Showing posts with label manifolds. Show all posts
Showing posts with label manifolds. Show all posts

09 December 2024

On Manifolds: Definitions

"A manifold, roughly, is a topological space in which some neighborhood of each point admits a coordinate system, consisting of real coordinate functions on the points of the neighborhood, which determine the position of points and the topology of that neighborhood; that is, the space is locally cartesian. Moreover, the passage from one coordinate system to another is smooth in the overlapping region, so that the meaning of 'differentiable' curve, function, or map is consistent when referred to either system." (Richard L Bishop & Samuel I Goldberg, "Tensor Analysis on Manifolds", 1968)

"A manifold M of dimension n, or n-manifold, is a topological space with the following properties: (i) M is Hausdorff, (ii) M is locally Euclidean of dimension n, and (iii) M has a countable basis of open sets." (William M Boothby, "An introduction to differentiable manifolds and Riemannian geometry" 2nd Ed., 1986)

"[...] a manifold is a set M on which 'nearness' is introduced (a topological space), and this nearness can be described at each point in M by using coordinates. It also requires that in an overlapping region, where two coordinate systems intersect, the coordinate transformation is given by differentiable transition functions." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"A manifold Mn of dimension n is a Hausdorff topological space such that each point P of Mn has a neighborhood Ω homeomorphic to Rn (or equivalently to an open set of Rn." (Thierry Aubin, "A Course in Differential Geometry", 2000)

"Manifolds are a type of topological spaces we are interested in. They correspond well to the spaces we are most familiar with, the Euclidean spaces. Intuitively, a manifold is a topological space that locally looks like Rn. In other words, each point admits a coordinate system, consisting of coordinate functions on the points of the neighborhood, determining the topology of the neighborhood." (Afra J Zomorodian, "Topology for Computing", 2005)

"Roughly speaking, a manifold is essentially a space that is locally similar to the Euclidean space. This resemblance permits differentiation to be defined. On a manifold, we do not distinguish between two different local coordinate systems. Thus, the concepts considered are just those independent of the coordinates chosen. This makes more sense if we consider the situation from the physics point of view. In this interpretation, the systems of coordinates are systems of reference." (Ovidiu Calin & Der-Chen Chang,  "Geometric Mechanics on Riemannian Manifolds : Applications to partial differential equations", 2005)

"A manifold is an abstract mathematical space, which locally (i.e., in a close–up view) resembles the spaces described by Euclidean geometry, but which globally (i.e., when viewed as a whole) may have a more complicated structure." (Vladimir G Ivancevic & Tijana T Ivancevic, "Applied Differential Geometry: A Modern Introduction", 2007)

"A topological manifold of dimension k is a Hausdorff topological space M with a countable base such that for all x ∈ M, there exists an open neighborhood of x that is homeomorphic to an open set of Rk." (Stephen Lovett, "Differential Geometry of Manifolds", 2010)

"Roughly speaking, a manifold is a set whose points can be labeled by coordinates." (Gerardo F. Torres del Castillo, "Differentiable Manifolds: A Theoretical Physics Approach", 2010)

"You can very generally think of a manifold as a space which is locally Euclidian - that means that if you look closely enough at one small part of a manifold then it basically looks like Rn for some n." (Jon P Fortney, "A Visual Introduction to Differential Forms and Calculus on Manifolds", 2018)

03 June 2021

On Differentiability I

"Logic sometimes makes monsters. For half a century we have seen a mass of bizarre functions which appear to be forced to resemble as little as possible honest functions which serve some purpose. More of continuity, or less of continuity, more derivatives, and so forth. Indeed, from the point of view of logic, these strange functions are the most general; on the other hand those which one meets without searching for them, and which follow simple laws appear as a particular case which does not amount to more than a small corner. In former times when one invented a new function it was for a practical purpose; today one invents them purposely to show up defects in the reasoning of our fathers and one will deduce from them only that. If logic were the sole guide of the teacher, it would be necessary to begin with the most general functions, that is to say with the most bizarre. It is the beginner that would have to be set grappling with this teratologic museum." (Henri Poincaré, 1899)

"A manifold, roughly, is a topological space in which some neighborhood of each point admits a coordinate system, consisting of real coordinate functions on the points of the neighborhood, which determine the position of points and the topology of that neighborhood; that is, the space is locally cartesian. Moreover, the passage from one coordinate system to another is smooth in the overlapping region, so that the meaning of 'differentiable' curve, function, or map is consistent when referred to either system." (Richard L Bishop & Samuel I Goldberg, "Tensor Analysis on Manifolds", 1968)

"The mathematical models for many physical systems have manifolds as the basic objects of study, upon which further structure may be defined to obtain whatever system is in question. The concept generalizes and includes the special cases of the cartesian line, plane, space, and the surfaces which are studied in advanced calculus. The theory of these spaces which generalizes to manifolds includes the ideas of differentiable functions, smooth curves, tangent vectors, and vector fields. However, the notions of distance between points and straight lines (or shortest paths) are not part of the idea of a manifold but arise as consequences of additional structure, which may or may not be assumed and in any case is not unique." (Richard L Bishop & Samuel I Goldberg, "Tensor Analysis on Manifolds", 1968)

"An essential difference between continuity and differentiability is whether numbers are involved or not. The concept of continuity is characterized by the qualitative property that nearby objects are mapped to nearby objects. However, the concept of differentiation is obtained by using the ratio of infinitesimal increments. Therefore, we see that differentiability essentially involves numbers." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"Differentiability of a function can be established by examining the behavior of the function in the immediate neighborhood of a single point a in its domain. Thus, all we need is coordinates in the vicinity of the point a. From this point of view, one might say that local coordinates have more essential qualities. However, if are not looking at individual surfaces, we cannot find a more general and universal notion than smoothness." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"[...] differentiation is performed by focusing on the behavior of a function near one point. A quantity obtained in this manner is essentially a local quantity. Is it possible that such local quantities can show us something very basic about global properties such as smoothness? Does there exist a place in mathematics which would enable us to study the relationship between local and global quantities?" (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"To consider differentiable functions, we must introduce a coordinate system on the plane and thereby to concentrate on the world of numbers.[...] a continuous function defined on a plane can be differentiable or nondifferentiable depending on the choice of coordinates. [...] the choice of coordinates on the plane determines which functions among the continuous functions should be selected as differentiable functions." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"If you assume continuity, you can open the well-stocked mathematical toolkit of continuous functions and differential equations, the saws and hammers of engineering and physics for the past two centuries (and the foreseeable future)." (Benoît Mandelbrot, "The (Mis)Behaviour of Markets: A Fractal View of Risk, Ruin and Reward", 2004)?

"Roughly speaking, a function defined on an open set of Euclidean space is differentiable at a point if we can approximate it in a neighborhood of this point by a linear map, which is called its differential (or total derivative). This differential can be of course expressed by partial derivatives, but it is the differential and not the partial derivatives that plays the central role." (Jacques Lafontaine, "An Introduction to Differential Manifolds", 2010)

"I turn away with fright and horror from the lamentable evil of functions which do not have derivatives." (Charles Hermite, [letter to Thomas J Stieltjes])

06 April 2021

Set Theory III

"One very important genus of complex ideas that we encounter everywhere are those in which the idea of collection (Inbegriff ) appears. There are many types of the latter [...] I must first determine with more precision the concept I associate with the word collection. I use this word in the same sense as it is used in the common usage and thus understand by a collection of certain things exactly the same as what one would express by the words: a combination (Verbindung) or association (Vereinigung) of these things, a gathering (Zusammensein) of the latter, a whole (Ganzes) in which they occur as parts (Teile). Hence the mere idea of a collection does not allow us to determine in which order and sequence the things that are put together appear or, indeed, whether there is or can be such an order. [...] A collection, it seems to me, is nothing other than something complex (das Zusammengesetztheit hat)." (Bernard Bolzano, "Wissenschaftslehre" ["Theory of Science"], 1837)

"The old and oft-repeated proposition 'Totum est majus sua parte' [the whole is larger than the part] may be applied without proof only in the case of entities that are based upon whole and part; then and only then is it an undeniable consequence of the concepts 'totum' and 'pars'. Unfortunately, however, this 'axiom' is used innumerably often without any basis and in neglect of the necessary distinction between 'reality' and 'quantity' , on the one hand, and 'number' and 'set', on the other, precisely in the sense in which it is generally false." (Georg Cantor, "Über unendliche, lineare Punktmannigfaltigkeiten", Mathematische Annalen 20, 1882)

"The foregoing account of my researches in the theory of manifolds has reached a point where further progress depends on extending the concept of true integral number beyond the previous boundaries; this extension lies in a direction which, to my knowledge, no one has yet attempted to explore.
My dependence on this extension of number concept is so great, that without it I should be unable to take freely the smallest step further in the theory of sets." (Georg Cantor, "Grundlagen einer allgemeinen Mannigfaltigkeitslehre", 1883) 

"To the thought of considering the infinitely great not merely in the form of what grows without limits - and in the closely related form of the convergent infinite series first introduced in the seventeenth century-, but also fixing it mathematically by numbers in the determinate form of the completed-infinite, I have been logically compelled in the course of scientific exertions and attempts which have lasted many years, almost against my will, for it contradicts traditions which had become precious to me; and therefore I believe that no arguments can be made good against it which I would not know how to meet." (Georg Cantor, "Grundlagen einer allgemeinen Mannigfaltigkeitslehre", 1883)

"Every mathematician agrees that every mathematician must know some set theory; the disagreement begins in trying to decide how much is some. [...] The student's task in learning set theory is to steep himself in unfamiliar but essentially shallow generalities till they become so familiar that they can be used with almost no conscious effort. In other words, general set theory is pretty trivial stuff really, but, if you want to be a mathematician, you need some, and here it is; read it, absorb it, and forget it [...] the language and notation are those of ordinary informal mathematics. A more important way in which the naive point of view predominates is that set theory is regarded as a body of facts, of which the axioms are a brief and convenient summary; in the orthodox axiomatic view the logical relations among various axioms are the central objects of study." (Paul R Halmos, "Naive Set Theory", 1960)

"A manifold, roughly, is a topological space in which some neighborhood of each point admits a coordinate system, consisting of real coordinate functions on the points of the neighborhood, which determine the position of points and the topology of that neighborhood; that is, the space is locally cartesian. Moreover, the passage from one coordinate system to another is smooth in the overlapping region, so that the meaning of 'differentiable' curve, function, or map is consistent when referred to either system." (Richard L Bishop & Samuel I Goldberg, "Tensor Analysis on Manifolds", 1968)

"Set theory is concerned with abstract objects and their relation to various collections which contain them. We do not define what a set is but accept it as a primitive notion. We gain an intuitive feeling for the meaning of sets and, consequently, an idea of their usage from merely listing some of the synonyms: class, collection, conglomeration, bunch, aggregate. Similarly, the notion of an object is primitive, with synonyms element and point. Finally, the relation between elements and sets, the idea of an element being in a set, is primitive." (Richard L Bishop & Samuel I Goldberg, "Tensor Analysis on Manifolds", 1968)

"The mathematical models for many physical systems have manifolds as the basic objects of study, upon which further structure may be defined to obtain whatever system is in question. The concept generalizes and includes the special cases of the cartesian line, plane, space, and the surfaces which are studied in advanced calculus. The theory of these spaces which generalizes to manifolds includes the ideas of differentiable functions, smooth curves, tangent vectors, and vector fields. However, the notions of distance between points and straight lines (or shortest paths) are not part of the idea of a manifold but arise as consequences of additional structure, which may or may not be assumed and in any case is not unique." (Richard L Bishop & Samuel I Goldberg, "Tensor Analysis on Manifolds", 1968)

"Does set theory, once we get beyond the integers, refer to an existing reality, or must it be regarded, as formalists would regard it, as an interesting formal game? [...] A typical argument for the objective reality of set theory is that it is obtained by extrapolation from our intuitions of finite objects, and people see no reason why this has less validity. Moreover, set theory has been studied for a long time with no hint of a contradiction. It is suggested that this cannot be an accident, and thus set theory reflects an existing reality. In particular, the Continuum Hypothesis and related statements are true or false, and our task is to resolve them." (Paul Cohen, "Skolem and pessimism about proof in mathematics", Philosophical Transactions of the Royal Society A 363 (1835), 2005)

"In each branch of mathematics it is essential to recognize when two structures are equivalent. For example two sets are equivalent, as far as set theory is concerned, if there exists a bijective function which maps one set onto the other. Two groups are equivalent, known as isomorphic, if there exists a a homomorphism of one to the other which is one-to-one and onto. Two topological spaces are equivalent, known as homeomorphic, if there exists a homeomorphism of one onto the other." (Sydney A Morris, "Topology without Tears", 2011)

31 January 2021

Richard L Bishop - Collected Quotes

"A manifold, roughly, is a topological space in which some neighborhood of each point admits a coordinate system, consisting of real coordinate functions on the points of the neighborhood, which determine the position of points and the topology of that neighborhood; that is, the space is locally cartesian. Moreover, the passage from one coordinate system to another is smooth in the overlapping region, so that the meaning of 'differentiable' curve, function, or map is consistent when referred to either system." (Richard L Bishop & Samuel I Goldberg, "Tensor Analysis on Manifolds", 1968)

"A manifold can be given by specifying the coordinate ranges of an atlas, the images in those coordinate ranges of the overlapping parts of the coordinate domains, and the coordinate transformations for each of those overlapping domains. When a manifold is specified in this way, a rather tricky condition on the specifications is needed to give the Hausdorff property, but otherwise the topology can be defined completely by simply requiring the coordinate maps to be homeomorphisms." (Richard L Bishop & Samuel I Goldberg, "Tensor Analysis on Manifolds", 1968)

"A set is countable if it is either finite or its members can be arranged in an infinite sequence; or, what is the same, there is a 1-1 map from the set into the positive integers."(Richard L Bishop & Samuel I Goldberg, "Tensor Analysis on Manifolds", 1968)

"An initial study of tensor analysis can. almost ignore the topological aspects since the topological assumptions are either very natural (continuity, the Hausdorff property) or highly technical (separability, paracompactness). However, a deeper analysis of many of the existence problems encountered in tensor analysis requires assumption of some of the more difficult-to-use topological properties, such as compactness and paracompactness."  (Richard L Bishop & Samuel I Goldberg, "Tensor Analysis on Manifolds", 1968)

"In the definition of a coordinate system we have required that the coordinate neighborhood and the range in Rd be open sets. This is contrary to popular usage, or at least more specific than the usage of curvilinear coordinates in advanced calculus. For example, spherical coordinates are used even along points of the z axis where they are not even 1-1. The reasons for the restriction to open sets are that it forces a uniformity in the local structure which simplifies analysis on a manifold (there are no 'edge points') and, even if local uniformity were forced in some other way, it avoids the problem of. spelling out what we mean by differentiability at boundary points of the coordinate neighborhood; that is, one-sided derivatives need not be mentioned. On the other hand, in applications, boundary value problems frequently arise, the setting for which is a manifold with boundary. These spaces are more general than manifolds and the extra generality arises from allowing a boundary manifold of one dimension less. The points of the boundary manifold have a coordinate neighborhood in the boundary manifold which is attached to a coordinate neighborhood of the interior in much the same way as a face of a cube is attached to the interior. Just as the study of boundary value problems is more difficult than the study of spatial problems, the study of manifolds with boundary is more difficult than that of mere manifolds, so we shall limit ourselves to the latter." (Richard L Bishop & Samuel I Goldberg, "Tensor Analysis on Manifolds", 1968)

"Set theory is concerned with abstract objects and their relation to various collections which contain them. We do not define what a set is but accept it as a primitive notion. We gain an intuitive feeling for the meaning of sets and, consequently, an idea of their usage from merely listing some of the synonyms: class, collection, conglomeration, bunch, aggregate. Similarly, the notion of an object is primitive, with synonyms element and point. Finally, the relation between elements and sets, the idea of an element being in a set, is primitive." (Richard L Bishop & Samuel I Goldberg, "Tensor Analysis on Manifolds", 1968)

"The mathematical models for many physical systems have manifolds as the basic objects of study, upon which further structure may be defined to obtain whatever system is in question. The concept generalizes and includes the special cases of the cartesian line, plane, space, and the surfaces which are studied in advanced calculus. The theory of these spaces which generalizes to manifolds includes the ideas of differentiable functions, smooth curves, tangent vectors, and vector fields. However, the notions of distance between points and straight lines (or shortest paths) are not part of the idea of a manifold but arise as consequences of additional structure, which may or may not be assumed and in any case is not unique." (Richard L Bishop & Samuel I Goldberg, "Tensor Analysis on Manifolds", 1968)

29 January 2021

On Integrals I

"I see with much pleasure that you are working on a large work on the integral Calculus [...] The reconciliation of the methods which you are planning to make, serves to clarify them mutually, and what they have in common contains very often their true metaphysics; this is why that metaphysics is almost the last thing that one discovers. The spirit arrives at the results as if by instinct; it is only on reflecting upon the route that it and others have followed that it succeeds in generalising the methods and in discovering its metaphysics." (Pierre-Simon Laplace [letter to Sylvestre F Lacroix] 1792)

"Certain authors who seem to have perceived the weakness of this method assume virtually as an axiom that an equation has indeed roots, if not possible ones, then impossible roots. What they want to be understood under possible and impossible quantities, does not seem to be set forth sufficiently clearly at all. If possible quantities are to denote the same as real quantities, impossible ones the same as imaginaries: then that axiom can on no account be admitted but needs a proof necessarily." (Carl F Gauss, "New proof of the theorem that every algebraic rational integral function in one variable can be resolved into real factors of the first or the second degree", 1799)

"The integrals which we have obtained are not only general expressions which satisfy the differential equation, they represent in the most distinct manner the natural effect which is the object of the phenomenon [...] when this condition is fulfilled, the integral is, properly speaking, the equation of the phenomenon; it expresses clearly the character and progress of it, in the same manner as the finite equation of a line or curved surface makes known all the properties of those forms." (Jean-Baptiste-Joseph Fourier, "Théorie Analytique de la Chaleur", 1822)

"If one looks at the different problems of the integral calculus which arise naturally when he wishes to go deep into the different parts of physics, it is impossible not to be struck by the analogies existing. Whether it be electrostatics or electrodynamics, the propagation of heat, optics, elasticity, or hydrodynamics, we are led always to differential equations of the same family." (Henri Poincaré, "Sur les Equations aux Dérivées Partielles de la Physique Mathématique", American Journal of Mathematics Vol. 12, 1890)

"Every one who understands the subject will agree that even the basis on which the scientific explanation of nature rests, is intelligible only to those who have learned at least the elements of the differential and integral calculus, as well as of analytical geometry." (Felix Klein, Jahresbericht der Deutschen Mathematiker Vereinigung Vol. 11, 1902)

"The method of successive approximations is often applied to proving existence of solutions to various classes of functional equations; moreover, the proof of convergence of these approximations leans on the fact that the equation under study may be majorised by another equation of a simple kind. Similar proofs may be encountered in the theory of infinitely many simultaneous linear equations and in the theory of integral and differential equations. Consideration of the semiordered spaces and operations between them enables us to easily develop a complete theory of such functional equations in abstract form." (Leonid Kantorovich, "On one class of functional equations", 1936)

"The chief difficulty of modern theoretical physics resides not in the fact that it expresses itself almost exclusively in mathematical symbols, but in the psychological difficulty of supposing that complete nonsense can be seriously promulgated and transmitted by persons who have sufficient intelligence of some kind to perform operations in differential and integral calculus […]" (Celia Green, "The Decline and Fall of Science", 1976)

"But just as much as it is easy to find the differential of a given quantity, so it is difficult to find the integral of a given differential. Moreover, sometimes we cannot say with certainty whether the integral of a given quantity can be found or not." (Johann Bernoulli) [attributed to]

"Therefore one has taken everywhere the opposite road, and each time one encounters manifolds of several dimensions in geometry, as in the doctrine of definite integrals in the theory of imaginary quantities, one takes spatial intuition as an aid. It is well known how one gets thus a real overview over the subject and how only thus are precisely the essential points emphasized." (Bernhard Riemann)

28 January 2021

On Manifolds II (Geometry II)

"In the extension of space-construction to the infinitely great, we must distinguish between unboundedness and infinite extent; the former belongs to the extent relations, the latter to the measure-relations. That space is an unbounded threefold manifoldness, is an assumption which is developed by every conception of the outer world; according to which every instant the region of real perception is completed and the possible positions of a sought object are constructed, and which by these applications is forever confirming itself. The unboundedness of space possesses in this way a greater empirical certainty than any external experience. But its infinite extent by no means follows from this; on the other hand if we assume independence of bodies from position, and therefore ascribe to space constant curvature, it must necessarily be finite provided this curvature has ever so small a positive value. If we prolong all the geodesies starting in a given surface-element, we should obtain an unbounded surface of constant curvature, i.e., a surface which in a flat manifoldness of three dimensions would take the form of a sphere, and consequently be finite." (Bernhard Riemann, "On the hypotheses which lie at the foundation of geometry", 1854)

"If in the case of a notion whose specialisations form a continuous manifoldness, one passes from a certain specialisation in a definite way to another, the specialisations passed over form a simply extended manifoldness, whose true character is that in it a continuous progress from a point is possible only on two sides, forwards or backwards. If one now supposes that this manifoldness in its turn passes over into another entirely different, and again in a definite way, namely so that each point passes over into a definite point of the other, then all the specialisations so obtained form a doubly extended manifoldness. In a similar manner one obtains a triply extended manifoldness, if one imagines a doubly extended one passing over in a definite way to another entirely different; and it is easy to see how this construction may be continued. If one regards the variable object instead of the determinable notion of it, this construction may be described as a composition of a variability of n + 1 dimensions out of a variability of n dimensions and a variability of one dimension." (Bernhard Riemann, "On the Hypotheses which lie at the Bases of Geometry", 1873)

"In a mathematical sense, space is manifoldness, or combination of numbers. Physical space is known as the 3-dimension system. There is the 4-dimension system, there is the 10-dimension system." (Charles P Steinmetz, [New York Times interview] 1911)

"That branch of mathematics which deals with the continuity properties of two- (and more) dimensional manifolds is called analysis situs or topology. […] Two manifolds must be regarded as equivalent in the topological sense if they can be mapped point for point in a reversibly neighborhood-true (topological) fashion on each other." (Hermann Weyl, "The Concept of a Riemann Surface", 1913)

"The power of differential calculus is that it linearizes all problems by going back to the 'infinitesimally small', but this process can be used only on smooth manifolds. Thus our distinction between the two senses of rotation on a smooth manifold rests on the fact that a continuously differentiable coordinate transformation leaving the origin fixed can be approximated by a linear transformation at О and one separates the (nondegenerate) homogeneous linear transformations into positive and negative according to the sign of their determinants. Also the invariance of the dimension for a smooth manifold follows simply from the fact that a linear substitution which has an inverse preserves the number of variables." (Hermann Weyl, "The Concept of a Riemann Surface", 1913)

"In her manifold opportunities Nature has thus helped man to polish the mirror of [man’s] mind, and the process continues. Nature still supplies us with abundance of brain-stretching theoretical puzzles and we eagerly tackle them; there are more worlds to conquer and we do not let the sword sleep in our hand; but how does it stand with feeling? Nature is beautiful, gladdening, awesome, mysterious, wonderful, as ever, but do we feel it as our forefathers did?" (Sir John A Thomson, "The System of Animate Nature", 1920)

"An 'empty world', i. e., a homogeneous manifold at all points at which equations (1) are satisfied, has, according to the theory, a constant Riemann curvature, and any deviation from this fundamental solution is to be directly attributed to the influence of matter or energy." (Howard P Robertson, "On Relativistic Cosmology", 1928)

"Euclidean geometry can be easily visualized; this is the argument adduced for the unique position of Euclidean geometry in mathematics. It has been argued that mathematics is not only a science of implications but that it has to establish preference for one particular axiomatic system. Whereas physics bases this choice on observation and experimentation, i. e., on applicability to reality, mathematics bases it on visualization, the analogue to perception in a theoretical science. Accordingly, mathematicians may work with the non-Euclidean geometries, but in contrast to Euclidean geometry, which is said to be "intuitively understood," these systems consist of nothing but 'logical relations' or 'artificial manifolds'. They belong to the field of analytic geometry, the study of manifolds and equations between variables, but not to geometry in the real sense which has a visual significance." (Hans Reichenbach, "The Philosophy of Space and Time", 1928)

"We must [...] maintain that mathematical geometry is not a science of space insofar as we understand by space a visual structure that can be filled with objects - it is a pure theory of manifolds." (Hans Reichenbach, "The Philosophy of Space and Time", 1928)

"A manifold, roughly, is a topological space in which some neighborhood of each point admits a coordinate system, consisting of real coordinate functions on the points of the neighborhood, which determine the position of points and the topology of that neighborhood; that is, the space is locally cartesian. Moreover, the passage from one coordinate system to another is smooth in the overlapping region, so that the meaning of 'differentiable' curve, function, or map is consistent when referred to either system." (Richard L Bishop & Samuel I Goldberg, "Tensor Analysis on Manifolds", 1968)

"The mathematical models for many physical systems have manifolds as the basic objects of study, upon which further structure may be defined to obtain whatever system is in question. The concept generalizes and includes the special cases of the cartesian line, plane, space, and the surfaces which are studied in advanced calculus. The theory of these spaces which generalizes to manifolds includes the ideas of differentiable functions, smooth curves, tangent vectors, and vector fields. However, the notions of distance between points and straight lines (or shortest paths) are not part of the idea of a manifold but arise as consequences of additional structure, which may or may not be assumed and in any case is not unique." (Richard L Bishop & Samuel I Goldberg, "Tensor Analysis on Manifolds", 1968)

On Manifolds V (Geometry III)

"Whereas the conception of space and time as a four-dimensional manifold has been very fruitful for mathematical physicists, its effect in the field of epistemology has been only to confuse the issue. Calling time the fourth dimension gives it an air of mystery. One might think that time can now be conceived as a kind of space and try in vain to add visually a fourth dimension to the three dimensions of space. It is essential to guard against such a misunderstanding of mathematical concepts. If we add time to space as a fourth dimension it does not lose any of its peculiar character as time. [...] Musical tones can be ordered according to volume and pitch and are thus brought into a two dimensional manifold. Similarly colors can be determined by the three basic colors red, green and blue… Such an ordering does not change either tones or colors; it is merely a mathematical expression of something that we have known and visualized for a long time. Our schematization of time as a fourth dimension therefore does not imply any changes in the conception of time. [...] the space of visualization is only one of many possible forms that add content to the conceptual frame. We would therefore not call the representation of the tone manifold by a plane the visual representation of the two dimensional tone manifold." (Hans Reichenbach, "The Philosophy of Space and Time", 1928)

"The sequence of numbers which grows beyond any stage already reached by passing to the next number is a manifold of possibilities open towards infinity, it remains forever in the status of creation, but is not a closed realm of things existing in themselves. That we blindly converted one into the other is the true source of our difficulties […]" (Hermann Weyl, "Mathematics and Logic", 1946)

"The first attempts to consider the behavior of so-called 'random neural nets' in a systematic way have led to a series of problems concerned with relations between the 'structure' and the 'function' of such nets. The 'structure' of a random net is not a clearly defined topological manifold such as could be used to describe a circuit with explicitly given connections. In a random neural net, one does not speak of 'this' neuron synapsing on 'that' one, but rather in terms of tendencies and probabilities associated with points or regions in the net." (Anatol Rapoport, "Cycle distributions in random nets", The Bulletin of Mathematical Biophysics 10(3), 1948)

"The main object of study in differential geometry is, at least for the moment, the differential manifolds, structures on the manifolds (Riemannian, complex, or other), and their admissible mappings. On a manifold the coordinates are valid only locally and do not have a geometric meaning themselves." (Shiing-Shen Chern, "Differential geometry, its past and its future", 1970)

"[...] a manifold is a set M on which 'nearness' is introduced (a topological space), and this nearness can be described at each point in M by using coordinates. It also requires that in an overlapping region, where two coordinate systems intersect, the coordinate transformation is given by differentiable transition functions." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"It is commonly said that the study of manifolds is, in general, the study of the generalization of the concept of surfaces. To some extent, this is true. However, defining it that way can lead to overshadowing by 'figures' such as geometrical surfaces." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"One could also question whether we are looking for a single overarching mathematical structure or a combination of different complementary points of view. Does a fundamental theory of Nature have a global definition, or do we have to work with a series of local definitions, like the charts and maps of a manifold, that describe physics in various 'duality frames'. At present string theory is very much formulated in the last kind of way." (Robbert Dijkgraaf, "Mathematical Structures", 2005)

"Quantum physics, in particular particle and string theory, has proven to be a remarkable fruitful source of inspiration for new topological invariants of knots and manifolds. With hindsight this should perhaps not come as a complete surprise. Roughly one can say that quantum theory takes a geometric object (a manifold, a knot, a map) and associates to it a (complex) number, that represents the probability amplitude for a certain physical process represented by the object." (Robbert Dijkgraaf, "Mathematical Structures", 2005)

"The primary aspects of the theory of complex manifolds are the geometric structure itself, its topological structure, coordinate systems, etc., and holomorphic functions and mappings and their properties. Algebraic geometry over the complex number field uses polynomial and rational functions of complex variables as the primary tools, but the underlying topological structures are similar to those that appear in complex manifold theory, and the nature of singularities in both the analytic and algebraic settings is also structurally very similar." (Raymond O Wells Jr, "Differential and Complex Geometry: Origins, Abstractions and Embeddings", 2017)

"Therefore one has taken everywhere the opposite road, and each time one encounters manifolds of several dimensions in geometry, as in the doctrine of definite integrals in the theory of imaginary quantities, one takes spatial intuition as an aid. It is well known how one gets thus a real overview over the subject and how only thus are precisely the essential points emphasized." (Bernhard Riemann)

On Manifolds I (Geometry I)

"If in the case of a notion whose specialisations form a continuous manifoldness, one passes from a certain specialisation in a definite way to another, the specialisations passed over form a simply extended manifoldness, whose true character is that in it a continuous progress from a point is possible only on two sides, forward or backwards. If one now supposes that this manifoldness in its turn passes over into another entirely different, and again in a definite way, namely so that each point passes over into a definite point of the other, then all the specialisations so obtained form a doubly extended manifoldness. In a similar manner one obtains a triply extended manifoldness, if one imagines a doubly extended one passing over in a definite way to another entirely different; and it is easy to see how this construction may be continued. If one regards the variable object instead of the determinable notion of it, this construction may be described as a composition of a variability of n + 1 dimensions out of a variability of n dimensions and a variability of one dimension." (Bernhard Riemann, "On the hypotheses which lie at the foundation of geometry", 1854)

"Definite portions of a manifoldness, distinguished by a mark or by a boundary, are called Quanta. Their comparison with regard to quantity is accomplished in the case of discrete magnitudes by counting, in the case of continuous magnitudes by measuring. Measure consists in the superposition of the magnitudes to be compared; it therefore requires a means of using one magnitude as the standard for another. In the absence of this, two magnitudes can only be compared when one is a part of the other; in which case also we can only determine the more or less and not the how much. The researches which can in this case be instituted about them form a general division of the science of magnitude in which magnitudes are regarded not as existing independently of position and not as expressible in terms of a unit, but as regions in a manifoldness." (Bernhard Riemann, "On the Hypotheses which lie at the Bases of Geometry", 1873)

"Magnitude-notions are only possible where there is an antecedent general notion which admits of different specialisations. According as there exists among these specialisations a continuous path from one to another or not, they form a continuous or discrete manifoldness; the individual specialisations are called in the first case points, in the second case elements, of the manifoldness." (Bernhard Riemann, "On the Hypotheses which lie at the Bases of Geometry", 1873)

"With every simple act of thinking, something permanent, substantial, enters our soul. This substantial somewhat appears to us as a unit but (in so far as it is the expression of something extended in space and time) it seems to contain an inner manifoldness; I therefore name it ‘mind-mass’. All thinking is, accordingly, formation of new mind masses." (Bernhard Riemann, "Gesammelte Mathematische Werke", 1876)

"If two well-defined manifolds M and N can be coordinated with each other univocally and completely, element by element (which, if possible in one way, can always happen in many others), we shall employ in the sequel the expression, that those manifolds have the same power or, also, that they are equivalent." (Georg Cantor, "Ein Beitrag zur Mannigfaltigkeitslehre", 1878)

"I say that a manifold (a collection, a set) of elements that belong to any conceptual sphere is well-defined, when on the basis of its definition and as a consequence of the logical principle of excluded middle it must be regarded as internally determined, both whether an object pertaining to the same conceptual sphere belongs or not as an element to the manifold, and whether two objects belonging to the set are equal to each other or not, despite formal differences in the ways of determination." (Georg Cantor, "Ober unendliche, lineare Punktmannichfaltigkeiten", 1879)

"By a manifold or a set I understand in general every Many that can be thought of as One, i.e., every collection of determinate elements which can be bound up into a whole through a law, and with this I believe to define something that is akin to the Platonic form or idea." (Georg Cantor, "Grundlagen einer allgemeinen Mannigfaltigkeitslehre", 1883)

"The truth is that other systems of geometry are possible, yet after all, these other systems are not spaces but other methods of space measurements. There is one space only, though we may conceive of many different manifolds, which are contrivances or ideal constructions invented for the purpose of determining space." (Paul Carus, Science Vol. 18, 1903)

"A mathematical theorem and its demonstration are prose. But if the mathematician is overwhelmed with the grandeur and wondrous harmony of geometrical forms, of the importance and universal application of mathematical maxims, or, of the mysterious simplicity of its manifold laws which are so self-evident and plain and at the same time so complicated and profound, he is touched by the poetry of his science; and if he but understands how to give expression to his feelings, the mathematician turns poet, drawing inspiration from the most abstract domain of scientific thought." (Paul Carus, „Friedrich Schiller: A Sketch of His Life and an Appreciation of His Poetry", 1905)

"Roughly speaking, a manifold is essentially a space that is locally similar to the Euclidean space. This resemblance permits differentiation to be defined. On a manifold, we do not distinguish between two different local coordinate systems. Thus, the concepts considered are just those independent of the coordinates chosen. This makes more sense if we consider the situation from the physics point of view. In this interpretation, the systems of coordinates are systems of reference." (Ovidiu Calin & Der-Chen Chang,  "Geometric Mechanics on Riemannian Manifolds : Applications to partial differential equations", 2005)

On Manifolds IV (Trivia II)

"The object of pure mathematics is those relations which may be conceptually established among any conceived elements whatsoever by assuming them contained in some ordered manifold; the law of order of this manifold must be subject to our choice; the latter is the case in both of the only conceivable kinds of manifolds, in the discrete as well as in the continuous." (Erwin Papperitz, "Über das System der rein mathematischen Wissenschaften", 1910)

"As systematic inquiry into the natural facts was begun it was at once found that the accepted ideas of variation were unfounded. Variation was seen very frequently to be a definite and specific phenomenon, affecting different forms of life in different ways, but in all its diversity showing manifold and often obvious indications of regularity." (William Bateson, "Problems in Genetics", 1913)

"The validity of demonstrably wrong law cannot conceivably be justified. However, any answer to the question of the purpose of law other than by enumerating the manifold partisan views about it has proved impossible - and it is precisely on that impossibility of any natural law, and on that alone, that the validity of positive law may be founded. At this point relativism, so far only the method of our approach, enters our system as a structural element." (Gustav Radbruch, "Rechtsphilosophie", 1932)

"We know, since the theory of relativity at least, that empirical sciences are to some degree free in defining dynamical concepts or even in assuming laws, and that only a system as a whole which includes concepts, coordinating definitions, and laws can be said to be either true or false, to be adequate or inadequate to empirical facts. This 'freedom', however, is a somewhat doubtful gift. The manifold of possibilities implies uncertainty, and such uncertainty can become rather painful in a science as young as psychology, where nearly all concepts are open and unsettled. As psychology approaches the state of a logically sound science, definitions cease to be an arbitrary matter. They become far-reaching decisions which presuppose the mastering of the conceptual problems but which have to be guided entirely by the objective facts." (Kurt Lewin, "Principles of topological psychology", 1936)

"The true physician cannot remain outside the manifold of the events he observes." (Alan Gregg, "Humanism and Science", Bulletin of the New York Academy of Sciences Vol. 17, 1941)

"The mystery that clings to numbers, the magic of numbers, may spring from this very fact, that the intellect, in the form of the number series, creates an infinite manifold of well-distinguished individuals. Even we enlightened scientists can still feel it, e.g., in the impenetrable law of the distribution of prime numbers." (Hermann Weyl, "Philosophy of Mathematics and Natural Science", 1949)

"[...] our purpose is to give a presentation of geometry [..[.] in its visual, intuitive aspects. With the aid of visual imagination we can illuminate the manifold facts and problems. [...] beyond this, it is possible [...] to depict the geometric outline of the methods of investigation and proof, without [...] entering into the details [...] In this manner, geometry being as many-faceted as it is and being related to the most diverse branches of mathematics, we may even obtain a summarizing survey of mathematics as a whole, and a valid idea of the variety of problems and the wealth of ideas it contains. Thus a presentation of geometry in large brushstrokes [...] and based on the approach through visual intuition, should contribute to a more just appreciation of mathematics by a wider range of people than just the specialists." (David Hilbert, "Geometry and the Imagination", 1952)

"The historian's special contribution is the discovery of the manifold shapes of time. The aim of the historian, regardless of his specialty in erudition, is to portray time. He is committed to the detection and description of the shape of time." (George Kubler, "The Shape of Time", 1982)

"People are deeply imbedded in philosophical, i.e., grammatical confusions. And to free them presupposes pulling them out of the immensely manifold connections they are caught up in." (Ludwig Wittgenstein, "Philosophical Occasions 1912-1951", 1993)

"Direct experience is inherently too limited to form an adequate foundation either for theory or for application. At the best it produces an atmosphere that is of value in drying and hardening the structure of thought. The greater value of indirect experience lies in its greater variety and extent. History is universal experience, the experience not of another, but of many others under manifold conditions." (Basil L Hart, "Why Don't We Learn from History?", 2015)

On Manifolfd III (Trivia I)

"Philosophers conceive of the passions which harass us as vices into which men fall by their own fault, and, therefore, generally deride, bewail, or blame them, or execrate them, if they wish to seem unusually pious. And so they think they are doing something wonderful, and reaching the pinnacle of learning, when they are clever enough to bestow manifold praise on such human nature, as is nowhere to be found, and to make verbal attacks on that which, in fact, exists. For they conceive of men, not as they are, but as they themselves would like them to be. Whence it has come to pass that, instead of ethics, they have generally written satire, and that they have never conceived a theory of politics, which could be turned to use, but such as might be taken for a chimera, or might have been formed in Utopia, or in that golden age of the poets when, to be sure, there was least need of it. Accordingly, as in all sciences, which have a useful application, so especially in that of politics, theory is supposed to be at variance with practice; and no men are esteemed less fit to direct public affairs than theorists or philosophers." (Baruch Spinoza, "Political Treatise", 1677)

"All true metaphysics is taken from the essential nature of the thinking faculty itself, and therefore in nowise invented, since it is not borrowed from experience, but contains the pure operations of thought, that is, conceptions and principles à priori, which the manifold of empirical presentations first of all brings into legitimate connection, by which it can become empirical knowledge, i.e. experience. [...] mathematical physicists were thus quite unable to dispense with such metaphysical principles [...]" (Immanuel Kant, "Metaphysical Foundations of Natural Science", 1786)

"It is the principle of necessity towards which, as to their ultimate centre, all the ideas advanced in this essay immediately converge. In abstract theory the limits of this necessity are determined solely by considerations of man’s proper nature as a human being; but in the application we have to regard, in addition, the individuality of man as he actually exists. This principle of necessity should, I think, prescribe the grand fundamental rule to which every effort to act on human beings and their manifold relations should be invariably conformed. For it is the only thing which conducts to certain and unquestionable results. The consideration of the useful, which might be opposed to it, does not admit of any true and unswerving decision." (Wilhelm Von Humboldt, "The Limits of State Action", 1792)

"Before abstraction everything is one, but one like chaos; after abstraction everything is united again, but this union is a free binding of autonomous, self-determined beings. Out of a mob a society has developed, chaos has been transformed into a manifold world." (G P Friedrich F von Hardenberg [Novalis], "Blüthenstaub" [Fragment No. 95], 1798)

"Nature, in the manifold signification of the word - whether considered as the universality of all that is and ever will be - as the inner moving force of all phenomena, or as their mysterious prototype - reveals itself to the simple mind and feelings of man as something earthly, and closely allied to himself. "(Alexander von Humboldt, Cosmos: "A Sketch of a Physical Description of the Universe", 1845)

"Nothing protects us so surely from this wrong turning as inner wealth, the wealth of the mind, for the more eminent it becomes, the less room does it leave for boredom. The inexhaustible activity of ideas, their constantly renewed play with the manifold phenomena of the inner and outer worlds, the power and urge always to make different combinations of them, all these put the eminent mind, apart from moments of relaxation, quite beyond the reach of boredom." (Arthur Schopenhauer, "Parerga and Paralipomena", 1851)

"Manifold subsequent experience has led to a truer appreciation and a more moderate estimate of the importance of the dependence of one living being upon another." (Richard Owen, The Edinburgh Review, 1860)

"If we consider further the manifold relations of this mathematical theory to civil uses and the technical arts, we shall recognize completely the extent of its applications. It is evident that it includes an entire series of distinct phenomena, and that the study of it cannot be omitted without losing a notable part of the science of nature.
The principles of the theory are derived, as are those of rational mechanics, from a very small number of primary facts, the causes of which are not considered by geometers, but which they admit as the results of common observations confirmed by all experiment." (Joseph Fourier, "The Analytical Theory of Heat", 1878)

"The analysis of Nature into its individual parts, the grouping of the different natural processes and natural objects in definite classes, the study of the internal anatomy of organic bodies in their manifold forms—these were the fundamental conditions of the gigantic strides in our knowledge of Nature which have been made during the last four hundred years. But this method of investigation has also left us as a legacy the habit of observing natural objects and natural processes in their isolation, detached from the whole vast interconnection of things; and therefore not in their motion, but in their repose; not as essentially changing, but fixed constants; not in their life, but in their death." (Friedrich Engels, "Herr Eugen Dühring's Revolution in Science", 1878)

"A philosophy which emphasises the idea of the One, is generally a dualistic philosophy in which the conception of Second receives exaggerated attention: for this One (though of course involving the idea of First) is always the other of a manifold which is not one." (Charles S Peirce, "The Architecture of Theories", 1891)

25 January 2021

Kenji Ueno - Collected Quotes

"[...] a manifold is a set M on which 'nearness' is introduced (a topological space), and this nearness can be described at each point in M by using coordinates. It also requires that in an overlapping region, where two coordinate systems intersect, the coordinate transformation is given by differentiable transition functions." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"An essential difference between continuity and differentiability is whether numbers are involved or not. The concept of continuity is characterized by the qualitative property that nearby objects are mapped to nearby objects. However, the concept of differentiation is obtained by using the ratio of infinitesimal increments. Therefore, we see that differentiability essentially involves numbers." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"Analyticity is the property of a differentiable function y = f(x) that can be represented by the infinite series for all x near each point x0." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"By studying analytic functions using power series, the algebra of the Middle Ages was connected to infinite operations (various algebraic operations with infinite series). The relation of algebra with infinite operations was later merged with the newly developed differential and integral calculus. These developments gave impetus to early stages of the development of analysis. In a way, we can say that analyticity is the notion that first crossed the boundary from finite to infinite by passing from polynomials to infinite series. However, algebraic properties of polynomial functions still are strongly present in analytic functions." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"[…] continuity appears when we try to mathematically express continuously changing phenomena, and differentiability is the result of expressing smoothly changing phenomena."  (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"Continuous functions can change freely, while analytic functions are rigid. In this sense, we can say that continuous and analytic functions are antipodal." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"Continuous functions can move freely. Graphs of continuous functions can freely branch off at any place, whereas analytic functions coinciding in some neighborhood of a point P cannot branch outside of this neighborhood. Because of this property, continuous functions can mathematically represent wildly changing wind inside a typhoon or a gentle breeze." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"Differentiability of a function can be established by examining the behavior of the function in the immediate neighborhood of a single point a in its domain. Thus, all we need is coordinates in the vicinity of the point a. From this point of view, one might say that local coordinates have more essential qualities. However, if are not looking at individual surfaces, we cannot find a more general and universal notion than smoothness." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"[...] differentiation is performed by focusing on the behavior of a function near one point. A quantity obtained in this manner is essentially a local quantity. Is it possible that such local quantities can show us something very basic about global properties such as smoothness? Does there exist a place in mathematics which would enable us to study the relationship between local and global quantities?" (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"Even though there are no methods to represent each differentiable function by an 'equation', we can still investigate differentiable functions by various analytic methods. Because of this, we can say that differentiable functions have more mathematical reality than continuous functions." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"Here we have the following question: 'Which concept is closer to the concept of differentiability -continuity or analyticity?' The answer depends upon the point of view. Our point of view is that continuity appears when we try to mathematically express continuously changing phenomena, and differentiability is the result of expressing smoothly changing phenomena." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"If each change of a certain quantity results in a corresponding change of another quantity, we can say that there exists a functional relationship between those two quantities. Viewed in this manner, the idea of functions expands endlessly. The concept of functions is truly comprehensive, but while it is all encompassing, it is not fathomless; at least, not with respect to our current subject of manifolds. You might feel that linear functions or quadratic functions are far too specific and that you are sinking into the depths of the ocean called functions. However, you will be rescued from the ocean depths by understanding of the functions that are needed to describe manifolds. These functions are continuous, analytic, and differentiable functions." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"[...] if we consider a topological space instead of a plane, then the question of whether the coordinates axes in that space are curved or straight becomes meaningless. The way we choose coordinate systems is related to the way we observe the property of smoothness in a topological space." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"If we know when a sequence approaches a point or, as we say, converges to a point, we can define a continuous mapping from one metric space to another by using the property that a converging sequence is mapped to the corresponding converging sequence." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"In abstract mathematics, special attention is given to particular properties of numbers. Then those properties are taken in a very pure (and primitive) form. Those properties in pure form are then assigned to a given set. Therefore, by studying in details the internal mathematical structure of a set, we should be able to clarify the meaning of original properties of the objects. Likewise, in set theory, numbers disappear and only the concept of sets and characteristic properties of sets remain." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"In view of the developments of abstract mathematics, the first thing mathematicians studied was how to extract the property of 'nearness' from the set of numbers. If the property of nearness could be extracted using a few axioms, and if it was possible to associate the extracted property with a set, then the resulting set would provide an abstract scene to study 'nearness'." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"Intuitively speaking, a visual representation associated with the concept of continuity is the property that a near object is sent to a corresponding near object, that is, a convergent sequence is sent to a corresponding convergent sequence." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"It is commonly said that the study of manifolds is, in general, the study of the generalization of the concept of surfaces. To some extent, this is true. However, defining it that way can lead to overshadowing by 'figures' such as geometrical surfaces." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"[...] moving from the concept of continuity to differentiability, and then to analyticity, we are moving from weaker properties to stronger ones. Therefore, the relations between the corresponding properties of functions can be expressed as follows: {continuous functions} > {differentiate functions} > {analytic functions}." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"Similarly to the graphs of continuous functions, graphs of differentiable (smooth) functions which coincide in a neighborhood of a point P can branch off outside of the neighborhood. Because of this property, differentiable functions can represent smoothly changing natural phenomena." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"The best example to indicate the rigidity of analytic functions is a soap film (with little viscosity) on a wire frame (think of a bubble blower). The soap film, which is created by the surface tension, stretches across the wire frame and is known to have analyticity. Therefore, if we try to change a certain region of the film by tapping it with a stick, then the film loses analyticity and will immediately brake." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"[...] the only characteristic property that continuous functions have is that near objects are sent to corresponding near objects, that is, a convergent sequence is mapped to the corresponding convergent sequence. It is reasonable to say that we cannot expect to extract from that property neither numerical consequences, nor a method to extensively study continuity. On the contrary, analytic functions can be represented by equations (precisely speaking, by infinite series). Compared to analytic functions, continuous functions, in general, are difficult to represent explicitly, although they exist as a concept." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"The property of smoothness includes the property of continuity. The notion of a topological space was born from the development of abstract algebra as a universal notion for the property of continuity." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"To consider differentiable functions, we must introduce a coordinate system on the plane and thereby to concentrate on the world of numbers.[...] a continuous function defined on a plane can be differentiable or nondifferentiable depending on the choice of coordinates. [...] the choice of coordinates on the plane determines which functions among the continuous functions should be selected as differentiable functions." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"To describe the property of smoothness, differentiable functions should be specified first. To do so, coordinates need to be introduced on the topological space. Those coordinates can be local coordinates such as the ones used by Gauss. Once coordinates are introduced around a point a in a topological space, differentiable functions near the point a are distinguished from the continuous functions in the region near a. If different coordinates are chosen, then a different set of differentiable functions is distinguished. In other words, the choice of local coordinates determines the notion of smoothness in a topological space." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"When the absolute concept of coordinate systems introduced by Descartes shifted to the relative concept of coordinate systems introduced by Gauss, a clear differences between continuity and differentiability emerged."  (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"When we study the concept of continuity by itself, numbers are not necessary as long as you are dealing with objects which have the property of 'nearness' . Therefore, if we can introduce the notion of 'nearness' detached from numbers from a purely abstract point of view, then we can discuss topics related to continuity based upon this notion. This approach enables us to become familiar with the science we call mathematics." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

24 January 2021

On Spacetime (2000-2019)

"Neither space nor time has any existence outside the system of evolving relationships that comprises the universe. Physicists refer to this feature of general relativity as background independence." (Lee Smolin, "Three Roads to Quantum Gravity", 2000)

"The relational picture of space and time has implications that are as radical as those of natural selection, not only for science but for our perspective on who we are and how we came to exist in this evolving universe of relations." (Lee Smolin, "Three Roads to Quantum Gravity", 2000)

"Time is described only in terms of change in the network of relationships that describes space." (Lee Smolin, "Three Roads to Quantum Gravity", 2000)

"In string theory one studies strings moving in a fixed classical spacetime. […] what we call a background-dependent approach. […] One of the fundamental discoveries of Einstein is that there is no fixed background. The very geometry of space and time is a dynamical system that evolves in time. The experimental observations that energy leaks from binary pulsars in the form of gravitational waves - at the rate predicted by general relativity to the […] accuracy of eleven decimal place - tell us that there is no more a fixed background of spacetime geometry than there are fixed crystal spheres holding the planets up." (Lee Smolin, "Loop Quantum Gravity", The New Humanists: Science at the Edge, 2003)

"Spacetime […] turns out to be discrete, described by a structure called spin foam." (Lee Smolin, “The New Humanists: Science at the Edge”, 2003)

"General relativity explains gravitation as a curvature, or bending, or warping, of the geometry of space-time, produced by the presence of matter. Free fall in a space shuttle around Earth, where space is warped, produces weightlessness, and is equivalent from the observer's point of view to freely moving in empty space where there is no large massive body producing curvature. In free fall we move along a 'geodesic' in the curved space-time, which is essentially a straight-line motion over small distances. But it becomes a curved trajectory when viewed at large distances. This is what produces the closed elliptical orbits of planets, with tiny corrections that have been correctly predicted and measured. Planets in orbits are actually in free fall in a curved space-time!" (Leon M Lederman & Christopher T Hill, "Symmetry and the Beautiful Universe", 2004)

"Space and time capture the imagination like no other scientific subject. For good reason. They form the arena of reality, the very fabric of the cosmos." (Brian Greene, "The Fabric of the Cosmos", 2004)

"The space and time of the universe that we humans inhabit contain symmetries. These are almost obvious yet subtle, even mysterious. Space and time form the stage upon which the dynamics - that is, the motion and interactions of the physical systems, atoms, atomic nuclei, protozoa, and people - are played out. The symmetries of space and time control the dynamics of the physical interactions of matter." (Leon M Lederman & Christopher T Hill, "Symmetry and the Beautiful Universe", 2004)

"Minkowski calls a spatial point existing at a temporal point a world point. These coordinates are now called 'space-time coordinates'. The collection of all imaginable value systems or the set of space-time coordinates Minkowski called the world. This is now called the manifold. The manifold is four-dimensional and each of its space-time points represents an event." (Friedel Weinert," The Scientist as Philosopher: Philosophical Consequences of Great Scientific Discoveries", 2005) 

"Mathematicians call the infinite curvature limit of spacetime a singularity. In this picture, then, the big bang emerges from a singularity. The best way to think about singularities is as boundaries or edges of spacetime. In this respect they are not, technically, part of spacetime itself." (Paul Davies," Cosmic Jackpot: Why Our Universe Is Just Right for Life", 2007) 

"We can describe general relativity using either of two mathematically equivalent ideas: curved space-time or metric field. Mathematicians, mystics and specialists in general relativity tend to like the geometric view because of its elegance. Physicists trained in the more empirical tradition of high-energy physics and quantum field theory tend to prefer the field view, because it corresponds better to how we (or our computers) do concrete calculations." (Frank Wilczek, "The Lightness of Being: Mass, Ether, and the Unification of Forces", 2008)

"The hypothesis underlying all approaches to the landscape is that there is a cosmological setting in which different regions or epochs of the universe can have different effective laws. This implies the existence of spacetime regions not directly observable […] These regions must either be in the past of our big bang, or far enough away from us to be causally unrelated." (Lee Smolin," A perspective on the landscape problem", 2012)

"One of the most crucial developments in theoretical physics was the move from theories dependent on fixed, non-dynamical background space-time structures to background-independent theories, in which the space-time structures themselves are dynamical entities. [...] Even today, many physicists and philosophers do not fully understand the significance of this development, let alone accept it in practice. One must assume that, in an empty region of space-time, the points have no inherent individuating properties - nor indeed are there any spatio-temporal relations between them - that do not depend on the presence of some metric tensor field. [...] Thus, general relativity became the first fully dynamical, background- independent space-time theory." (John Stachel, "The Hole Argument", 2014)

"For a moving object, time contracts. Not only is there no single time for different places - there is not even a single time for any particular place. A duration can be associated only with the movement of something, with a given trajectory." (Carlo Rovelli, "The Order of Time", 2018)

"Granularity is ubiquitous in nature: light is made of photons, the particles of light. The energy of electrons in atoms can acquire only certain values and not others. The purest air is granular, and so, too, is the densest matter. Once it is understood that Newton’s space and time are physical entities like all others, it is natural to suppose that they are also granular. Theory confirms this idea: loop quantum gravity predicts that elementary temporal leaps are small, but finite." (Carlo Rovelli, "The Order of Time", 2018

"Spacetime is a physical object like an electron. It, too, fluctuates. It, too, can be in a 'superposition' of different configurations." (Carlo Rovelli, "The Order of Time", 2018)

"The basic units in terms of which we comprehend the world are not located in some specific point in space. They are - if they are at all - in a where but also in a when. They are spatially but also temporally delimited: they are events." (Carlo Rovelli, "The Order of Time", 2018)

26 October 2019

Georg Cantor - Collected Quotes

"If two well-defined manifolds M and N can be coordinated with each other univocally and completely, element by element (which, if possible in one way, can always happen in many others), we shall employ in the sequel the expression, that those manifolds have the same power or, also, that they are equivalent." (Georg Cantor, "Ein Beitrag zur Mannigfaltigkeitslehre", 1878)

"I say that a manifold (a collection, a set) of elements that belong to any conceptual sphere is well-defined, when on the basis of its definition and as a consequence of the logical principle of excluded middle it must be regarded as internally determined, both whether an object pertaining to the same conceptual sphere belongs or not as an element to the manifold, and whether two objects belonging to the set are equal to each other or not, despite formal differences in the ways of determination." (Georg Cantor, "Ober unendliche, lineare Punktmannichfaltigkeiten", 1879)

"The old and oft-repeated proposition 'Totum est majus sua parte' [the whole is larger than the part] may be applied without proof only in the case of entities that are based upon whole and part; then and only then is it an undeniable consequence of the concepts 'totum' and 'pars'. Unfortunately, however, this 'axiom' is used innumerably often without any basis and in neglect of the necessary distinction between 'reality' and 'quantity' , on the one hand, and 'number' and 'set', on the other, precisely in the sense in which it is generally false." (Georg Cantor, "Über unendliche, lineare Punktmannigfaltigkeiten", Mathematische Annalen 20, 1882) 

"By a manifold or a set I understand in general every Many that can be thought of as One, i.e., every collection of determinate elements which can be bound up into a whole through a law, and with this I believe to define something that is akin to the Platonic εἷδος [form] or ἷδεα [idea]." (Georg Cantor, "Grundlagen einer allgemeinen Mannigfaltigkeitslehre", 1883) 

"If we now notice that all of the numbers previously obtained and their next successors fulfill a certain condition, [that the set of their predecessors is denumerable,] then this condition offers itself, if it is imposed as a requirement on all numbers to be formed next, as a new third principle [...] which I shall call principle of restriction or limitation and which, as I shall show, yields the result that the second number-class (II) defined with its assistance not only has a higher power than [the first number-class] (I), but precisely the next higher, that is, the second power." (Georg Cantor, "Grundlagen einer allgemeinen Mannigfaltigkeitslehre", 1883) 

"In order for there to be a variable quantity in some mathematical study, the domain of its variability must strictly speaking be known beforehand through a definition. However, this domain cannot itself be something variable, since otherwise each fixed support for the study would collapse. Thus this domain is a definite, actually infinite set of values. Hence each potential infinite, if it is rigorously applicable mathematically, presupposes an actual infinite." (Georg Cantor, "Über die verschiedenen Ansichten in Bezug auf die actualunendlichen Zahlen" ["Over the different views with regard to the actual infinite numbers"], 1886)

"There is no doubt that we cannot do without variable quantities in the sense of the potential infinite. But from this very fact the necessity of the actual infinite can be demonstrated." (Georg Cantor, "Über die verschiedenen Ansichten in Bezug auf die actualunendlichen Zahlen" ["Over the different views with regard to the actual infinite numbers"], 1886) 

"A set is a Many that allows itself to be thought of as a One." (Georg Cantor)

"An infinite set is one that can be put into a one-to-one correspondence with a proper subset of itself." (Georg Cantor)


"Every transfinite consistent multiplicity, that is, every transfinite set, must have a definite aleph as its cardinal number." (Georg Cantor)


"I realise that in this undertaking I place myself in a certain opposition to views widely held concerning the mathematical infinite and to opinions frequently defended on the nature of numbers." (Georg Cantor)


"In particular, in introducing new numbers, mathematics is only obliged to give definitions of them, by which such a definiteness and, circumstances permitting, such a relation to the older numbers are conferred upon them that in given cases they can definitely be distinguished from one another. As soon as a number satisfies all these conditions, it can and must be regarded as existent and real in mathematics. Here I perceive the reason why one has to regard the rational, irrational, and complex numbers as being just as thoroughly existent as the finite positive integers." (Georg Cantor)


"My theory stands as firm as a rock; every arrow directed against it will quickly return to the archer. How do I know this? Because I have studied it from all sides for many years; because I have examined all objections which have ever been made against the infinite numbers; and above all because I have followed its roots, so to speak, to the first infallible cause of all created things." (Georg Cantor)


"To ask the right question is harder than to answer it." (Georg Cantor)


"The essence of mathematics lies in its freedom." (Georg Cantor)


"The fear of infinity is a form of myopia that destroys the possibility of seeing the actual infinite, even though it in its highest form has created and sustains us, and in its secondary transfinite forms occurs all around us and even inhabits our minds." (Georg Cantor)
Related Posts Plugin for WordPress, Blogger...

On Leonhard Euler

"I have been able to solve a few problems of mathematical physics on which the greatest mathematicians since Euler have struggled in va...