computational Perspective", 2001)

"You can ask the question about these ancient topics, such as perfect numbers and amicable numbers [...] and ask, are these good problems [...] studying them helped us develop all of elementary number theory and from elementary number theory we developed the rest of number theory, and also you can argue that from elementary number theory came algebra." (Carl B Pomerance, "Paul Erdős and the Rise of Statistical Thinking in Elementary Number Theory", [lecture] 2013)

14 July 2019

Barry Mazur - Collected Quotes

"[Number theory] produces, without effort, innumerable problems which have a sweet, innocent air about them, tempting flowers; and yet…number theory swarms with bugs, waiting to bite the tempted flower-lovers who, once bitten, are inspired to excesses of effort!" (Barry Mazur, "Number Theory as Gadfly", The American Mathematical Monthly, Volume 98, 1991)

"Architectural conjectures are mathematically precise assertions, as well milled as minted coins, provisionally usable in the commerce of logical arguments; less than ‘coins’ and more aptly, promissory notes to be paid in full by some future demonstration, or to be contradicted. These conjectures are expected to turn out to be true, as, of course, are all conjectures; their formulation is often away of "formally" packaging, or at least acknowledging, an otherwise shapeless body of mathematical experience that points to their truth." (Barry Mazur, "Conjecture", Synthese 111, 1997)

"A seemingly modest change of notation may suggest a radical shift in viewpoint. Any new notation may ask new questions." (Barry Mazur, "Imagining Numbers", 2003)

"If we think of square roots in the geometric manner, as we have just done, to ask for the square root of a negative quantity is like asking: ‘What is the length of the side of a square whose area is less than zero?’ This has more the ring of a Zen koan than of a question amenable to a quantitative answer." (Barry Mazur, "Imagining Numbers", 2003)

“[…] history of mathematics. It might be described as a moment of restless anticipation in the face of a slowly emerging act of imagining." (Barry Mazur, "Imagining Numbers", 2003)

 "The wonderful thing about mathematics is that, in the end as well as in the beginning, it can depend upon no authority other than one’s own (your own) mind; its verification comes from thinking alone, an activity open to anyone. If we have no theoretical equipment, we use the mathematical eyes and ears with which we were born and just experiment with our guesses to see whether we have faith in them." (Barry Mazur, "Imagining Numbers", 2003)

"At some point in his or her life every working mathematician has to explain to someone, usually a relative, that mathematics is hardly a finished project. Mathematicians know, of course, that it is far too soon to put the glorious achievements of their trade into a big museum and just become happy curators. In many respects, the study of mathematics has hardly begun." (Barry Mazur, [foreword] 2006)

"It is a hard balancing act: to explain important and beautiful mathematical ideas - to truly explain them - to people with a general cultural background but no technical training in math, and yet not to slip away from the full seriousness and ambitious goals of the subject being explained." (Barry Mazur, [foreword] 2006)

"Some mathematical models have been blindly used - their presuppositions as little understood as any legal fine print one ‘agrees to’ but never reads - with faith in their trustworthiness. The very arcane nature of some of the formulations of these models might have contributed to their being given so much credence. If so, we mathematicians have an important mission to perform: to help people who wish to think through the fundamental assumptions underlying models that are couched in mathematical language, making these models intelligible, rather than (merely) formidable Delphic oracles." (Barry Mazur, "The Authority of the Incomprehensible", 2014)

"In mathematics, we often depend on the proof of a statement to offer not only a justification of its truth, but also a way of understanding its implications, its connections to other established truths - a way, in short of explaining the statement. But sometimes even though a proof does its job of showing the truth of a result it still leaves us with the nagging question of why.’ It may be elusive - given a specific proof - to describe in useful terms the type of explanation the proof actually offers. It would be good to have an adequate vocabulary to help us think about the explanatory features of mathematics (and, more generally, of science)." (Barry Mazur, "On the word ‘because’ in mathematics, and elsewhere", 2017)

On Complex Numbers VI

"We do not perceive any quantity such as that its square is negative!" (Bhāskara II, "Bijaganita", 12th century)

"These Imaginary Quantities (as they are commonly called) arising from the Supposed Root of a Negative Square (when they happen,) are reputed to imply that the Case proposed is Impossible. And so indeed it is, as to the first and strict notion of what is proposed. For it is not possible that any Number (Negative or Affirmative) Multiplied into it- self can produce (for instance) -4. Since that Like Signs (whether + or -) will produce +; and there- fore not -4. But it is also Impossible that any Quantity (though not a Supposed Square) can be Negative. Since that it is not possible that any Magnitude can be Less than Nothing or any Number Fewer than None. Yet is not that Supposition(of Negative Quantities,) either Unuseful or Absurd; when rightly understood. And though, as to the bare Algebraick Notation, it import a Quantity less than nothing. Yet, when it comes to a Physical Application, it denotes as Real a Quantity as if the Sign were +; but to be interpreted in a contrary sense." (John Wallis, in "Treatise of Algebra", 1685)

“Even zero and complex numbers are not excluded from the signification of a variable quantity.” (Leonhard Euler, “Introductio in Analysin Infinitorum” Vol. I, 1748)

“Number theory is revealed in its entire simplicity and natural beauty when the field of arithmetic is extended to the imaginary numbers” (Carl F Gauss, “Disquisitiones arithmeticae” [“Arithmetical Researches”], 1801)

"Whether or not I have found a logic, by the role of which operations with imaginary quantities are conducted, is not now the question. but surely this is evident that since they lead to right conclusions they must have a logic! […] Till the doctrines of negative and imaginary quantities are better taught than they are at present taught in the University of Cambridge, I agree with you that they had better not be taught [...]" (Robert Woodhouse, [letter to Baron Meseres] 1801)

“At the beginning I would ask anyone who wants to introduce a new function in analysis to clarify whether he intends to confine it to real magnitudes (real values of the argument) and regard the imaginary values as just vestigial –or whether he subscribes to my fundamental proposition that in the realm of magnitudes the imaginary ones a+b√−1 = a+bi have to be regarded as enjoying equal rights with the real ones. We are not talking about practical utility here; rather analysis is, to my mind, a self-sufficient science. It would lose immeasurably in beauty and symmetry from the rejection of any fictive magnitudes. At each stage truths, which otherwise are quite generally valid, would have to be encumbered with all sorts of qualifications. “ (Carl F Gauss, [letter to Bessel,] 1811)

"Our general arithmetic, so far surpassing in extent the geometry of the ancients, is entirely the creation of modern times. Starting originally from the notion of absolute integers, it has gradually enlarged its domain. To integers have been added fractions, to rational quantities the irrational, to positive the negative .and to the real the imaginary. This advance, however, has always been made at first with timorous and hesitating step. The early algebraists called the negative roots of equations false roots, and these are indeed so when the problem to which they relate has been stated in such a form that the character of the quantity sought allows of no opposite. But just as in general arithmetic no one would hesitate to admit fractions, although there are so many countable things where a fraction has no meaning, so we ought not to deny to, negative numbers the rights accorded to positive simply because innumerable things allow no opposite. The reality of negative numbers is sufficiently justified since in innumerable other cases they find an adequate substratum. This has long been admitted, but the imaginary quantities - formerly and occasionally now, though improperly, called impossible-as opposed to real quantities are still rather tolerated than fully naturalized, and appear more like an empty play upon symbols to which a thinkable substratum is denied unhesitatingly by those who would not depreciate the rich contribution which this play upon symbols has made to the treasure of the relations of real quantities." (Carl F Gauss, "Theoria residuorum biquadraticorum, Commentatio secunda", Göttingische gelehrte Anzeigen, 1831)

“The origin and the immediate purpose for the introduction of complex number into mathematics is the theory of creating simpler dependency laws (slope laws) between complex magnitudes by expressing these laws through numerical operations. And, if we give these dependency laws an expanded range by assigning complex values to the variable magnitudes, on which the dependency laws are based, then what makes its appearance is a harmony and regularity which is especially indirect and lasting.” (Bernhard Riemann, “Grundlagen für eine allgemeine Theorie der Functionen einer veränderlichen complexen Grösse”, 1851)

“The difficulties which so many have felt in the doctrine of Negative and Imaginary Quantities in Algebra forced themselves long ago on my attention […] And while agreeing with those who had contended that negatives and imaginaries were not properly quantities at all, I still felt dissatisfied with any view which should not give to them, from the outset, a clear interpretation and meaning [...] It early appeared to me that these ends might be attained by our consenting to regard Algebra as being no mere Art, nor Language, nor primarily a Science of Quantity; but rather as the Science of Order in Progression.” (William R Hamilton, “Lectures on Quaternions: Containing a Systematic Statement of a New Mathematical Method… “, 1853) 

“The reason and the immediate purpose for the introduction of complex quantities into mathematics lie in the theory of uniform relations between variable quantities which are expressed by simple mathematical formulas. Using these relations in an extended sense, by giving complex values to the variable quantities involved, we discover in them a hidden harmony and regularity that would otherwise remain hidden.” (Bernhard Riemann, “Gesammelte Mathematische Werke”)

21 June 2019

On Intuition (1950-1959)

"On the basis of what has been proved so far, it remains possible that there may exist (and even be empirically discoverable) a theorem-proving machine which in fact is equivalent to mathematical intuition, but cannot be proved to be so, nor even be proved to yield only correct theorems of finitary number theory.” (Kurt Gödel, 1951)

“[…] observation is not enough, and it seems to me that in science, as in the arts, there is very little worth having that does not require the exercise of intuition as well as of intelligence, the use of imagination as well as of information.” (Kathleen Lonsdale, “Facts About Crystals”, American Scientist Vol. 39 (4), 1951)

“In mathematics […] we find two tendencies present. On the one hand, the tendency towards abstraction seeks to crystallise the logical relations inherent in the maze of materials [….] being studied, and to correlate the material in a systematic and orderly manner. On the other hand, the tendency towards intuitive understanding fosters a more immediate grasp of the objects one studies, a live rapport with them, so to speak, which stresses the concrete meaning of their relations.” (David Hilbert, “Geometry and the imagination”, 1952)

“All great discoveries in experimental physics have been due to the intuition of men who made free use of models, which were for them not products of the imagination, but representatives of real things.” (Max Born, “Physical Reality”, Philosophical Quarterly Vol. 3 (11),1953)

 “Mathematicians create by acts of insight and intuition. Logic then sanctions the conquests of intuition. It is the hygiene that mathematics practice to keep its ideas healthy and strong. Moreover, the whole structure rests fundamentally on uncertain ground, the intuitions of man.” (Morris Kline, “Mathematics in Western Culture”, 1953)

“The construction of hypotheses is a creative act of inspiration, intuition, invention; its essence is the vision of something new in familiar material.” (Milton Friedman, “Essays in Positive Economics”, 1953)

“Science, then, is the attentive consideration of common experience; it is common knowledge extended and refined. Its validity is of the same order as that of ordinary perception; memory, and understanding. Its test is found, like theirs, in actual intuition, which sometimes consists in perception and sometimes in intent.” (George Santayana, “The Life of Reason, or the Phases of Human Progress”, 1954)

"The supreme task of the physicist is to arrive at those universal elementary laws from which the cosmos can be built up by pure deduction. There is no logical path to these laws; only intuition, resting on sympathetic understanding of experience, can reach them." (Albert Einstein,"Ideas and Opinions", 1954)

“[…] no branch of mathematics competes with projective geometry in originality of ideas, coordination of intuition in discovery and rigor in proof, purity of thought, logical finish, elegance of proofs and comprehensiveness of concepts. The science born of art proved to be an art.” (Morris Kline, “Projective Geometry”, Scientific America Vol. 192 (1), 1955)

"There comes a point where the mind takes a leap - call it intuition or what you will - and comes out upon a higher plane of knowledge, but can never prove how it got there. All great discoveries have involved such a leap." (Albert Einstein, [interview in Life, "Death of a Genius"] 1955) 

“Because intuition turned out to be deceptive in so many instances, and because propositions that had been accounted true by intuition were repeatedly proved false by logic, mathematicians became more and more skeptical of intuition. [….] Thus, a demand arose for the expulsion of intuitive reasoning and for the complete formalization of mathematics.” (Hans Hahn, “The crisis in intuition”, 1956)

 “Science does not mean an idle resting upon a body of certain knowledge; it means unresting endeavor and continually progressing development toward an end which the poetic intuition may apprehend, but which the intellect can never fully grasp.” (Max Planck, “The New Science”, 1959)

27 May 2019

On Theorems (1950-1969)

“On the basis of what has been proved so far, it remains possible that there may exist (and even be empirically discoverable) a theorem-proving machine which in fact is equivalent to mathematical intuition, but cannot be proved to be so, nor even be proved to yield only correct theorems of finitary number theory.” (Kurt Gödel, 1951)

"Mathematicians do not know what they are talking about because pure mathematics is not concerned with physical meaning. Mathematicians never know whether what they are saying is true because, as pure mathematicians, they make no effort to ascertain whether their theorems are true assertions about the physical world." (Morris Kline, “Mathematics in Western Culture”, 1953)

"The construction of hypotheses is a creative act of inspiration, intuition, invention; its essence is the vision of something new in familiar material. The process must be discussed in psychological, not logical, categories; studied in autobiographies and biographies, not treatises on scientific method; and promoted by maxim and example, not syllogism or theorem." (Milton Friedman, "Essays in Positive Economics", 1953)

“You have to guess the mathematical theorem before you prove it: you have to guess the idea of the proof before you carry through the details. You have to combine observations and follow analogies: you have to try and try again. The result of the mathematician’s creative work is demonstrative reasoning, a proof; but the proof is discovered by plausible reasoning, by guessing” (George Polya, “Mathematics and plausible reasoning” Vol. 1, 1954)

“Mathematics, springing from the soil of basic human experience with numbers and data and space and motion, builds up a far-flung architectural structure composed of theorems which reveal insights into the reasons behind appearances and of concepts which relate totally disparate concrete ideas.” (Saunders MacLane, “Of Course and Courses”, The American Mathematical Monthly, Vol. 61, No. 3, March, 1954)

”Mathematics is a creation of the mind. To begin with, there is a collection of things, which exist only in the mind, assumed to be distinguishable from one another; and there is a collection of statements about these things, which are taken for granted. Starting with the assumed statements concerning these invented or imagined things, the mathematician discovers other statements, called theorems, and proves them as necessary consequences. This, in brief, is the pattern of mathematics. The mathematician is an artist whose medium is the mind and whose creations are ideas.” (Hubert Stanley Wall, “Creative Mathematics”, 1963)

“So the first thing we have to accept is that even in mathematics you can start in different places. If all these various theorems are interconnected by reasoning there is no real way to say ‘These are the most fundamental axioms’, because if you were told something different instead you could also run the reasoning the other way. It is like a bridge with lots of members, and it is over-connected; if pieces have dropped out you can reconnect it another way.” (Richard Feynman, “The Character of Physical Law”, 1965)

"A mathematical proof, as usually written down, is a sequence of expressions in the state space. But we may also think of the proof as consisting of the sequence of justifications of consecutive proof steps - i.e., the references to axioms, previously-proved theorems, and rules of inference that legitimize the writing down of the proof steps. From this point of view, the proof is a sequence of actions (applications of rules of inference) that, operating initially on the axioms, transform them into the desired theorem." (Herbert A Simon, "The Logic of Heuristic Decision Making", [in "The Logic of Decision and Action"], 1966)

“A theorem is no more proved by logic and computation than a sonnet is written by grammar and rhetoric, or than a sonata is composed by harmony and counterpoint, or a picture painted by balance and perspective.” (George Spencer-Brown, “Laws of Form”, 1969)

See also:
Theorems I, II, III, IV, V, VII, VIII, IX, X

Proofs I, II, III, IV, V,. VI, VII, VIII, IX

22 December 2018

On Numbers: Perfect Numbers I

“A perfect number is that which is equal to the sum of its own parts.” (Euclid, “Elements”, cca. 300 BC)

If as many numbers as we please beginning from a unit be set out continuously in double proportion, until the sum of all becomes a prime, and if the sum multiplied into the last make some number, the product will be perfect.” (Euclid, “Elements”, cca 300 BC)

Among simple even numbers, some are superabundant, others are deficient: these two classes are as two extremes opposed to one another; as for those that occupy the middle position between the two, they are said to be perfect. And those which are said to be opposite to each other, the superabundant and the deficient, are divided in their condition, which is inequality, into the too much and the too little.” (Nicomachus of Gerasa, “Introductio Arithmetica”, cca. 100 AD)

"There exists an elegant and sure method of generating these numbers, which does not leave out any perfect numbers and which does not include any that are not; and which is done in the following way. First set out in order the powers of two in a line, starting from unity, and proceeding as far as you wish: 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096; and then they must be totalled each time there is a new term, and at each totaling examine the result, if you find that it is prime and non-composite, you must multiply it by the quantity of the last term that you added to the line, and the product will always be perfect. If, otherwise, it is composite and not prime, do not multiply it, but add on the next term, and again examine the result, and if it is composite leave it aside, without multiplying it, and add on the next term. If, on the other hand, it is prime, and non-composite, you must multiply it by the last term taken for its composition, and the number that results will be perfect, and so on as far as infinity." (Nicomachus of Gerasa, “Introductio Arithmetica”, cca. 100 AD)

"Six is a number perfect in itself, and not because God created all things in six days; rather, the converse is true. God created all things in six days because the number is perfect." (Saint Augustine, "The City of God", 426 AD)

“We should not leave unmentioned the principal numbers […] those which are called ‘perfect numbers’. These have parts which are neither larger nor smaller than the number itself, such as the number six, whose parts, three, two, and one, add up to exactly the same sum as the number itself. For the same reason twenty-eight, four hundred ninety-six, and eight thousand one hundred twenty-eight are called perfect numbers.” (Hrotsvit of Gandersheim, “Sapientia”, 10th century)

"[…] I think I am able to prove that there are no even numbers which are perfect apart from those of Euclid; and that there are no odd perfect numbers, unless they are composed of a single prime number, multiplied by a square whose root is composed of several other prime number. But I can see nothing which would prevent one from finding numbers of this sort. For example, if 22021 were prime, in multiplying it by 9018009 which is a square whose root is composed of the prime numbers 3, 7, 11, 13, one would have 198585576189, which would be a perfect number. But, whatever method one might use, it would require a great deal of time to look for these numbers […]" (René Descartes, [a letter to Marin Mersenne] 1638)

“The existence of an odd perfect number – its escape, so to say, from the complex web of conditions which hem it in on all sides – would be little short of a miracle.” (James J Sylvester)

Previous Post <<||>> Next Post

Resources:
Wikipedia (2018) List of perfect numbers [Online] Available from: https://en.wikipedia.org/wiki/List_of_perfect_numbers

03 November 2018

On Numbers: Prime Numbers V

“Since primes are the basic building blocks of the number universe from which all the other natural numbers are composed, each in its own unique combination, the perceived lack of order among them looked like a perplexing discrepancy in the otherwise so rigorously organized structure of the mathematical world.” (H Peter Aleff, “Prime Passages to Paradise”)

"The seeming absence of any ascertained organizing principle in the distribution or the succession of the primes had bedeviled mathematicians for centuries and given Number Theory much of its fascination. Here was a great mystery indeed, worthy of the most exalted intelligence: since the primes are the building blocks of the integers and the integers the basis of our logical understanding of the cosmos, how is it possible that their form is not determined by law? Why isn't 'divine geometry' apparent in their case?" (Apostolos Doxiadis, “Uncle Petros and Goldbach's Conjecture”, 2000)

“As archetypes of our representation of the world, numbers form, in the strongest sense, part of ourselves, to such an extent that it can legitimately be asked whether the subject of study of arithmetic is not the human mind itself. From this a strange fascination arises: how can it be that these numbers, which lie so deeply within ourselves, also give rise to such formidable enigmas? Among all these mysteries, that of the prime numbers is undoubtedly the most ancient and most resistant." (Gerald Tenenbaum & Michael M France, “The Prime Numbers and Their Distribution”, 2000)

“Prime numbers belong to an exclusive world of intellectual conceptions. We speak of those marvelous notions that enjoy simple, elegant description, yet lead to extreme - one might say unthinkable - complexity in the details. The basic notion of primality can be accessible to a child, yet no human mind harbors anything like a complete picture. In modern times, while theoreticians continue to grapple with the profundity of the prime numbers, vast toil and resources have been directed toward the computational aspect, the task of finding, characterizing, and applying the primes in other domains." (Richard Crandall & Carl Pomerance, “Prime Numbers: A Computational Perspective”, 2001)

"[Primes] are full of surprises and very mysterious […]. They are like things you can touch […] In mathematics most things are abstract, but I have some feeling that I can touch the primes, as if they are made of a really physical material. To me, the integers as a whole are like physical particles." (Yoichi Motohashi, “The Riemann Hypothesis: The Greatest Unsolved Problem in Mathematics”, 2002)

“The primes have tantalized mathematicians since the Greeks, because they appear to be somewhat randomly distributed but not completely so. […] Although the prime numbers are rigidly determined, they somehow feel like experimental data." (Timothy Gowers, “Mathematics: A Very Short Introduction”, 2002)

“Our world resonates with patterns. The waxing and waning of the moon. The changing of the seasons. The microscopic cell structure of all living things have patterns. Perhaps that explains our fascination with prime numbers which are uniquely without pattern. Prime numbers are among the most mysterious phenomena in mathematics.” (Manindra Agrawal, 2003)

“The beauty of mathematics is that clever arguments give answers to problems for which brute force is hopeless, but there is no guarantee that a clever argument always exists! We just saw a clever argument to prove that there are infinitely many primes, but we don't know any argument to prove that there are infinitely many pairs of twin primes.” (David Ruelle, “The Mathematician's Brain”, 2007)

 “Mathematicians call them twin primes: pairs of prime numbers that are close to each other, almost neighbors, but between them there is always an even number that prevents them from truly touching. […] If you go on counting, you discover that these pairs gradually become rarer, lost in that silent, measured space made only of ciphers. You develop a distressing presentiment that the pairs encountered up until that point were accidental, that solitude is the true destiny. Then, just when you’re about to surrender, you come across another pair of twins, clutching each other tightly.” (Paolo Giordano, “The Solitude of prime numbers”, 2008)

“[…] if all sentient beings in the universe disappeared, there would remain a sense in which mathematical objects and theorems would continue to exist even though there would be no one around to write or talk about them. Huge prime numbers would continue to be prime, even if no one had proved them prime.” (Martin Gardner, “When You Were a Tadpole and I Was a Fish”, 2009)

On Numbers: Prime Numbers IV

"The prime numbers are useful in analyzing problems concerning divisibility, and also are interesting in themselves because of some of the special properties which they possess as a class. These properties have fascinated mathematicians and others since ancient times, and the richness and beauty of the results of research in this field have been astonishing." (Carl H Denbow & Victor Goedicke, “Foundations of Mathematics”, 1959)

 “No branch of number theory is more saturated with mystery than the study of prime numbers: those exasperating, unruly integers that refuse to be divided evenly by any integers except themselves and 1. Some problems concerning primes are so simple that a child can understand them and yet so deep and far from solved that many mathematicians now suspect they have no solution. Perhaps they are 'undecideable'. Perhaps number theory, like quantum mechanics, has its own uncertainty principle that makes it necessary, in certain areas, to abandon exactness for probabilistic formulations." (Martin Gardner, "The remarkable lore of the prime numbers", Scientific American, 1964)

“There are two facts about the distribution of prime numbers of which I hope to convince you so overwhelmingly that they will be permanently engraved in your hearts. The first is that, despite their simple definition and role as the building blocks of the natural numbers, the prime numbers belong to the most arbitrary and ornery objects studied by mathematicians: they grow like weeds among the natural numbers, seeming to obey no other law than that of chance, and nobody can predict where the next one will sprout. The second fact is even more astonishing, for it states just the opposite: that the prime numbers exhibit stunning regularity, that there are laws governing their behaviour, and that they obey these laws with almost military precision.” (Don Zagier, “The First 50 Million Prime Numbers”, The Mathematical Intelligencer Vol. 0, 1977)


"Prime numbers have always fascinated mathematicians, professional and amateur alike. They appear among the integers, seemingly at random, and yet not quite: there seems to be some order or pattern, just a little below the surface, just a little out of reach." (Underwood Dudley, “Elementary Number Theory”, 1978)

“Prime numbers. It was all so neat and elegant. Numbers that refuse to cooperate, that don’t change or divide, numbers that remain themselves for all eternity.” (Paul Auster, “The Music of Chance”, 1990)

“If we imagine mathematics as a grand orchestra, the system of whole numbers could be likened to a bass drum: simple, direct, repetitive, providing the underlying rhythm for all the other instruments. There surely are more sophisticated concepts - the oboes and French horns and cellos of mathematics - and we examine some of these in later chapters. But whole numbers are always at the foundation.” (William Dunham, “The Mathematical Universe”, 1994)

"Prime numbers are the most basic objects in mathematics. They also are among the most mysterious, for after centuries of study, the structure of the set of prime numbers is still not well understood […]" (Andrew Granville, 1997)

"To some extent the beauty of number theory seems to be related to the contradiction between the simplicity of the integers and the complicated structure of the primes, their building blocks. This has always attracted people." (Andreas Knauf, "Number Theory, Dynamical Systems and Statistical Mechanics", 1998)

“Rather mathematicians like to look for patterns, and the primes probably offer the ultimate challenge. When you look at a list of them stretching off to infinity, they look chaotic, like weeds growing through an expanse of grass representing all numbers. For centuries mathematicians have striven to find rhyme and reason amongst this jumble. Is there any music that we can hear in this random noise? Is there a fast way to spot that a particular number is prime? Once you have one prime, how much further must you count before you find the next one on the list? These are the sort of questions that have tantalized generations.” (Marcus du Sautoy, “The Music of the Primes”, 1998)

Previous Post <<||>> Next Post

12 September 2018

Number Theory I

"[…] in the science of numbers ought to be preferred as an acquisition before all others, because of its necessity and because of the great secrets and other mysteries which there are in the properties of numbers. All sciences partake of it, and it has need of none." (Boethius, cca. 6th century)

"In the Theory of Numbers it happens rather frequently that, by some unexpected luck, the most elegant new truths spring up by induction." (Carl Friedrich Gauss, Werke, 1876)

"The properties of the numbers known today have been mostly discovered by observation, and discovered long before their truth has been confirmed by rigid demonstrations. There are even many properties of the numbers with which we are well acquainted, but which we are not yet able to prove; only observations have led us to their knowledge. Hence we see that in the theory of numbers, which is still very imperfect, we can place our highest hopes in observations." (Leonhard Euler, "Specimen de usu observationum in mathesi pura, ["Example of the use of observation in pure mathematics"], cca. 1753)

"Arithmetic does not present to us that feeling of continuity which is such a precious guide; each whole number is separate from the next of its kind and has in a sense individuality; each in a manner is an exception and that is why general theorems are rare in the theory of numbers; and that is why those theorems which may exist are more hidden and longer escape those who are searching for them." (Henri Poincaré, "Annual Report of the Board of Regents of the Smithsonian Institution", 1909)

“The theory of numbers is the last great uncivilized continent of mathematics. It is split up into innumerable countries, fertile enough in themselves, but all the more or less indifferent to one another’s welfare and without a vestige of a central, intelligent government. If any young Alexander is weeping for a new world to conquer, it lies before him.” (Eric T Bell, “The Queen of the Sciences”, 1931)

"[Number theory] produces, without effort, innumerable problems which have a sweet, innocent air about them, tempting flowers; and yet…number theory swarms with bugs, waiting to bite the tempted flower-lovers who, once bitten, are inspired to excesses of effort!" (Barry Mazur, "Number Theory as Gadfly", The American Mathematical Monthly, Volume 98, 1991)

"[…] number theory […] is a field of almost pristine irrelevance to everything except the wondrous demonstration that pure numbers, no more substantial than Plato’s shadows, conceal magical laws and orders that the human mind can discover after all." (Sharon Begley, "New Answer for an Old Question", Newsweek, 5 July, 1993)

"Number theory is so difficult, albeit so fascinating, because mathematicians try to examine additive creations under a multiplicative light." (William Dunham, 1994)

"The theory of numbers, more than any other branch of mathematics, began by being an experimental science. Its most famous theorems have all been conjectured, sometimes a hundred years or more before they were proved; and they have been suggested by the evidence of a mass of computations." (Godfrey H Hardy)

08 September 2018

On Numbers: Prime Numbers I

“A prime number is one (which is) measured by a unit alone.” (Euclid, “The Elements”, Book VII) 

“Numbers prime to one another are those which are measured by a unit alone as a common measure.” (Euclid, “The Elements”, Book VII)

"Till now the mathematicians tried in vain to discover some order in the sequence of the prime numbers and we have every reason to believe that there is some mystery which the human mind shall never penetrate. To convince oneself, one has only to glance at the tables of the primes, which some people took the trouble to compute beyond a hundred thousand, and one perceives that there is no order and no rule. This is so much more surprising as the arithmetic gives us definite rules with the help of which we can continue the sequence of the primes as far as we please, without noticing, however, the least trace of order." (Leonhard Euler, "Letters of Euler on different subjects in physics and philosophy. Addressed to a German princess, 1768)

 "Mathematicians have tried in vain to this day to discover some order in the sequence of prime numbers, and we have reason to believe that it is a mystery into which the mind will never penetrate." (Leonhard Euler)

"The problem of distinguishing prime numbers from composite numbers and of resolving the latter into their prime factors is known to be one of the most important and useful in arithmetic. […] The dignity of the science itself seems to require that every possible means be explored for the solution of a problem so elegant and so celebrated.” (Carl Friedrich Gauss, "Disquisitiones Arithmeticae”, 1801)

“The difference of two square numbers is always a product, and divisible both by the sum and by the difference of the roots of those two squares; consequently the difference of two squares can never be a prime number.” (Leonhard Euler, “Elements of Algebra”, 1810)

"We found a beautiful and most general proposition, namely, that every integer is either a square, or the sum of two, three or at most four squares. This theorem depends on some of the most recondite mysteries of numbers, and it is not possible to present its proof on the margin of this page." (Pierre de Fermat)

"A prime number, which exceeds a multiple of four by unity, is only once the hypotenuse of a right triangle." (Pierre de Fermat)

"The theory of Numbers has always been regarded as one of the most obviously useless branches of Pure Mathematics. The accusation is one against which there is no valid defence; and it is never more just than when directed against the parts of the theory which are more particularly concerned with primes. A science is said to be useful if its development tends to accentuate the existing inequalities in the distribution of wealth, or more directly promotes the destruction of human life. The theory of prime numbers satisfies no such criteria. Those who pursue it will, if they are wise, make no attempt to justify their interest in a subject so trivial and so remote, and will console themselves with the thought that the greatest mathematicians of all ages have found it in it a mysterious attraction impossible to resist." (Georg H Hardy, 1915)

“The mystery that clings to numbers, the magic of numbers, may spring from this very fact, that the intellect, in the form of the number series, creates an infinite manifold of well distinguishable individuals. Even we enlightened scientists can still feel it e.g. in the impenetrable law of the distribution of prime numbers." (Hermann Weyl, “Philosophy of Mathematics and Natural Science”, 1927)

“The mystery that clings to numbers, the magic of numbers, may spring from this very fact, that the intellect, in the form of the number series, creates an infinite manifold of well-distinguished individuals. Even we enlightened scientists can still feel it, e.g., in the impenetrable law of the distribution of prime numbers.” (Hermann Weyl, “Philosophy of Mathematics and Natural Science”, 1949)

On Numbers: Prime Numbers II

"The prime numbers are useful in analyzing problems concerning divisibility, and also are interesting in themselves because of some of the special properties which they possess as a class. These properties have fascinated mathematicians and others since ancient times, and the richness and beauty of the results of research in this field have been astonishing." (C H Denbow & V Goedicke, “Foundations of Mathematics”, 1959)

 “No branch of number theory is more saturated with mystery than the study of prime numbers: those exasperating, unruly integerst hat refuse to be divided evenly by any integers except themselves and 1. Some problems concerning primes are so simple that a child can understand them and yet so deep and far from solved that many mathematicians now suspect they have no solution. Perhaps they are ‘undecidable’. Perhaps number theory, like quantum mechanics, has its own uncertainty principle that makes it necessary, in certain areas, to abandon exactness for probabilistic formulations." (Martin Gardner, "The remarkable lore of the prime numbers", Scientific American, 1964)

“[…] there is no apparent reason why one number is prime and another not. To the contrary, upon looking at these numbers one has the feeling of being in the presence of one of the inexplicable secrets of creation.” (Don Zagier, “The First 50 Million Prime Numbers”, The Mathematical Intelligencer, Volume 0, 1977)

"Prime numbers have always fascinated mathematicians, professional and amateur alike. They appear among the integers, seemingly at random, and yet not quite: there seems to be some order or pattern, just a little below the surface, just a little out of reach." (Underwood Dudley, “Elementary Number Theory”, 1978)

"Some order begins to emerge from this chaos when the primes are considered not in their individuality but in the aggregate; one considers the social statistics of the primes and not the eccentricities of the individuals." (Philip J Davis & Reuben Hersh, “The Mathematical Experience”, 1981)

“Prime numbers. It was all so neat and elegant. Numbers that refuse to cooperate, that don’t change or divide, numbers that remain themselves for all eternity.” (Paul Auster, “The Music of Chance”, 1990) "It is evident that the primes are randomly distributed but, unfortunately, we don't know what 'random' means.'' (Rob C Vaughan, 1990)

“To me, that the distribution of prime numbers can be so accurately represented in a harmonic analysis is absolutely amazing and incredibly beautiful. It tells of an arcane music and a secret harmony composed by the prime numbers.” (Enrico Bombieri, ”PrimeTerritory", The Sciences, 1992)

"Prime numbers are the most basic objects in mathematics. They also are among the most mysterious, for after centuries of study, the structure of the set of prime numbers is still not well understood […]" (Andrew Granville, 1997)

"To some extent the beauty of number theory seems to be related to the contradiction between the simplicity of the integers and the complicated structure of the primes, their building blocks. This has always attracted people." (Andreas Knauf, "Number Theory, Dynamical Systems and Statistical Mechanics", 1998)

"Since they represent so natural a sequence, it is almost irresistible to search for patterns among the primes. There are however no genuinely useful formulas for prime numbers. That is to say there is no rule that allows you to generate all prime numbers or even to calculate a sequence that consists entirely of different primes." (Peter M Higgins, "Number Story: From Counting to Cryptography", 2008)
Related Posts Plugin for WordPress, Blogger...

On Leonhard Euler

"I have been able to solve a few problems of mathematical physics on which the greatest mathematicians since Euler have struggled in va...