Showing posts with label science. Show all posts
Showing posts with label science. Show all posts

29 June 2025

On Idealization: Science

"The belief that mathematics, because it is abstract, because it is static and cold and gray, is detached from life, is a mistaken belief. Mathematics, even in its purest and most abstract estate, is not detached from life. It is just the ideal handling of the problems of life, as sculpture may idealize a human figure or as poetry or painting may idealize a figure or a scene. Mathematics is precisely the ideal handling of the problems of life, and the central ideas of the science, the great concepts about which its stately doctrines have been built up, are precisely the chief ideas with which life must always deal and which, as it tumbles and rolls about them through time and space, give it its interests and problems, and its order and rationality. " (Cassius J Keyser, "The Humanization of the Teaching of Mathematics", 1912)

"Science is reduction. Mathematics is its ideal, its form par excellence, for it is in mathematics that assimilation, identification, is most perfectly realized. The universe, scientifically explained, would be a certain formula, one and eternal, regarded as the equivalent of the entire diversity and movement of things." (Émile Boutroux, "Natural law in Science and Philosophy", 1914)

"Scientific models have all these connotations. They are representations of states, objects, and events. They are idealized in the sense that they are less complicated than reality and hence easier to use for research purposes. These models are easier to manipulate and 'carry' than the real thing. The simplicity of models, compared with reality, lies in the fact that only the relevant properties of reality are represented." (Russell L Ackoff, "Scientific Method: optimizing applied research decisions", 1962) 

"We realize, however, that all scientific laws merely represent abstractions and idealizations expressing certain aspects of reality. Every science means a schematized picture of reality, in the sense that a certain conceptual construct is unequivocally related to certain features of order in reality […]" (Ludwig von Bertalanffy, "General System Theory", 1968)

"The idea of approximation to the truth is, in my view, one of the most important ideas in the theory of science. [...] The idea of approximation to the truth - like the idea of truth as are gulative principle - presupposes a realistic view of the world. It does not presuppose that reality is as our scientific theories describe it; but it does presuppose that there is a reality and that we and our theories - which are ideas we have ourselves created and are therefore always idealizations - can draw closer and closer to an adequate description of reality, if we employ the four-stage method of trial and error." (Karl R Popper, "The Logic and Evolution of Scientific Theory", [in "All Life is Problem Solving", 1999] 1972)

"[…] it does not seem helpful just to say that all models are wrong. The very word model implies simplification and idealization. The idea that complex physical, biological or sociological systems can be exactly described by a few formulae is patently absurd. The construction of idealized representations that capture important stable aspects of such systems is, however, a vital part of general scientific analysis and statistical models, especially substantive ones, do not seem essentially different from other kinds of model." (Sir David Cox, "Comment on ‘Model uncertainty, data mining and statistical inference’", Journal of the Royal Statistical Society, Series A 158, 1995)

"When scientists need to explain difficult points of theory, illustration by hypothetical example - rather than by total abstraction - works well (perhaps indispensably) as a rhetorical device. Such cases do not function as speculations in the pejorative sense - as silly stories that provide insight into complex mechanisms - but rather as idealized illustrations to exemplify a difficult point of theory." (Stephen Jay Gould, "Leonardo's Mountain of Clams and the Diet of Worms", 1998)

"Through modeling, scientists manipulate symbols with meanings to represent an environment with structure. Such manipulations take place to fulfill a human need, solve a problem, or create a product. When constructing a model, one works in the cognitive space of ideas. Models are used to encapsulate, highlight, replicate or represent patterns of events and the structures of things. Of course, no model provides an exact duplication of the subject matter being modeled. Details are hidden, features are skewed, and certain properties are emphasized. Models are abstract and idealized. As an abstraction, a model omits some features of the subject matter, while retaining only significant properties. As an idealization, a model depicts a subject's properties in a more perfect form." (Daniel Rothbart [Ed.], "Modeling: Gateway to the Unknown", 2004)

27 June 2025

On Heuristics: Trial and Error in Data Science

"We know the laws of trial and error, of large numbers and probabilities. We know that these laws are part of the mathematical and mechanical fabric of the universe, and that they are also at play in biological processes. But, in the name of the experimental method and out of our poor knowledge, are we really entitled to claim that everything happens by chance, to the exclusion of all other possibilities?" (Albert Claude, [Nobel Prize Lecture], 1974)

"Heuristics are rules of thumb that help constrain the problem in certain ways (in other words they help you to avoid falling back on blind trial and error), but they don't guarantee that you will find a solution. Heuristics are often contrasted with algorithms that will guarantee that you find a solution - it may take forever, but if the problem is algorithmic you will get there. However, heuristics are also algorithms." (S Ian Robertson, "Problem Solving", 2001)

"We can simplify the relationships between fragility, errors, and antifragility as follows. When you are fragile, you depend on things following the exact planned course, with as little deviation as possible - for deviations are more harmful than helpful. This is why the fragile needs to be very predictive in its approach, and, conversely, predictive systems cause fragility. When you want deviations, and you don’t care about the possible dispersion of outcomes that the future can bring, since most will be helpful, you are antifragile. Further, the random element in trial and error is not quite random, if it is carried out rationally, using error as a source of information. If every trial provides you with information about what does not work, you start zooming in on a solution - so every attempt becomes more valuable, more like an expense than an error. And of course you make discoveries along the way." (Nassim N Taleb, "Antifragile: Things that gain from disorder", 2012)

"Another crowning achievement of deep learning is its extension to the domain of reinforcement learning. In the context of reinforcement learning, an autonomous agent must learn to perform a task by trial and error, without any guidance from the human operator." (Ian Goodfellow et al, "Deep Learning", 2015)

"Bayesian networks provide a more flexible representation for encoding the conditional independence assumptions between the features in a domain. Ideally, the topology of a network should reflect the causal relationships between the entities in a domain. Properly constructed Bayesian networks are relatively powerful models that can capture the interactions between descriptive features in determining a prediction." (John D Kelleher et al, "Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, worked examples, and case studies", 2015) 

"A learning algorithm for a robot or a software agent to take actions in an environment so as to maximize the sum of rewards through trial and error." (Tomohiro Yamaguchi et al, "Analyzing the Goal-Finding Process of Human Learning With the Reflection Subtask", 2018)

"Reinforcement learning is also a subset of AI algorithms which creates independent, self-learning systems through trial and error. Any positive action is assigned a reward and any negative action would result in a punishment. Reinforcement learning can be used in training autonomous vehicles where the goal would be obtaining the maximum rewards." (Vijayaraghavan Varadharajan & Akanksha Rajendra Singh, "Building Intelligent Cities: Concepts, Principles, and Technologies", 2021)

"Methodologically, much of modern machine learning practice rests on a variant of trial and error, which we call the train-test paradigm. Practitioners repeatedly build models using any number of heuristics and test their performance to see what works. Anything goes as far as training is concerned, subject only to computational constraints, so long as the performance looks good in testing. Trial and error is sound so long as the testing protocol is robust enough to absorb the pressure placed on it." (Moritz Hardt & Benjamin Recht, "Patterns, Predictions, and Actions: Foundations of Machine Learning", 2022)

25 June 2025

On Heuristics: Trial and Error in Science

"The one lesson that comes out of all our theorizing and experimenting is that there is only one really scientific progressive method; and that is the method of trial and error." (George B Shaw, "The Doctor's Dilemma: Preface on Doctors", 1909)

"There are many men now living who were in the habit of using the age-old expression: 'It is as impossible as flying.' The discoveries in physical science, the triumphs in invention, attest the value of the process of trial and error. In large measure, these advances have been due to experimentation." (Louis Brandeis, "Dissent, New State Ice Co. v. Liebmann, 285 U.S. 262", 1932)

"The discoveries in physical science, the triumphs in invention, attest the value of the process of trial and error. In large measure, these advances have been due to experimentation." (Louis Brandeis, "Judicial opinions", 1932)

"But I believe that there is no philosophical high-road in science, with epistemological signposts. No, we are in a jungle and find our way by trial and error, building our road behind us as we proceed. We do not find signposts at cross-roads, but our own scouts erect them, to help the rest." (Max Born, "Experiment and Theory in Physics", 1943)

"The method of learning by trial and error - of learning from our mistakes - seems to be fundamentally the same whether it is practised by lower or by higher animals, by chimpanzees or by men of science." (Karl Popper, "Conjectures and Refutations: The Growth of Scientific Knowledge", 1963)

"The difference between the amoeba and Einstein is that, although both make use of the method of trial and error elimination, the amoeba dislikes erring while Einstein is intrigued by it [...]" (Karl R Popper, "Objective Knowledge: An Evolutionary Approach", 1972) 

"Science progresses by trial and error, by conjectures and refutations. Only the fittest theories survive." (Alan Chalmers, "What Is This Thing Called Science?", 1976)

"The great revolutions in science are almost always the result of unexpected intuitive leaps. After all, what is science if not the posing of difficult puzzles by the universe? Mother Nature does something interesting, and challenges the scientist to figure out how she does it. In many cases the solution is not found by exhaustive trial and error […] or even by a deduction based on the relevant knowledge." (Martin Gardner, "Aha! Insight", 1978)

"I believe people can solve complex problems eventually. By repeated trial and error they will get there; but they need a long time. At this point I agree with Herbert Simon. People do not learn immediately, as those rational expectations models seem to imply. I don't believe that. The statement that assumptions do not matter is nonsense. It is funny. Yes, I assume people are consistent in their behavior. I assume that not because I believe everybody actually is, but because I believe, on the average, you do not get too far from it." (Franco Modigliani, "Conversations with Economists", 1983)

"Science usually amounts to a lot more than blind trial and error. Good statistics consists of much more than just significance tests; there are more sophisticated tools available for the analysis of results, such as confidence statements, multiple comparisons, and Bayesian analysis, to drop a few names. However, not all scientists are good statisticians, or want to be, and not all people who are called scientists by the media deserve to be so described." (Robert Hooke, "How to Tell the Liars from the Statisticians", 1983)

"Whatever humans have learned had to be learned as a consequence only of trial and error experience. Humans have learned only through mistakes." (R Buckminster Fuller, "Intuition", 1983)

"Growth is a process of experimentation, a series of trials, errors, and occasional victories. The failed experiments are as much as part of the process as the experiments that work." (Chérie Carter-Scott, "If Life Is a Game, These Are the Rules", 1998)

"The natural as well as the social sciences always start from problems, from the fact that something inspires amazement in us, as the Greek philosophers used to say. To solve these problems, the sciences use fundamentally the same method that common sense employs, the method of trial and error. To be more precise, it is the method of trying out solutions to our problem and then discarding the false ones as erroneous. This method assumes that we work with a large number of experimental solutions. One solution after another is put to the test and eliminated." (Karl R Popper, "All Life is Problem Solving", 1999)

"We can simplify the relationships between fragility, errors, and antifragility as follows. When you are fragile, you depend on things following the exact planned course, with as little deviation as possible - for deviations are more harmful than helpful. This is why the fragile needs to be very predictive in its approach, and, conversely, predictive systems cause fragility. When you want deviations, and you don’t care about the possible dispersion of outcomes that the future can bring, since most will be helpful, you are antifragile. Further, the random element in trial and error is not quite random, if it is carried out rationally, using error as a source of information. If every trial provides you with information about what does not work, you start zooming in on a solution - so every attempt becomes more valuable, more like an expense than an error. And of course you make discoveries along the way." (Nassim N Taleb, "Antifragile: Things that gain from disorder", 2012)

31 March 2025

On Mistakes, Blunders and Errors X: Data Science

"Measurement, we have seen, always has an element of error in it. The most exact description or prediction that a scientist can make is still only approximate." (Abraham Kaplan, "The Conduct of Inquiry: Methodology for Behavioral Science", 1964)

"[…] it is not enough to say: 'There's error in the data and therefore the study must be terribly dubious'. A good critic and data analyst must do more: he or she must also show how the error in the measurement or the analysis affects the inferences made on the basis of that data and analysis." (Edward R Tufte, "Data Analysis for Politics and Policy", 1974)

"Many scientists who work not just with noise but with probability make a common mistake: They assume that a bell curve is automatically Gauss's bell curve. Empirical tests with real data can often show that such an assumption is false. The result can be a noise model that grossly misrepresents the real noise pattern. It also favors a limited view of what counts as normal versus non-normal or abnormal behavior. This assumption is especially troubling when applied to human behavior. It can also lead one to dismiss extreme data as error when in fact the data is part of a pattern." (Bart Kosko, "Noise", 2006

"In bagging, generating complementary base-learners is left to chance and to the unstability of the learning method. In boosting, we actively try to generate complementary base-learners by training the next learner boosting on the mistakes of the previous learners." (Ethem Alpaydin, "Introduction to Machine Learning" 2nd Ed, 2010)

"When data is not normal, the reason the formulas are working is usually the central limit theorem. For large sample sizes, the formulas are producing parameter estimates that are approximately normal even when the data is not itself normal. The central limit theorem does make some assumptions and one is that the mean and variance of the population exist. Outliers in the data are evidence that these assumptions may not be true. Persistent outliers in the data, ones that are not errors and cannot be otherwise explained, suggest that the usual procedures based on the central limit theorem are not applicable." (DeWayne R Derryberry, "Basic data analysis for time series with R", 2014)

"There are two kinds of mistakes that an inappropriate inductive bias can lead to: underfitting and overfitting. Underfitting occurs when the prediction model selected by the algorithm is too simplistic to represent the underlying relationship in the dataset between the descriptive features and the target feature. Overfitting, by contrast, occurs when the prediction model selected by the algorithm is so complex that the model fits to the dataset too closely and becomes sensitive to noise in the data." (John D Kelleher et al, "Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies", 2015)

"[...] data often has some errors, outliers and other strange values, but these do not necessarily need to be individually identified and excluded. It also points to the benefits of using summary measures that are not unduly affected by odd observations [...] are known as robust measures, and include the median and the inter-quartile range." (David Spiegelhalter, "The Art of Statistics: Learning from Data", 2019)

"Statistical models have two main components. First, a mathematical formula that expresses a deterministic, predictable component, for example the fitted straight line that enables us to make a prediction [...]. But the deterministic part of a model is not going to be a perfect representation of the observed world [...] and the difference between what the model predicts, and what actually happens, is the second component of a model and is known as the residual error - although it is important to remember that in statistical modelling, ‘error’ does not refer to a mistake, but the inevitable inability of a model to exactly represent what we observe." (David Spiegelhalter, "The Art of Statistics: Learning from Data", 2019)

"There are many ways for error to creep into facts and figures that seem entirely straightforward. Quantities can be miscounted. Small samples can fail to accurately reflect the properties of the whole population. Procedures used to infer quantities from other information can be faulty. And then, of course, numbers can be total bullshit, fabricated out of whole cloth in an effort to confer credibility on an otherwise flimsy argument. We need to keep all of these things in mind when we look at quantitative claims. They say the data never lie - but we need to remember that the data often mislead." (Carl T Bergstrom & Jevin D West, "Calling Bullshit: The Art of Skepticism in a Data-Driven World", 2020)

30 March 2025

On Mistakes, Blunders and Errors XIII: Science

"Knowledge being to be had only of visible and certain truth, error is not a fault of our knowledge, but a mistake of our judgment, giving assent to that which is not true." (John Locke, "An Essay Concerning Human Understanding", 1689)

"Assert nothing till after repeated experiments and examinations, in all lights, and in all positions. Truth alone is the matter that you are in search after; and if you have been mistaken, let not vanity seduce you to persist in your mistake." (Henry Baker, "The Microscope Made Easy", 1742)

"The only method of preventing such errors from taking place, and of correcting them when formed, is to restrain and simplify our reasoning as much as possible. This depends entirely upon ourselves, and the neglect of it is the only source of our mistakes." (Antoine-Laurent de Lavoisier, "Elements of Chemistry in a New Systematic Order", 1790)

"Hypotheses are scaffoldings erected in front of a building and then dismantled when the building is finished. They are indispensable for the workman; but you mustn't mistake the scaffolding for the building." (Johann Wolfgang von Goethe, "Maxims and Reflections", 1833) 

"Experimental science hardly ever affords us more than approximations to truth; and whenever many agents are concerned we are in great danger of being mistaken." (Sir Humphry Davy, cca. 1836)

"We learn wisdom from failure much more than from success. We often discover what will do, by finding out what will not do; and probably he who never made a mistake never made a discovery." (Samuel Smiles, "Facilities and Difficulties", 1859)

"It has often been said that, to make discoveries, one must be ignorant. This opinion, mistaken in itself, nevertheless conceals a truth. It means that it is better to know nothing than to keep in mind fixed ideas based on theories whose confirmation we constantly seek, neglecting meanwhile everything that fails to agree with them." (Claude Bernard, "An Introduction to the Study of Experimental Medicine", 1865)

"It is surprising to learn the number of causes of error which enter into the simplest experiment, when we strive to attain rigid accuracy." (William S Jevons, "The Principles of Science: A Treatise on Logic and Scientific Method", 1874)

"Perfect readiness to reject a theory inconsistent with fact is a primary requisite of the philosophic mind. But it, would be a mistake to suppose that this candour has anything akin to fickleness; on the contrary, readiness to reject a false theory may be combined with a peculiar pertinacity and courage in maintaining an hypothesis as long as its falsity is not actually apparent. (William S Jevons, "The Principles of Science", 1874)

"There cannot be a greater mistake than that of looking superciliously upon the practical applications of science. The life and soul of science is its practical application; and just as the great advances in mathematics have been made through the desire of discovering the solution of problems which were of a highly practical kind in mathematical science, so in physical science many of the greatest advances that have been made from the beginning of the world to the present time have been made in earnest desire to turn the knowledge of the properties of matter to some purpose useful to mankind." (William T Kelvin, "Electrical Units of Measurement", 1883)

"It sounds paradoxical to say the attainment of scientific truth has been effected, to a great extent, by the help of scientific errors." (Thomas H Huxley, "The Progress of Science", 1887)

"The man of science, who, forgetting the limits of philosophical inquiry, slides from these formulæ and symbols into what is commonly understood by materialism, seems to me to place himself on a level with the mathematician, who should mistake the x's and y's with which he works his problems for real entities - and with this further disadvantage, as compared with the mathematician, that the blunders of the latter are of no practical consequence, while the errors of systematic materialism may paralyse the energies and destroy the beauty of a life." (Thomas H Huxley, "Method and Results", 1893)

"The scientific spirit is of more value than its products, and irrationally held truths may be more harmful than reasoned errors." (Thomas H Huxley, "Darwiniana", 1893–94)

"The folly of mistaking a paradox for a discovery, a metaphor for a proof, a torrent of verbiage for a spring of capital truths, and oneself for an oracle, is inborn in us." (Paul Valéry, "Introduction to the Method of Leonardo da Vinci", 1895)

"It is a great mistake to suppose that the mind of the active scientist is filled with pro-positions which, if not proved beyond all reasonable cavil, are at least extremely probable. On the contrary, he entertains hypotheses which are almost wildly incredible, and treats them with respect for the time being. Why does he do this? Simply because any scientific proposition whatever is always liable to be refuted and dropped at short notice. A hypothesis is something which looks as if it might be true and were true, and which is capable of verification or refutation by comparison with facts. The best hypothesis, in the sense of the one most recommending itself to the inquirer, is the one which can be the most readily refuted if it is false." (Charles S Peirce, 1896)

"The scientific value of truth is not, however, ultimate or absolute. It rests partly on practical, partly on aesthetic interests. As our ideas are gradually brought into conformity with the facts by the painful process of selection, - for intuition runs equally into truth and into error, and can settle nothing if not controlled by experience, - we gain vastly in our command over our environment. This is the fundamental value of natural science" (George Santayana, "The Sense of Beauty: Being the Outlines of Aesthetic Theory", 1896)

"It would be a mistake to suppose that a science consists entirely of strictly proved theses, and it would be unjust to require this. […] Science has only a few apodeictic propositions in its catechism: the rest are assertions promoted by it to some particular degree of probability. It is actually a sign of a scientific mode of thought to find satisfaction in these approximations to certainty and to be able to pursue constructive work further in spite of the absence of final confirmation." (Sigmund Freud, "Introductory Lectures on Psycho-Analysis", 1916)

"The mistake from which todays’ science suffers is that the theoreticians are concerned too unilaterally with precision mathematics, while the practitioners use a sort of approximate mathematics, without being in touch with precision mathematics through which they could reach a real approximation mathematics." (Felix Klein, "Elementary Mathematics from a Higher Standpoint" Vol III: "Precision Mathematics and Approximation Mathematics", 1928)

"More than any other science, mathematics develops through a sequence of consecutive abstractions. A desire to avoid mistakes forces mathematicians to find and isolate the essence of problems and the entities considered. Carried to an extreme, this procedure justifies the well-known joke that a mathematician is a scientist who knows neither what he is talking about nor whether whatever he is talking about exists or not." (Élie Cartan, 1940) 

"Men of science have made abundant mistakes of every kind; their knowledge has improved only because of their gradual abandonment of ancient errors, poor approximations, and premature conclusions." (George Sarton, "A History of Science" Vol 2, 1952)

"Nature is more subtle, more deeply intertwined and more strangely integrated than any of our pictures of her - than any of our errors. It is not merely that our pictures are not full enough; each of our pictures in the end turns out to be so basically mistaken that the marvel is that it worked at all." (Jacob Bronowski, "The Common Sense of Science", 1953) 

"Men of science have made abundant mistakes of every kind; their knowledge has improved only because of their gradual abandonment of ancient errors, poor approximations, and premature conclusions." (George Sarton, "A History of Science" Vol. 2, 1959)

"[…] the progress of science is a little like making a jig-saw puzzle. One makes collections of pieces which certainly fit together, though at first it is not clear where each group should come in the picture as a whole, and if at first one makes a mistake in placing it, this can be corrected later without dismantling the whole group." (Sir George Thomson, "The Inspiration of Science", 1961)

"All discoveries in art and science result from an accumulation of errors." (Marshall McLuhan, "Culture Is Our Business", 1970)

"Early scientific thinking was holistic, but speculative - the modern scientific temper reacted by being empirical, but atomistic. Neither is free from error, the former because it replaces factual inquiry with faith and insight, and the latter because it sacrifices coherence at the altar of facticity. We witness today another shift in ways of thinking: the shift toward rigorous but holistic theories. This means thinking in terms of facts and events in the context of wholes, forming integrated sets with their own properties and relationships." (Ervin László, "Introduction to Systems Philosophy", 1972)

"The point is that every experiment involves an error, the magnitude of which is not known beforehand and it varies from one experiment to another. For this reason, no matter what finite number of experiments have been carried out, the arithmetic mean of the values obtained will contain an error. Of course, if the experiments are conducted under identical conditions and the errors are random errors, then the error of the mean will diminish as the number of experiments is increased, but it cannot be reduced to zero for a finite number of experiments. […] The choice of entities for an experiment must be perfectly random, so that even an apparently inessential cause could not lead to erroneous conclusions." (Yakov Khurgin, "Did You Say Mathematics?", 1974)

"[…] in most sciences the question Why? is forbidden and the answer is actually to the question, How? Science is much better in explaining than in understanding, but it likes to mistake one for the other." (Erwin Chargaff, "Voices in the Labyrinth", Perspectives in Biology and Medicine Vol. 18, 1975)

"Early scientific thinking was holistic, but speculative - the modern scientific temper reacted by being empirical, but atomistic. Neither is free from error, the former because it replaces factual inquiry with faith and insight, and the latter because it sacrifices coherence at the altar of facticity. We witness today another shift in ways of thinking: the shift toward rigorous but holistic theories. This means thinking in terms of facts and events in the context of wholes, forming integrated sets with their own properties and relationships." (Ervin László, "Introduction to Systems Philosophy", 1972)

"Whatever humans have learned had to be learned as a consequence only of trial and error experience. Humans have learned only through mistakes." (Buckminster Fuller, "R Buckminster Fuller on education", 1979)

"What shows a theory to be inadequate or mistaken is not, as a rule, the discovery of a mistake in the information that led us to propound it; more often it is the contradictory evidence of a new observation which we were led to make because we held that theory." (Sir Peter B Medawar, "Pluto’s Republic: Incorporating the Art of the Soluble and Induction Intuition in Scientific Thought", 1982)

"Science usually amounts to a lot more than blind trial and error. Good statistics consists of much more than just significance tests; there are more sophisticated tools available for the analysis of results, such as confidence statements, multiple comparisons, and Bayesian analysis, to drop a few names. However, not all scientists are good statisticians, or want to be, and not all people who are called scientists by the media deserve to be so described." (Robert Hooke, "How to Tell the Liars from the Statisticians", 1983)

"[...] we learn only through trial and error. Our trials, however, are always our hypotheses. They stem from us, not from the external world. All we learn from the external world is that some of our efforts are mistaken." (Karl R Popper, "The Epistemological Position of Evolutionary Epistemology", [in "All Life is Problem Solving", 1999] 1987)

"Humans may crave absolute certainty; they may aspire to it; they may pretend, as partisans of certain religions do, to have attained it. But the history of science - by far the most successful claim to knowledge accessible to humans - teaches that the most we can hope for is successive improvement in our understanding, learning from our mistakes, an asymptotic approach to the Universe, but with the proviso that absolute certainty will always elude us. We will always be mired in error. The most each generation can hope for is to reduce the error bars a little, and to add to the body of data to which error bars apply." (Carl Sagan, "The Demon-Haunted World: Science as a Candle in the Dark", 1995)

"It is important to distinguish between the scientific concept of law as a generalization, and the social concept of law which is prescriptive and normative. A desire for tolerance in respecting the laws of different social systems must not lead us into the mistake of attributing volition to the entities of science or relativism to scientific laws." (Mordechai Ben-Ari, "Just a Theory: Exploring the Nature of Science", 2005)

"The human mind delights in finding pattern - so much so that we often mistake coincidence or forced analogy for profound meaning. No other habit of thought lies so deeply within the soul of a small creature trying to make sense of a complex world not constructed for it." (Stephen J Gould, "The Flamingo's Smile: Reflections in Natural History", 2010)

"No definition of a social problem is perfect, but there are two principal ways such definitions can be flawed. On the one hand, we may worry that a definition is too broad, that it encompasses more than it ought to include. That is, broad definitions identify some cases as part of the problem that we might think ought not to be included; statisticians call such cases false positives (that is, they mistakenly identify cases as part of the problem). On the other hand, a definition that is too narrow excludes cases that we might think ought to be included; these are false negatives (incorrectly identified as not being part of the problem)." (Joel Best, "Damned Lies and Statistics: Untangling Numbers from the Media, Politicians, and Activists", 2001)

"One should never mistake pattern for meaning." (Iain Banks, "The Hydrogen Sonata",  2012)

"A theory is a supposition which we hope to be true, a hypothesis is a supposition which we expect to be useful; fictions belong to the realm of art; if made to intrude elsewhere, they become either make-believes or mistakes." (G Johnstone Stoney)

"Science with its strict analysis of the facts, its persevering search for new, more consummate truths, and its relentless struggle against discovered mistakes and prejudices - science must saturate all or technics, our culture, and everyday life." (Abram F Joffe)

14 January 2025

On Science: Definitions

"By Science is understood a Knowledge acquired by, or founded on clear and self evident Principles, whence it follows that the Mathematicks may truly be stiled such." (Jacques Ozanam, "A Mathematical Dictionary: Or; A Compendious Explication of All Mathematical Terms", 1702)

"Science is nothing but the finding of analogy, identity, in the most remote parts." (Ralph W Emerson, 1837)

"Science is the systematic classification of experience." (George H Lewes, "The Physical Basis of Mind", 1877)

"Science is the observation of things possible, whether present or past; prescience is the knowledge of things which may come to pass, though but slowly." (Leonardo da Vinci, "The Notebooks of Leonardo da Vinci", 1883)

"Science is not the monopoly of the naturalist or the scholar, nor is it anything mysterious or esoteric. Science is the search for truth, and truth is the adequacy of a description of facts." (Paul Carus, "Philosophy as a Science", 1909)

"Abstract as it is, science is but an outgrowth of life. That is what the teacher must continually keep in mind. […] Let him explain […] science is not a dead system - the excretion of a monstrous pedantism - but really one of the most vigorous and exuberant phases of human life." (George A L Sarton, "The Teaching of the History of Science", The Scientific Monthly, 1918)

"Science is but a method. Whatever its material, an observation accurately made and free of compromise to bias and desire, and undeterred by consequence, is science." (Hans Zinsser, "Untheological Reflections", The Atlantic Monthly, 1929)

"Science is a system of statements based on direct experience, and controlled by experimental verification. Verification in science is not, however, of single statements but of the entire system or a sub-system of such statements." (Rudolf Carnap, "The Unity of Science", 1934)

"Science is the attempt to discover, by means of observation, and reasoning based upon it, first, particular facts about the world, and then laws connecting facts with one another and (in fortunate cases) making it possible to predict future occurrences." (Bertrand Russell, "Religion and Science, Grounds of Conflict", 1935)

"Science is the attempt to make the chaotic diversity of our sense experience correspond to a logically uniform system of thought." (Albert Einstein, "Considerations Concerning the Fundaments of Theoretical Physics", Science Vol. 91 (2369), 1940)

"Science is the organised attempt of mankind to discover how things work as causal systems. The scientific attitude of mind is an interest in such questions. It can be contrasted with other attitudes, which have different interests; for instance the magical, which attempts to make things work not as material systems but as immaterial forces which can be controlled by spells; or the religious, which is interested in the world as revealing the nature of God." (Conrad H Waddington, "The Scientific Attitude", 1941)

"Science, in the broadest sense, is the entire body of the most accurately tested, critically established, systematized knowledge available about that part of the universe which has come under human observation. For the most part this knowledge concerns the forces impinging upon human beings in the serious business of living and thus affecting man’s adjustment to and of the physical and the social world. […] Pure science is more interested in understanding, and applied science is more interested in control […]" (Austin L Porterfield, "Creative Factors in Scientific Research", 1941)

"Science is an interconnected series of concepts and schemes that have developed as a result of experimentation and observation and are fruitful of further experimentation and observation."(James B Conant, "Science and Common Sense", 1951)

"Science is the creation of concepts and their exploration in the facts. It has no other test of the concept than its empirical truth to fact." (Jacob Bronowski, "Science and Human Values", 1956)

"Science is the reduction of the bewildering diversity of unique events to manageable uniformity within one of a number of symbol systems, and technology is the art of using these symbol systems so as to control and organize unique events. Scientific observation is always a viewing of things through the refracting medium of a symbol system, and technological praxis is always handling of things in ways that some symbol system has dictated. Education in science and technology is essentially education on the symbol level." (Aldous L Huxley, "Essay", Daedalus, 1962)

"What, then, is science according to common opinion? Science is what scientists do. Science is knowledge, a body of information about the external world. Science is the ability to predict. Science is power, it is engineering. Science explains, or gives causes and reasons." (John Bremer "What Is Science?" [in "Notes on the Nature of Science"], 1962)

"Science is a matter of disinterested observation, patient ratiocination within some system of logically correlated concepts. In real-life conflicts between reason and passion the issue is uncertain. Passion and prejudice are always able to mobilize their forces more rapidly and press the attack with greater fury; but in the long run (and often, of course, too late) enlightened self-interest may rouse itself, launch a counterattack and win the day for reason." (Aldous L Huxley, "Literature and Science", 1963)

"Science is a way to teach how something gets to be known, what is not known, to what extent things are known (for nothing is known absolutely), how to handle doubt and uncertainty, what the rules of evidence are, how to think about things so that judgments can be made, how to distinguish truth from fraud, and from show." (Richard P Feynman, "The Problem of Teaching Physics in Latin America", Engineering and Science, 1963)

"Science is a product of man, of his mind; and science creates the real world in its own image." (Frank E Egler, "The Way of Science", 1970)

"Science is systematic organisation of knowledge about the universe on the basis of explanatory hypotheses which are genuinely testable. Science advances by developing gradually more comprehensive theories; that is, by formulating theories of greater generality which can account for observational statements and hypotheses which appear as prima facie unrelated." (Francisco J Ayala, "Studies in the Philosophy of Biology: Reduction and Related Problems", 1974)

"Science is not a heartless pursuit of objective information. It is a creative human activity, its geniuses acting more as artists than information processors. Changes in theory are not simply the derivative results of the new discoveries but the work of creative imagination influenced by contemporary social and political forces." (Stephen J Gould, "Ever Since Darwin: Reflections in Natural History", 1977)

"Science is a process. It is a way of thinking, a manner of approaching and of possibly resolving problems, a route by which one can produce order and sense out of disorganized and chaotic observations. Through it we achieve useful conclusions and results that are compelling and upon which there is a tendency to agree." (Isaac Asimov, "‘X’ Stands for Unknown", 1984)

"Science is defined as a set of observations and theories about observations." (F Albert Matsen, "The Role of Theory in Chemistry", Journal of Chemical Education Vol. 62 (5), 1985)

"We believe that science, in all its sense, is a social process that both causes and is caused by social organisation."  (Richard Levins & Richard C Lewontin, "The Dialectical Biologist", 1985)

"Science is human experience systematically extended (by intent, methodology and instrumentation) for the purpose of learning more about the natural world and for the critical empirical testing and possible falsification of all ideas about the natural world. Scientific hypotheses may incorporate only elements of the natural empirical world, and thus may contain no element of the supernatural." (Robert E Kofahl, Correctly Redefining Distorted Science: A Most Essential Task", Creation Research Society Quarterly Vol. 23, 1986)

"Science is not a given set of answers but a system for obtaining answers. The method by which the search is conducted is more important than the nature of the solution. Questions need not be answered at all, or answers may be provided and then changed. It does not matter how often or how profoundly our view of the universe alters, as long as these changes take place in a way appropriate to science. For the practice of science, like the game of baseball, is covered by definite rules." (Robert Shapiro, "Origins: A Skeptic’s Guide to the Creation of Life on Earth", 1986)

"Science doesn't purvey absolute truth. Science is a mechanism. It's a way of trying to improve your knowledge of nature. It's a system for testing your thoughts against the universe and seeing whether they match. And this works, not just for the ordinary aspects of science, but for all of life. I should think people would want to know that what they know is truly what the universe is like, or at least as close as they can get to it." (Isaac Asimov, [Interview by Bill Moyers] 1988)

"Science doesn’t purvey absolute truth. Science is a mechanism, a way of trying to improve your knowledge of nature. It’s a system for testing your thoughts against the universe, and seeing whether they match." (Isaac Asimov, [interview with Bill Moyers in The Humanist] 1989)

"Science is (or should be) a precise art. Precise, because data may be taken or theories formulated with a certain amount of accuracy; an art, because putting the information into the most useful form for investigation or for presentation requires a certain amount of creativity and insight." (Patricia H Reiff, "The Use and Misuse of Statistics in Space Physics", Journal of Geomagnetism and Geoelectricity 42, 1990)

"Science is not about control. It is about cultivating a perpetual condition of wonder in the face of something that forever grows one step richer and subtler than our latest theory about it. It is about  reverence, not mastery." (Richard Power, "Gold Bug Variations", 1993)

"Clearly, science is not simply a matter of observing facts. Every scientific theory also expresses a worldview. Philosophical preconceptions determine where facts are sought, how experiments are designed, and which conclusions are drawn from them." (Nancy R Pearcey & Charles B. Thaxton, "The Soul of Science: Christian Faith and Natural Philosophy", 1994)

"Science is more than a mere attempt to describe nature as accurately as possible. Frequently the real message is well hidden, and a law that gives a poor approximation to nature has more significance than one which works fairly well but is poisoned at the root." (Robert H March, "Physics for Poets", 1996)

"Mathematics is the study of analogies between analogies. All science is. Scientists want to show that things that don’t look alike are really the same. That is one of their innermost Freudian motivations. In fact, that is what we mean by understanding." (Gian-Carlo Rota, "Indiscrete Thoughts", 1997)

"Religion is the antithesis of science; science is competent to illuminate all the deep questions of existence, and does so in a manner that makes full use of, and respects the human intellect. I see neither need nor sign of any future reconciliation." (Peter W Atkins, "Religion - The Antithesis to Science", 1997)

"Science is the art of the appropriate approximation. While the flat earth model is usually spoken of with derision it is still widely used. Flat maps, either in atlases or road maps, use the flat earth model as an approximation to the more complicated shape." (Byron K. Jennings, "On the Nature of Science", Physics in Canada Vol. 63 (1), 2007)

"Science isn’t about being right. It is about convincing others of the correctness of an idea through a methodology all will accept using data everyone can trust. New ideas take time to be accepted because they compete with others that have already passed the test." (Tom Koch, "Commentary: Nobody loves a critic: Edmund A Parkes and John Snow’s cholera", International Journal of Epidemiology Vol. 42 (6), 2013)

"Science, at its core, is simply a method of practical logic that tests hypotheses against experience. Scientism, by contrast, is the worldview and value system that insists that the questions the scientific method can answer are the most important questions human beings can ask, and that the picture of the world yielded by science is a better approximation to reality than any other." (John M Greer, "After Progress: Reason and Religion at the End of the Industrial Age", 2015)

26 October 2024

Richard B Braithwaite - Collected Quotes

"It has been a fortunate fact in the modern history of physical science that the scientist constructing a new theoretical system has nearly always found that the mathematics [...] required [...] had already been worked out by pure mathematicians for their own amusement [...] The moral for statesmen would seem to be that, for proper scientific 'planning' , pure mathematics should be endowed fifty years ahead of scientists." (Richard B Braithwaite, "Scientific Explanation: A Study of the Function of Theory, Probability and Law in Science", 1953)

"[...] no batch of observations, however large, either definitively rejects or definitively fails to reject the hypothesis H0." (Richard B Braithwaite, "Scientific Explanation: A Study of the Function of Theory, Probability and Law in Science", 1953)

"The peaks of science may appear to be floating in the clouds, but their foundations are in the hard facts of experience." (Richard B Braithwaite, "Scientific Explanation: A Study of the Function of Theory, Probability and Law in Science", 1953)

"The peculiarity of [...] statistical hypotheses is that they are not conclusively refutable by any experience." (Richard B Braithwaite, "Scientific Explanation: A Study of the Function of Theory, Probability and Law in Science", 1953)

"The ultimate justification for any scientific belief will depend upon the main purpose for which we think scientifically - that of predicting and thereby controlling the future." (Richard B Braithwaite, "Scientific Explanation: A Study of the Function of Theory, Probability and Law in Science", 1953)

"The world is not made up of empirical facts with the addition of the laws of nature: what we call the laws of nature are conceptual devices by which we organize our empirical knowledge and predict the future." (Richard B Braithwaite, "Scientific Explanation: A Study of the Function of Theory, Probability and Law in Science", 1953)





19 October 2024

On Method VI (Scientific Method)

"[...] scientific method is simply the attempt to acquire knowledge of general laws directly or indirectly by experience, by the use of our five senses. The only limitations that can be assigned to the applicability of this process are those due to the character of experience. Anything that is logically related to experience by discoverable laws and is capable of description in general terms can be dealt with by the scientific method." (Arthur D Ritchie, "Scientific Method: An Inquiry Into the Character and Validity of Natural Laws", 1923)

"Science attempts to establish an understanding of all types of phenomena. Many different explanations can sometimes be given that agree qualitatively with experiments or observations. However, when theory and experiment quantitatively agree, then we can usually be more confident in the validity of the theory. In this manner mathematics becomes an integral part of the scientific method." (Richard Haberman, "Mathematical Models: Mechanical Vibrations, Population Dynamics, and Traffic Flow", 1998)

"Scientific method is not much different from our day-to-day ways of learning about the world. Without really thinking about the steps or the standards, common sense invokes the same process of evidence and reasoning as scientists more explicitly follow." (Peter Kosso, "A Summary of Scientific Method", 2011)

"Scientific method is the gateway into scientific discoveries that in turn prompt technological advances and cultural influences." (Hugh G Gauch Jr., "Scientific Method in Brief", 2012)

"The traditional scientific method is hypothesis driven. The researcher formulates a theory of how the world works, and then seeks to support or reject this hypothesis based on data." (Steven S Skiena, "The Data Science Design Manual", 2017)

"Its primary function was to make previously invisible phenomena subject to direct inspection in a graphic display […] The graphic method had another function, that of communication to the scientific community and educated readers. These displays made complex phenomena palpable and concrete." (Michael Friendly & Howard Wainer, "A History of Data Visualization and Graphic Communication", 2021)

"The general principles of starting with a well-defined question, engaging in careful observation, and then formulating hypotheses and assessing the strength of evidence for and against them became known as the scientific method." (Michael Friendly & Howard Wainer, "A History of Data Visualization and Graphic Communication", 2021)

"We are accustomed to intellectual diffusion taking place from the natural and physical sciences into the social sciences; certainly that is the direction taken for both calculus and the scientific method. But statistical graphics in particular, and statistics in general, took the reverse route." (Michael Friendly & Howard Wainer, "A History of Data Visualization and Graphic Communication", 2021)

06 October 2024

On Construction VIII: Science

"Science gains from it [the pendulum] more than one can expect. With its huge dimensions, the apparatus presents qualities that one would try in vain to communicate by constructing it on a small [scale], no matter how carefully. Already the regularity of its motion promises the most conclusive results. One collects numbers that, compared with the predictions of theory, permit one to appreciate how far the true pendulum approximates or differs from the abstract system called 'the simple pendulum'." (Jean-Bernard-Léon Foucault, "Demonstration Experimentale du Movement de Rotation de la Terre", 1851)

"The invention of a new symbol is a step in the advancement of civilisation. Why were the Greeks, in spite of their penetrating intelligence and their passionate pursuit of Science, unable to carry Mathematics farther than they did? and why, having formed the conception of the Method of Exhaustions, did they stop short of that of the Differential Calculus? It was because they had not the requisite symbols as means of expression. They had no Algebra. Nor was the place of this supplied by any other symbolical language sufficiently general and flexible; so that they were without the logical instruments necessary to construct the great instrument of the Calculus." (George H Lewes "Problems of Life and Mind", 1873)

"We shall call this universal organizational science the 'Tektology'. The literal translation of this word from the Greek is 'the theory of construction'. 'Construction' is the most generaI and suitable synonym for the modern concept of 'organization'. [...] The aim of tektology is to systematize organizational experience; this science is clearly empirical and should draw its conclusions by way of induction." (Alexander Bogdanov, "Tektology: The Universal Organizational Science" Vol. I, 1913)

"It would be a mistake to suppose that a science consists entirely of strictly proved theses, and it would be unjust to require this. […] Science has only a few apodeictic propositions in its catechism: the rest are assertions promoted by it to some particular degree of probability. It is actually a sign of a scientific mode of thought to find satisfaction in these approximations to certainty and to be able to pursue constructive work further in spite of the absence of final confirmation." (Sigmund Freud, "Introductory Lectures on Psycho-Analysis", 1916)

"Science is a magnificent force, but it is not a teacher of morals. It can perfect machinery, but it adds no moral restraints to protect society from the misuse of the machine. It can also build gigantic intellectual ships, but it constructs no moral rudders for the control of storm tossed human vessel. It not only fails to supply the spiritual element needed but some of its unproven hypotheses rob the ship of its compass and thus endangers its cargo." (William J Bryan, "Undelivered Trial Summation Scopes Trial", 1925)

"Science aims at constructing a world which shall be symbolic of the world of commonplace experience." (Sir Arthur S Eddington, "The Nature of the Physical World", 1928)

"No doctrinal system in physical science, or indeed perhaps in any science, will alter its content of its own accord. Here we always need the pressure of outer circumstances. Indeed the more intelligible and comprehensive a theoretical system is the more obstinately it will resist all attempts at reconstruction or expansion." (Max Planck, "Where is Science Going?", 1932)

"A scientist, whether theorist or experimenter, puts forward statements, or systems of statements, and tests them step by step. In the field of the empirical sciences, more particularly, he constructs hypotheses, or systems of theories, and tests them against experience by observation and experiment." (Karl Popper, "The Logic of Scientific Discovery", 1934)

"Mathematics as an expression of the human mind reflects the active will, the contemplative reason, and the desire for aesthetic perfection. Its basic elements are logic and intuition, analysis and construction, generality and individuality. Though different traditions may emphasize different aspects, it is only the interplay of these antithetic forces and the struggle for their synthesis that constitute the life, usefulness, and supreme value of mathematical science." (Richard Courant & Herbert Robbins, "What Is Mathematics?", 1941)

"A theoretical science unaware that those of its constructs considered relevant and momentous are destined eventually to be framed in concepts and words that have a grip on the educated community and become part and parcel of the general world picture - a theoretical science [...]" (Erwin Schrödinger, "Are There Quantum Jumps?", The British Journal for the Philosophy of Science Vol. 3, 1952)

"[...] sciences do not try to explain, they hardly even try to interpret, they mainly make models. By a model is meant a mathematical construct which, with the addition of certain verbal interpretations, describes observed phenomena. The justification of such a mathematical construct is solely and precisely that it is expected to work - that is, correctly to describe phenomena from a reasonably wide area. Furthermore, it must satisfy certain aesthetic criteria - that is, in relation to how much it describes, it must be rather simple." (John von Neumann, "Method in the physical sciences", 1955)

"We realize, however, that all scientific laws merely represent abstractions and idealizations expressing certain aspects of reality. Every science means a schematized picture of reality, in the sense that a certain conceptual construct is unequivocally related to certain features of order in reality […]" (Ludwig von Bertalanffy, "General System Theory", 1968)

"Many people believe that reasoning, and therefore science, is a different activity from imagining. But this is a fallacy […] Reasoning is constructed with movable images just as certainly as poetry is." (Jacob Bronowski, "Visionary Eye", 1978)

"[…] the pursuit of science is more than the pursuit of understanding. It is driven by the creative urge, the urge to construct a vision, a map, a picture of the world that gives the world a little more beauty and coherence than it had before." (John A Wheeler, "Geons, Black Holes, and Quantum Foam: A Life in Physics", 1998)

12 November 2023

Subrahmanyan Chandrasekhar - Collected Quotes

"All of us are sensitive to nature's beauty. It is not unreasonable that some aspects of this beauty are shared by the natural sciences." (Subrahmanyan Chandrasekhar, "Beauty and the Quest for Beauty in Science", Physics Today Vol. 32 (7), [lecture] 1979)

"It is, indeed an incredible fact that what the human mind, at its deepest and most profound, perceives as beautiful finds its realization in external nature.[...] What is intelligible is also beautiful." (Subrahmanyan Chandrasekhar, "Beauty and the Quest for Beauty in Science", Physics Today Vol. 32 (7), [lecture] 1979)

"The black holes of nature are the most perfect macroscopic objects there are in the universe: the only elements in their construction are our concepts of space and time." (Subrahmanyan Chandrasekhar, "The Mathematical Theory of Black Holes", 1983)

"A black hole partitions the three-dimensional space into two regions: an inner region which is bounded by a smooth two-dimensional surface called the event horizon; and an outer region, external to the event horizon, which is asymptotically flat; and it is required (as a part of the definition) that no point in the inner region can communicate with any point of the outer region. This incommunicability is guaranteed by the impossibility of any light signal, originating in the inner region, crossing the event horizon. The requirement of asymptotic flatness of the outer region is equivalent to the requirement that the black hole is isolated in space and that far from the event horizon the space-time approaches the customary space-time of terrestrial physics." (Subrahmanyan Chandrasekhar, "On Stars, Their Evolution, and Their Stability",[Nobel lecture] 1983)

"The mathematical theory of black holes is a subject of immense complexity; but its study has convinced me of the basic truth of the ancient mottoes 'The simple is the seal of the true' and 'beauty is the splendor of truth.'" (Subrahmanyan Chandrasekhar, "On Stars, Their Evolution, and Their Stability",[Nobel lecture] 1983)

"Turning to the physical properties of the black holes, we can study them best by examining their reaction to external perturbations such as the incidence of waves of different sorts. Such studies reveal an analytic richness of the Kerr space-time which one could hardly have expected. This is not the occasion to elaborate on these technical matters. Let it suffice to say that contrary to every prior expectation, all the standard equations of mathematical physics can be solved exactly in the Kerr space-time. And the solutions predict a variety and range of physical phenomena which black holes must exhibit in their interaction with the world outside." (Subrahmanyan Chandrasekhar, "On Stars, Their Evolution, and Their Stability",[Nobel lecture] 1983)

"In some strange way, any new fact or insight that I may have found has not seemed to me as a 'discovery' of mine, but rather something that had always been there and that I had chanced to pick up." (Subrahmanyan Chandrasekhar, "Truth and Beauty: Aesthetics and Motivations in Science", 1987)

"The pursuit of science has often been compared to the scaling of mountains, high and not so high. But who amongst us can hope, even in imagination, to scale the Everest and reach its summit when the sky is blue and the air is still, and in the stillness of the air survey the entire Himalayan range in the dazzling white of the snow stretching to infinity? None of us can hope for a comparable vision of nature and of the universe around us. But there is nothing mean or lowly in standing in the valley below and awaiting the sun to rise over Kinchinjunga." (Subrahmanyan Chandrasekhar, "Truth and Beauty: Aesthetics and Motivations in Science, 1987)

"When a supremely great creative mind is kindled, it leaves a blazing trail that remains a beacon for centuries." (Subrahmanyan Chandrasekhar, "Newton and Michelangelo", Current Science Vol. 67 (7), 1994)

"This 'shuddering before the beautiful', this incredible fact that a discovery motivated by a search after the beautiful in mathematics should find its exact replica in Nature, persuades me to say that beauty is that to which the human mind responds at its deepest and most profound." (Subrahmanyan Chandrasekhar)

29 October 2023

On Truth: Scientific Truth (1900-)

"The man who discovers a new scientific truth has previously had to smash to atoms almost everything he had learnt, and arrives at the new truth with hands blood stained from the slaughter of a thousand platitudes." (Jose Ortega y Gasset, "The Revolt of the Masses", 1930)

"The belief in science has replaced in large measure, the belief in God. Even where religion was regarded as compatible with science, it was modified by the mentality of the believer in scientific truth." (Hans Reichenbach, "The Rise of Scientific Philosophy", 1951)

"Uncertainty is introduced, however, by the impossibility of making generalizations, most of the time, which happens to all members of a class. Even scientific truth is a matter of probability and the degree of probability stops somewhere short of certainty." (Wayne C Minnick,"The Art of Persuasion", 1957)

"The only solid piece of scientific truth about which I feel totally confident is that we are profoundly ignorant about nature." (Lewis Thomas, "The Medusa and the Snail: More Notes of a Biology Watcher", 1979)

"Modern philosophy of science has gone far beyond the naive belief that science reveals the truth. Even if it could, we would have no means of proving it. Certainty seems unattainable. All scientific statements remain open to doubt. […] We cannot reach the absolute at least as far as science is concerned; we have to content ourselves with the relative." (Rolf Sattler, "Biophilosophy", 1986)

"Science doesn't purvey absolute truth. Science is a mechanism. It's a way of trying to improve your knowledge of nature. It's a system for testing your thoughts against the universe and seeing whether they match. And this works, not just for the ordinary aspects of science, but for all of life. I should think people would want to know that what they know is truly what the universe is like, or at least as close as they can get to it." (Isaac Asimov, [Interview by Bill Moyers] 1988)

"The principle of science, the definition, almost, is the following: The test of all knowledge is experiment. Experiment is the sole judge of scientific ‘truth’." (Richard Feynman, "Six Easy Pieces", 1994)

"What is the basis of this interest in beauty? Is it the same in both mathematics and science? Is it rational, in either case, to expect or demand that the products of the discipline satisfy such a criterion? Is there an underlying assumption that the proper business of mathematics and science is to discover what can be discovered about reality and that truth - mathematical and physical - when seen as clearly as possible, must be beautiful? If the demand for beauty stems from some such assumption, is the assumption itself an article of blind faith? If such an assumption is not its basis, what is?" (Raymond S Nickerson, "Mathematical Reasoning:  Patterns, Problems, Conjectures, and Proofs", 2010)

On Truth: Scientific Truth (-1899)

"The foundations of chemical philosophy are observation, experiment, and analogy. By observation, facts are distinctly and minutely impressed on the mind. By analogy, similar facts are connected. By experiment, new facts are discovered; and, in the progression of knowledge, observation, guided by analogy, lends to experiment, and analogy confirmed by experiment, becomes scientific truth." (Sir Humphry Davy, "Elements of Chemical Philosophy" Vol. 4, 1812)

"Scientific truth is marvellous, but moral truth is divine; and whoever breathes its air and walks by its light has found the lost paradise." (Horace Mann, "A Few Thoughts for a Young Man", Monthly Literary Miscellany, 1851)

"A mere inference or theory must give way to a truth revealed; but a scientific truth must be maintained, however contradictory it may appear to the most cherished doctrines of religion." (David Brewster, "More Worlds Than One: The Creed of the Philosopher and the Hope of the Christian", 1856)

"Science has fulfilled her function when she has ascertained and enunciated truth."  (Thomas H Huxley, "Man's Place in Nature.", 1863)

"[...] the time has come when scientific truth must cease to be the property of the few, when it must be woven into the common life of the world; for we have reached the point where the results of science touch the very problem of existence, and all men listen for the solving of that mystery." (Jean L R Agassiz, "Methods of Study in Natural History", 1863)

"[...] Scientific truth should be presented in different forms, and should be regarded as equally scientific whether it appears in the robust form and the vivid colouring of a physical illustration, or in the tenuity and paleness of a symbolic expression." (James C Maxwell, [address] 1870)

"It sounds paradoxical to say the attainment of scientific truth has been effected, to a great extent, by the help of scientific errors." (Thomas H Huxley, "The Progress of Science", 1887)

"The scientific spirit is of more value than its products, and irrationally held truths may be more harmful than reasoned errors." (Thomas H Huxley, "Darwiniana", 1893–94)

"By observation, facts are distinctly and minutely impressed in the mind; by analogy, similar facts are connected ; by experiment, new facts are discovered ; and, in the progression of knowledge, observation, guided by analogy, leads to experiment, and analogy, confirmed by experiment, becomes scientific truth." (Sir Humphry Davy)

28 October 2023

Out of Context: On Scientific method (Definitions)

"[...] scientific method is simply the attempt to acquire knowledge of general laws directly or indirectly by experience, by the use of our five senses. The only limitations that can be assigned to the applicability of this process are those due to the character of experience. Anything that is logically related to experience by discoverable laws and is capable of description in general terms can be dealt with by the scientific method." (Arthur D Ritchie, "Scientific Method: An Inquiry Into the Character and Validity of Natural Laws", 1923)

"Scientific method is what working scientists do, not what other people or even they themselves may say about it." (Percy W Bridgman, "Reflections of a Physicist", 1950)

"Scientific method is the way to truth, but it affords, even in principle, no unique definition of truth. Any so-called pragmatic definition of truth is doomed to failure equally." (Willard v O Quine, "Word and Object", 1960)

"The scientific method is a potentiation of common sense, exercised with a specially firm determination not to persist in error if any exertion of hand or mind can deliver us from it." (Sir Peter B Medawar, "Pluto’s Republic: Incorporating the Art of the Soluble and Induction Intuition in Scientific Thought", 1982)

"Scientific method is concerned with efficient ways of generating knowledge." (George E P Box, "Total Quality: Its Origins and its Future", 1995)

"Scientific method is not much different from our day-to-day ways of learning about the world. Without really thinking about the steps or the standards, common sense invokes the same process of evidence and reasoning as scientists more explicitly follow." (Peter Kosso, "A Summary of Scientific Method, "2011")

"Scientific method is the gateway into scientific discoveries that in turn prompt technological advances and cultural influences." (Hugh G Gauch Jr., "Scientific Method in Brief", 2012)

"The scientific method is the foundation of modern research. It’s how we prove a theory. It’s how we demonstrate cause and effect. It’s how we discover, innovate, and invent." (Kristin H Jarman, "The Art of Data Analysis: How to answer almost any question using basic statistics", 2013)

The traditional scientific method is hypothesis driven. The researcher formulates a theory of how the world works, and then seeks to support or reject this hypothesis based on data." (Steven S Skiena, "The Data Science Design Manual", 2017)

04 October 2023

Ludwig von Mises - Collected Quotes

"Facts per se can neither prove nor refute anything. Everything is decided by the interpretation and explanation of the facts, by the ideas and the theories." (Ludwig von Mises, "Socialism: An Economic and Sociological Analysis", 1922)

"Figures alone prove or disprove nothing. Only the conclusions drawn from the collected material can do this. And these are theoretical." (Ludwig von Mises, "Socialism: An Economic and Sociological Analysis", 1922)

"Scientific criticism has no nobler task than to shatter false beliefs." (Ludwig von Mises, "Socialism: An Economic and Sociological Analysis", 1922)

"Human reasoning does not have the power to exhaust completely the content of the universe." (Ludwig Von Mises, "Epistemological Problems of Economics", 1933)

"One has to recognize that science is not metaphysics, and certainly not mysticism; it can never bring us the illumination and the satisfaction experienced by one enraptured in ecstasy. Science is sobriety and clarity of conception, not intoxicated vision." (Ludwig Von Mises, "Epistemological Problems of Economics", 1933)

"Historical knowledge is indispensable for those who want to build a better world." (Ludwig von Mises, "Omnipotent Government", 1944)

"Science is competent to establish what is. It can never dictate what ought to be." (Ludwig von Mises, "Planned Chaos", 1947)

"Changes in human conditions are brought about by the pioneering of the cleverest and most energetic men. They take the lead and the rest of mankind follows them little by little." Ludwig von Mises, "The Anti-Capitalistic Mentality", 1956)

"The mark of the creative mind is that it defies a part of what it has learned." (Ludwig von Mises, "Theory and History: An Interpretation of Social and Economic Evolution", 1957)

"Even knowledge of the laws of nature does not make action free. It is never able to attain more than definite, limited ends. It can never go beyond the insurmountable barriers set for it. And even within the sphere allowed to it, it must always reckon with the inroads of uncontrollable forces, with fate." (Ludwig von Mises, "Epistemological Problems of Economics", 1960)

"Scientific research sooner or later, but inevitably, encounters something ultimately given that it cannot trace back to something else of which it would appear as the regular or necessary derivative. Scientific progress consists in pushing further back this ultimately given." (Ludwig von Mises, "The Ultimate Foundation of Economic Science: An Essay on Method", 1962)

"Statistics is the description in numerical terms of experiences concerning phenomena not subject to regular uniformity. […] Statistic is therefore a specific method of history." (Ludwig von Mises, "The Ultimate Foundation of Economic Science: An Essay on Method", 1962)

"The criterion of truth is that it works even if nobody is prepared to acknowledge it." (Ludwig von Mises, "The Ultimate Foundation of Economic Science: An Essay on Method", 1962)

"The methods of the natural sciences cannot be applied to human behavior because this behavior lacks the peculiarity that characterizes events in the field of the natural sciences, viz., regularity." (Ludwig von Mises, "The Ultimate Foundation of Economic Science: An Essay on Method", 1962)

"There always remains an orbit that to the limited knowledge of man appears as an orbit of pure chance and marks life as a gamble. Man and his works are always exposed to the impact of unforeseen and uncontrollable events." (Ludwig von Mises, "The Ultimate Foundation of Economic Science: An Essay on Method", 1962)

"There is in the universe something for the description and analysis of which the natural sciences cannot contribute anything. There are events beyond the range of those events that the procedures of the natural sciences are fit to observe and describe. There is human action." (Ludwig von Mises, "The Ultimate Foundation of Economic Science: An Essay on Method" 1962)

"History speaks only to those people who know how to interpret it." (Ludwig von Mises, "Human Action", 1963)

"Man can never become omniscient. He can never be absolutely certain that his inquiries were not misled and that what he considers as certain truth is not error. All that man can do is to submit all his theories again and again to the most critical reexamination." (Ludwig von Mises, "Human Action", 1963)

"Statistics is a method for the presentation of historical facts concerning prices and other relevant data of human action. It is not economics and cannot produce economic theorems and theories. The statistics of prices is economic history." (Ludwig von Mises, "Human Action", 1963)

"Every branch of knowledge has its own merits and its own rights. Economists have never tried to belittle or deny the significance of economic history. Neither do real historians object to the study of economics." (Ludwig von Mises)

12 September 2023

On Art I: Science

"The value of mathematical instruction as a preparation for those more difficult investigations, consists in the applicability not of its doctrines but of its methods. Mathematics will ever remain the past perfect type of the deductive method in general; and the applications of mathematics to the simpler branches of physics furnish the only school in which philosophers can effectually learn the most difficult and important of their art, the employment of the laws of simpler phenomena for explaining and predicting those of the more complex." (John S Mill, "A System of Logic, Ratiocinative and Inductive", 1843)

"From that time, the universe has steadily become more complex and less reducible to a central control. With as much obstinacy as though it were human, it has insisted on expanding its parts; with as much elusiveness as though it were feminine, it has evaded the attempt to impose on it a single will. Modern science, like modern art, tends, in practice, to drop the dogma of organic unity. Some of the mediaeval habit of mind survives, but even that is said to be yielding before the daily evidence of increasing and extending complexity. The fault, then, was not in man, if he no longer looked at science or art as an organic whole or as the expression of unity. Unity turned itself into complexity, multiplicity, variety, and even contradiction." (Henry Adams, "Mont Saint Michel and Chartres", 1904)

"Science, like art and religion - neither more nor less - is a form of man's reaction against nature. It is an attempt to explain nature in its own terms, that is, to evidence its unity, wholeness, and congruency." (George Sarton, "The History of Science and the New Humanism", 1928)

"Science is neither philosophy, nor religion, nor art; it is the totality of positive knowledge, as closely knit as possible; it is as different from its practical applications on the one hand, as it is from idle theorizing and blind faith on the other. It behooves us to make no extravagant claims for it, and to be as humble as we can." (George Sarton, "The History of Science and the New Humanism", 1928)

"[…] the process of scientific discovery may be regarded as a form of art. This is best seen in the theoretical aspects of Physical Science. The mathematical theorist builds up on certain assumptions and according to well understood logical rules, step by step, a stately edifice, while his imaginative power brings out clearly the hidden relations between its parts. A well-constructed theory is in some respects undoubtedly an artistic production." (Ernest Rutherford, 1932)

"There is a science of simple things, an art of complicated ones. Science is feasible when the variables are few and can be enumerated; when their combinations are distinct and clear. We are tending toward the condition of science and aspiring to it. The artist works out his own formulas; the interest of science lies in the art of making science." (Paul Valéry, "Moralités", 1932)

"It is impossible to make a clear cut between science, religion, and art. The whole is never equal simply to the sum of its various parts." (Max Planck, "The Philosophy of Physics", 1936)

"Analogy pervades all our thinking, our everyday speech and our trivial conclusions as well as artistic ways of expression and the highest scientific achievements. Analogy is used on very different levels. People often use vague, ambiguous, incomplete, or incompletely clarified analogies, but analogy may reach the level of mathematical precision. All sorts of analogy may play a role in the discovery of the solution and so we should not neglect any sort." (George Pólya, "How to solve it", 1945)

"Today the function of the artist is to bring imagination to science and science to imagination, where they meet, in the myth." (Cyril Connolly, The Unquiet Grave, 1945)

"Unlike art, science is genuinely progressive. Achievement in the fields of research and technology is cumulative; each generation begins at the point where its predecessor left off." (Aldous Huxley, "Science, Liberty and Peace", 1946)

"All art originates in an act of intuition or vision." (Herbert Read, "Form in Modern Poetry", 1948)

"Whether our work is art or science or the daily work of society, it is only the form in which we explore our experience which is different." (Jacob Bronowski, "Science and Human Values", 1956)

"Both science and art form in the course of the centuries a human language by which we can speak about the more remote parts of reality, and the coherent sets of concepts as well as the different styles of art are different words or groups of words in this language." (Werner K Heisenberg, "Physics and Philosophy", 1958)

"The important distinction between science and those other systematizations [i.e., art, philosophy, and theology] is that science is self-testing and self-correcting. Here the essential point of science is respect for objective fact. What is correctly observed must be believed [...] the competent scientist does quite the opposite of the popular stereotype of setting out to prove a theory; he seeks to disprove it. (George G Simpson, "Notes on the Nature of Science", 1962)

"All discoveries in art and science result from an accumulation of errors." (Marshall McLuhan, "Culture Is Our Business", 1970)

"If some great mathematicians have known how to give lyrical expression to their enthusiasm for the beauty of their science, nobody has suggested examining it as if it were the object of an art - mathematical art -  and consequently the subject of a theory of aesthetics, the aesthetics of mathematics (François Le Lionnais, "Great Currents of Mathematical Thought", 1971)

"There is no such thing as a Scientific Mind. Scientists are people of very dissimilar temperaments doing different things in very different ways. Among scientists are collectors, classifiers and compulsive tidiers-up; many are detectives by temperament and many are explorers; some are artists and others artisans. There are poet-scientists and philosopher-scientists and even a few mystics. What sort of mind or temperament can all these people be supposed to have in common? Obligative scientists must be very rare, and most people who are in fact scientists could easily have been something else instead." (Sir Peter B Medawar, "Pluto’s Republic: Incorporating the Art of the Soluble and Induction Intuition in Scientific Thought", 1982)

"How often people speak of art and science as though they were two entirely different things, with no interconnection. An artist is emotional, they think, and uses only his intuition; he sees all at once and has no need of reason. A scientist is cold, they think, and uses only his reason; he argues carefully step by step, and needs no imagination. That is all wrong. The true artist is quite rational as well as imaginative and knows what he is doing; if he does not, his art suffers. The true scientist is quite imaginative as well as rational, and sometimes leaps to solutions where reason can follow only slowly; if he does not, his science suffers." (Isaac Asimov, "The Roving Mind", 1983)

"Literature is as much a product of the technological and scientific milieu as it is of the artistic one. Some of the large ideas, call them theories or metaphors - that humans are machines, that the observer affects the phenomenon observed, that information can be quantified - alter the way work is done in art. Metaphors invented by artists imply new ways of seeing, demolish mere logic, provoke alternatives, and lead to new theories in science." (David Porush, "The Soft Machine", 1985)

"There is an art to science, and science in art; the two are not enemies, but different aspects of the whole." (Isaac Asimov, "Isaac Asimov’s Book of Science and Nature Quotations", 1988)

"Science is (or should be) a precise art. Precise, because data may be taken or theories formulated with a certain amount of accuracy; an art, because putting the information into the most useful form for investigation or for presentation requires a certain amount of creativity and insight." (Patricia H Reiff, "The Use and Misuse of Statistics in Space Physics", Journal of Geomagnetism and Geoelectricity 42, 1990)

"What is done for science must also be done for art: accepting undesirable side effects for the sake of the main goal, and moreover diminishing their importance by making this main goal more magnificent. For one should reform forward, not backward: social illnesses, revolutions, are evolutions inhibited by a conserving stupidity. (Robert Musil", "Precision and Soul: Essays and Addresses", 1990)

"Science with all its faults has brought education and the arts to more people - a larger percentage - than has ever existed before science. In that respect it is science that is the great humanizer. And, if we are going to solve the problems that science has brought us, it will be done by science and in no other way." (Isaac Asimov, "Essay 400: A Way of Thinking, "The Magazine of Fantasy and Science Fiction", 1994)

"[...] in science there are collectors, classifiers, compulsory tidiers-up and permanent contesters, detectives, some artists and many artisans, there are poet-scientists and philosophers and even a few mystics." (Rolf M Zinkernagel, [Nobel lecture] 1996)

"Science is what we understand well enough to explain to a computer. Art is everything else we do." (Donald E Knuth, [foreword to the book "A=B" by Marko Petkovsek et al] 1996)

 "The art of science is knowing which observations to ignore and which are the key to the puzzle." (Edward W Kolb, "Blind Watchers of the Sky", 1996)

"The mystery of sound is mysticism; the harmony of life is religion. The knowledge of vibrations is metaphysics, the analysis of atoms is science, and their harmonious grouping is art. The rhythm of form is poetry, and the rhythm of sound is music. This shows that music is the art of arts and the science of all sciences; and it contains the fountain of all knowledge within itself." (Inayat Khan, "The Mysticism of Sound and Music", 1996)

"The role of science, like that of art, is to blend proximate imagery with more distant meaning, the parts we already understand with those given as new into larger patterns that are coherent enough to be acceptable as truth. Biologists know this relation by intuition during the course of fieldwork, as they struggle to make order out of the infinitely varying patterns of nature." (Edward O Wilson, "In Search of Nature", 1996)

"The love of complexity without reductionism makes art; the love of complexity with reductionism makes science." (Edward O. Wilson, "Consilience: The Unity of Knowledge", 1998)

"Science and art, by their very nature, differ in that science can be learned in a systematic and logical way, whereas expertise in art has to be acquired by example, experience, and practice." (Avinash K Dixit & Barry J Nalebuff, "The Art of Strategy: A Game Theorist's Guide to Success in Business and Life", 2008)

"It is ironic but true: the one reality science cannot reduce is the only reality we will ever know. This is why we need art. By expressing our actual experience, the artist reminds us that our science is incomplete, that no map of matter will ever explain the immateriality of our consciousness." (Jonah Lehrer, "Proust Was a Neuroscientist", 2011)

"I think that science may be styled the knowledge of universals, or abstract wisdom; and art is science reduced to practice - or science is reason, and art the mechanism of it - and may be called practical science. Science, in fine, is the theorem, and art the problem." (Laurence Sterne)

"Science is the art of creating suitable illusions which the fool believes or argues against, but the wise man enjoys for their beauty or their ingenuity, without being blind to the fact that they are human veils and curtains concealing the abysmal darkness of the unknowable." (Carl G Jung

"Science and art belong to the whole world, and the barriers of nationality vanish before them." (Johann Wolfgang von Goethe)

"The sciences and arts are not cast in a mold, but formed and shaped little by little, by repeated handling and polishing, as bears lick their cubs into shape at leisure." (Michel de Montaigne)

"The two forms of experiment, scientific and artistic, share an attitude of detached yet intense observation toward the events precipitated. Yet the two activities are fundamentally opposed. Scientific experiment, relying on empirical rigor in refining its methods and verifying its results, seeks to extend and consolidate our grasp of order in the universe. Artistic experiment sets out to breed disorder, thwart determinism, and open up a space for individual freedom and consciousness." (Roger Shattuck)

10 September 2023

On Beauty: Science

"In science, reason is the guide; in poetry, taste. The object of the one is truth, which is uniform and indivisible; the object of the other is beauty, which is multiform and varied." (Charles C Colton, "Lacon", 1820)

"Science is a match that man has just got alight. He thought he was in a room - in moments of devotion, a temple - and that his light would be reflected from and display walls inscribed with wonderful secrets and pillars carved with philosophical systems wrought into harmony. It is a curious sensation, now that the preliminary splutter is over and the flame burns up clear, to see his hands and just a glimpse of himself and the patch he stands on visible, and around him, in place of all that human comfort and beauty he anticipated - darkness still." (Herbert G Wells, "The Rediscovery of the Unique", The Fortnightly Review, 1891)

"The scientific value of truth is not, however, ultimate or absolute. It rests partly on practical, partly on aesthetic interests. As our ideas are gradually brought into conformity with the facts by the painful process of selection, - for intuition runs equally into truth and into error, and can settle nothing if not controlled by experience, - we gain vastly in our command over our environment. This is the fundamental value of natural science" (George Santayana, "The Sense of Beauty: Being the Outlines of Aesthetic Theory", 1896)

"It is indeed wrong to think that the poetry of Nature’s moods in all their infinite variety is lost on one who observes them scientifically, for the habit of observation refines our sense of beauty and adds a brighter hue to the richly coloured background against which each separate fact is outlined. The connection between events, the relation of cause and effect in different parts of a landscape, unite harmoniously what would otherwise be merely a series of detached sciences." (Marcel Minnaert, "The Nature of Light and Colour in the Open Air", 1954)

"If some great mathematicians have known how to give lyrical expression to their enthusiasm for the beauty of their science, nobody has suggested examining it as if it were the object of an art - mathematical art -  and consequently the subject of a theory of aesthetics, the aesthetics of mathematics." (François Le Lionnais, "Great Currents of Mathematical Thought", 1971)

"The mathematical theory of black holes is a subject of immense complexity; but its study has convinced me of the basic truth of the ancient mottoes 'The simple is the seal of the true' and 'Beauty is the splendor of truth.'" (Subrahmanyan Chandrasekhar, [Nobel lecture] 1983)

"To a considerable degree science consists in originating the maximum amount of information with the minimum expenditure of energy. Beauty is the cleanness of line in such formulations along with symmetry, surprise, and congruence with other prevailing beliefs." (Edward O Wilson, "Biophilia", 1984)

"Even distinguished philosophers of science [...] recognize the failure of philosophy to help understand the nature of science. They have not discovered a scientific method that provides a formula or prescriptions for how to make discoveries. But many famous scientists have given advice: try many things; do what makes your heart leap; think big; dare to explore where there is no light; challenge expectation; cherchez le paradox; be sloppy so that something unexpected happens, but not so sloppy that you can’t tell what happened; turn it on its head; never try to solve a problem until you can guess the answer; precision encourages the imagination; seek simplicity; seek beauty. [...] One could do no better than to try them all." (Lewis Wolpert, "The Unnatural Nature of Science", 1992)

"[…] the pursuit of science is more than the pursuit of understanding. It is driven by the creative urge, the urge to construct a vision, a map, a picture of the world that gives the world a little more beauty and coherence than it had before." (John A Wheeler, "Geons, Black Holes, and Quantum Foam: A Life in Physics", 1998)

"The passion and beauty and joy of science is that we humans have invented a process to understand the universe in a way that is true for everyone. We are finding universal truths." (Bill Nye, 2000)

"In mathematics, beauty is a very important ingredient. Beauty exists in mathematics as in architecture and other things. It is a difficult thing to define but it is something you recognise when you see it. It certainly has to have elegance, simplicity, structure and form. All sorts of things make up real beauty. There are many different kinds of beauty and the same is true of mathematical theorems. Beauty is an important criterion in mathematics because basically there is a lot of choice in what you can do in mathematics and science. It determines what you regard as important and what is not." (Michael Atiyah, 2009)

"What is the basis of this interest in beauty? Is it the same in both mathematics and science? Is it rational, in either case, to expect or demand that the products of the discipline satisfy such a criterion? Is there an underlying assumption that the proper business of mathematics and science is to discover what can be discovered about reality and that truth - mathematical and physical - when seen as clearly as possible, must be beautiful? If the demand for beauty stems from some such assumption, is the assumption itself an article of blind faith? If such an assumption is not its basis, what is?" (Raymond S Nickerson, "Mathematical Reasoning:  Patterns, Problems, Conjectures, and Proofs", 2010)

14 February 2023

George Sarton - Collected Quotes

"The more science enters into our lives, the more it must be 'humanized', and there is no better way to humanize it than to study its history." (George Sarton, "An Institute for the History of Science and Civilization", Science Vol. 40 (1100), 1917)

"From the point of view of the history of science, transmission is as essential as discovery.(George Sarton, "Introduction to the History of Science" Vol. 2, 1927)

"Mysteries which we have driven outside of the boundaries of our knowledge and which we have located and encompassed, such mysteries will not harm us; on the contrary they will stimulate and inspire us in many ways; the dangerous mysteries are those which are hopelessly mingled with our knowledge, and of which we are perhaps unaware." (George Sarton, "The History of Science and the New Humanism", 1928)

"Science is neither philosophy, nor religion, nor art; it is the totality of positive knowledge, as closely knit as possible; it is as different from its practical applications on the one hand, as it is from idle theorizing and blind faith on the other. It behooves us to make no extravagant claims for it, and to be as humble as we can." (George Sarton, "The History of Science and the New Humanism", 1928)

"Science tends to destroy the darkness where evil and injustice breed, but there is also some element of beauty and poetry in that darkness." (George Sarton, "The History of Science and the New Humanism", 1928)

"Science, like art and religion - neither more nor less - is a form of man's reaction against nature. It is an attempt to explain nature in its own terms, that is, to evidence its unity, wholeness, and congruency." (George Sarton, "The History of Science and the New Humanism", 1928)

"The study of history, and especially of the history of science, may thus be regarded, not only as a source of wisdom and humanism, but also as a regulator for our consciences: it helps us not to be complacent, arrogant, too sanguine of success, and yet remain grateful and hopeful, and never to cease working quietly for the accomplishment of our own task.(George Sarton, "The History of Science and the New Humanism", 1928)

"Mathematicians and other scientists, however great they may be, do not know the future. Their genius may enable them to project their purpose ahead of them; it is as if they had a special lamp, unavailable to lesser men, illuminating their path; but even in the most favorable cases the lamp sends only a very small cone of light into the infinite darkness." (George Sarton, "The Study of the History of Mathematics", 1936)

"Mathematics gives to science its innermost unity and cohesion, which can never be entirely replaced with props and buttresses or with roundabout connections, no matter how many of these may be introduced." (George Sarton, "The Study of the History of Mathematics", 1936)

"The concatenations of mathematical ideas are not divorced from life, far from it, but they are less influenced than other scientific ideas by accidents, and it is perhaps more possible, and more permissible, for a mathematician than for any other man to secrete himself in a tower of ivory." (George Sarton, "The Study of the History of Mathematics", 1936)

"The main source of mathematical invention seems to be within man rather than outside of him: his own inveterate and insatiable curiosity, his constant itching for intellectual adventure; and likewise the main obstacles to mathematical progress seem to be also within himself; his scandalous inertia and laziness, his fear of adventure, his need of conformity to old standards, and his obsession by mathematical ghosts." (George Sarton, "The Study of the History of Mathematics", 1936)

"The history of science is the only history which can illustrate the progress of mankind. In fact, progress has no definite and unquestionable meaning in fields other than the fields of science.(George Sarton,"The Study of The History of Science", 1936)

"The great intellectual division of mankind is not along geographical or racial lines, but between those who understand and practice the experimental method and those who do not understand and do not practice it." (George Sarton, "A History of Science", 1948)

"A deed happens in a definite place at a definite time, but if it be sufficiently great and pregnant, its virtue radiates everywhere in time and space." (George Sarton, "A History of Science" Vol. 2, 1959)

"Men of science have made abundant mistakes of every kind; their knowledge has improved only because of their gradual abandonment of ancient errors, poor approximations, and premature conclusions." (George Sarton, "A History of Science" Vol. 2, 1959)

"The main duty of the historian of mathematics, as well as his fondest privilege, is to explain the humanity of mathematics, to illustrate its greatness, beauty and dignity, and to describe how the incessant efforts and accumulated genius of many generations have built up that magnificent monument, the object of our most legitimate pride as men, and of our wonder, humility, and thankfulness, as individuals. The study of the history of mathematics will not make better mathematicians but gentler ones, it will enrich their minds, mellow their hearts, and bring out their finer qualities." (George Sarton, The American Mathematical Monthly, Vol. 102, No. 4, 1995)

Related Posts Plugin for WordPress, Blogger...

On Leonhard Euler

"I have been able to solve a few problems of mathematical physics on which the greatest mathematicians since Euler have struggled in va...