Showing posts with label imagination. Show all posts
Showing posts with label imagination. Show all posts

29 January 2022

On Imagination (1920-1939)

"The sciences bring into play the imagination, the building of images in which the reality, of the past is blended with the ideals for the future, and from the picture there springs the prescience of genius." (William J Mayo, "Contributions of Pure Science to Progressive Medicine", The Journal of the American Medical Association Vol. 84 (20), 1925)

"We do not know why the imagination has accepted that image before the reason can reject it; or why such correspondences seem really to correspond to something in the soul." (Gilbert K Chesterton, "The Everlasting Man", 1925)

"The world is not run by thought, nor by imagination, but by opinion." (Elizabeth A Drew, "The Modern Novel", 1926)

"In this way things, external objects, are assimilated to more or less ordered motor schemas, and in this continuous assimilation of objects the child's own activity is the starting point of play. Not only this, but when to pure movement are added language and imagination, the assimilation is strengthened, and wherever the mind feels no actual need for accommodating itself to reality, its natural tendency will be to distort the objects that surround it in accordance with its desires or its fantasy, in short to use them for its satisfaction. Such is the intellectual egocentrism that characterizes the earliest form of child thought." (Jean Piaget, "The Moral Judgment of the Child", 1932)

"What is the inner secret of mathematical power? Briefly stated, it is that mathematics discloses the skeletal outlines of all closely articulated relational systems. For this purpose mathematics uses the language of pure logic with its score or so of symbolic words, which, in its important forms of expression, enables the mind to comprehend systems of relations otherwise completely beyond its power. These forms are creative discoveries which, once made, remain permanently at our disposal. By means of them the scientific imagination is enabled to penetrate ever more deeply into the rationale of the universe about us." (George D Birkhoff, "Mathematics: Quantity and Order", 1934)

"The scientist explores the world of phenomena by successive approximations. He knows that his data are not precise and that his theories must always be tested. It is quite natural that he tends to develop healthy skepticism, suspended judgment, and disciplined imagination." (Edwin P Hubble, 1938)

12 December 2021

On Imagination (1700-1749)

"The mathematics are the friends to religion, inasmuch as they charm the passions, restrain the impetuosity of the imagination, and purge the mind from error and prejudice. Vice is error, confusion and false reasoning; and all truth is more or less opposite to it. Besides, mathematical truth may serve for a pleasant entertainment for those hours which young men are apt to throw away upon their vices; the delightfulness of them being such as to make solitude not only easy but desirable." (John Arbuthnot, "An Essay on the Usefulness of Mathematical Learning", 1701)

"The ideas imprinted on the senses by the Author of Nature are called real things: and those excited in the imagination being less regular, vivid and constant, are more properly termed ideas, or images of things, which they copy and represent. But then our sensations, be they never so vivid and distinct, are nevertheless ideas, that is, they exist in the mind, or are perceived by it, as truly as the ideas of its own framing. The ideas of sense are allowed to have more reality in them, that is, to be more strong, orderly, and coherent than the creatures of the mind; but this is no argument that they exist without the mind. They are also less dependent on the spirit, or thinking substance which perceives them, in that they are excited by the will of another and more powerful spirit: yet still they are ideas, and certainly no idea, whether faint or strong, can exist otherwise than in a mind perceiving it." (George Berkeley, "Principles of Human Knowledge", 1710)

"[…] such numbers, which by their natures are impossible, are ordinarily called imaginary or fanciful numbers, because they exist only in the imagination."  (Leohnard Euler, 1732)

"[...] things which do not now exist in the mind itself, can only be perceived, remembered, or imagined, by means of ideas or images of them in the mind, which are the immediate objects of perception, remembrance, and imagination. This doctrine appears evidently to be borrowed from the old system; which taught, that external things make impressions upon the mind, like the impressions of a seal upon wax; that it is by means of those impressions that we perceive, remember) or imagine them; and that those impressions must resemble the things from which they are taken. When we form our notions of the operations of the mind by analogy, this way of conceiving them seems to be very natural, and offers itself to our thoughts: for as every thing which is felt must make some impression upon the body, we are apt to think, that every thing which is understood must make some impression upon the mind." (Thomas Reid, "An Inquiry into the Human Mind", 1734)

"Nay farther, even with relation to that succession, we cou'd only admit of those perceptions, which are immediately present to our consciousness, nor cou'd those lively images, with which the memory presents us, be ever receiv'd as true pictures of past perceptions. The memory, senses, and understanding are, therefore, all of them founded on the imagination, or the vivacity of our ideas."(David Hume, "A Treatise of Human Nature A Treatise of Human Nature", 1739)

"Beware of determining and declaring your Opinion suddenly on any Object; for Imagination often gets the Start of judgment, and makes People believe they see Things, which better Observations will convince them could not possibly be seen: Therefore assert nothing till after repeated Experiments and Examinations in all Lights and in all Positions." (Henry Baker, "The Microscope Made Easy", 1742)

"For it ought to be considered that both –b   and –c  , as they stand alone, are, in some Sense, as much impossible Quantities as v(-b)  and v(-c) ; since the Sign –, according to the established Rules of Notation, shews the Quantity, to which it is prefixed, is to be subtracted, but to subtract something from nothing is impossible, and the Notion or Supposition of a Quantity actually less than Nothing, absurd and shocking to the Imagination." (Thomas Simpson, "A Treatise of Algebra", 1745)

Previous Post <<||>> Next Post

03 September 2021

John Tyndall - Collected Quotes

"Experimental facts alone cannot satisfy the mind: we desire to know the cause of the fact; we search after the principle by the operation of which the phenomena are produced." (John Tyndall, "Heat: A Mode of Motion", 1863)

"The aspects of Nature provoke in man the spirit of inquiry. As the eye is formed to see, and the ear to hear, so the human mind is formed to explore and understand the basis and relationship of natural phenomena." (John Tyndall, "Heat: A Mode of Motion", 1863)

"To Nature nothing can be added; from Nature nothing can be taken away; the sum of her energies is constant, and the utmost man can do in the pursuit of physical truth, or in the applications of physical knowledge, is to shift the constituents of the never-varying total. The law of conservation rigidly excludes both creation and annihilation. Waves may change to ripples, and ripples to waves; magnitude may be substituted for number, and number for magnitude; asteroids may aggregate to suns, suns may resolve themselves into florae and faunae, and floras and faunas melt in air: the flux of power is eternally the same. It rolls in music through the ages, and all terrestrial energy - the manifestations of life as well as the display of phenomena - are but the modulations of its rhythm." (John Tyndall, "Conclusion of Heat Considered as a Mode of Motion: Being a Course of Twelve Lectures Delivered at the Royal Institution of Great Britain in the Season of 1862", 1863)

"Knowledge once gained casts a faint light beyond its own immediate boundaries." (John Tyndall, "On the Methods and Tendencies of Physical Investigation", 1870)

"You cannot crown the edifice by this abstraction. The scientific imagination, which is here authoritative, demands as the origin and cause of a series of ether waves a particle of vibrating matter quite as definite, though it may be excessively minute, as that which gives origin to a musical sound. Such a particle we name an atom or a molecule. I think the imagination when focused so as to give definition without penumbral haze, is sure to realise this image at last." (John Tyndall, "The Scientific Use of the Imagination", 1870)

"Ask your imagination if it will accept a vibrating multiple proportion - a numerical ratio in a state of oscillation? I do not think it will. You cannot crown the edifice with this abstraction. The scientific imagination, which is here authoritative, demands, as the origin and cause of a series of ether-waves, a particle of vibrating matter quite as definite, though it may be excessively minute, as that which gives origin to a musical sound. Such a particle we name an atom or a molecule. I think the intellect, when focused so as to give definition without penumbral haze, is sure to realize this image at the last." (John Tyndall, "Fragments of Science for Unscientific People", 1871)

"It is by a kind of inspiration that we rise from the wise and sedulous contemplation of facts to the principles on which they depend." (John Tyndall, "Fragments of Science for Unscientific People", 1871)

"The mind of man may be compared to a musical instrument with a certain range of notes, beyond which in both directions we have an infinitude of silence. The phenomena of matter and force lie within our intellectual range, and as far as they reach we will at all hazards push our inquiries. But behind, and above, and around all, the real mystery of this universe [Who made it all?] lies unsolved, and, as far as we are concerned, is incapable of solution." (John Tyndall, "Fragments of Science for Unscientific People", 1871)

"Truth is often of a dual character, taking the form of a magnet with two poles; and many of the differences which agitate the thinking part of mankind are to be traced to the exclusiveness with which partisan reasoners dwell upon one-half of the duality in forgetfulness of the other."(John Tyndall, "Fragments of Science for Unscientific People", 1871) 

"Brightness and freshness take possession of the mind when it is crossed by the light of principles, shewing the facts of Nature to be organically connected." (John Tyndall, "Six Lectures on Light Delivered in America in 1872-1873"  3rd Ed., 1901)

17 June 2021

On Knowledge (-1699)

"In all disciplines in which there is systematic knowledge of things with principles, causes, or elements, it arises from a grasp of those: we think we have knowledge of a thing when we have found its primary causes and principles, and followed it back to its elements." (Aristotle, "Physics", cca. 350 BC)

"Thinking is different from perceiving and is held to be in part imagination, in part judgement: we must therefore first mark off the sphere of imagination and then speak of judgement. If then imagination is that in virtue of which an image arises for us, excluding metaphorical uses of the term, is it a single faculty or disposition relative to images, in virtue of which we discriminate and are either in error or not? The faculties in virtue of which we do this are sense, opinion, knowledge, thought." (Aristotle, "De Anima", cca. 350 BC)

"Knowledge, then, is a state of capacity to demonstrate, and has the other limiting characteristics which we specify in the Analytics; for it is when one believes in a certain way and the principles are known to him that he has knowledge, since if they are not better known to him than the conclusion, he will have his knowledge only on the basis of some concomitant." (Aristotle," Nicomachean Ethics", cca. 340 BC)

"What we know is not capable of being otherwise; of things capable of being otherwise we do not know, when they have passed outsideour observation, whether they exist or not. Therefore the object of knowledge is of necessity. Therefore it is eternal; for things that are of necessity in the unqualified sense are all eternal; and things that are eternal are ungenerated and imperishable. " (Aristotle, "Nicomachean Ethics", cca. 340 BC)

"We can get some idea of a whole from a part, but never knowledge or exact opinion. Special histories therefore contribute very little to the knowledge of the whole and conviction of its truth. It is only indeed by study of the interconnexion of all the particulars, their resemblances and differences, that we are enabled at least to make a general survey, and thus derive both benefit and pleasure from history." (Polybius, "The Histories", cca. 150 BC)

"The mathematician speculates the causes of a certain sensible effect, without considering its actual existence; for the contemplation of universals excludes the knowledge of particulars; and he whose intellectual eye is fixed on that which is general and comprehensive, will think but little of that which is sensible and singular." (Proclus Lycaeus, cca 5th century)

"All knowledge or cognition possessed by creatures is limited. Infinite knowledge belongs solely to God, because of His infinite nature." (John of Salisbury, "Metalogicon", 1159)

"All things have a way of adding up together, so that one will become more proficient in any proposed branch of learning to the extent that he has mastered neighboring and related departments of knowledge." (John of Salisbury, "Metalogicon", 1159)

"In our acquisition of [scientific] knowledge, investigation is the first step, and comes before comprehension, analysis, and retention. Innate ability, although it proceeds from nature, is fostered by study and exercise. What is difficult when we first try it, becomes easier after assiduous practice, and once the rules for doing it are mastered, very easy, unless languor creeps in, through lapse of use or carelessness, and impedes our efficiency. This, in short, is how all the arts have originated: Nature, the first fundamental, begets the habit and practice of study, which proceeds to provide an art, and the latter, in turn, finally furnishes the faculty whereof we speak. Natural ability is accordingly effective. So, too, is exercise. And memory likewise, is effective, when employed by the two aforesaid. With the help of the foregoing, reason waxes strong, and produces the arts, which are proportionate to [man’s] natural talents." (John of Salisbury, "Metalogicon", 1159)

"There are four great sciences, without which the other sciences cannot be known nor a knowledge of things secured […] Of these sciences the gate and key is mathematics […] He who is ignorant of this [mathematics] cannot know the other sciences nor the affairs of this world." (Roger Bacon, "Opus Majus", 1267)

"There are two modes of acquiring knowledge, namely, by reasoning and experience. Reasoning draws a conclusion and makes us grant the conclusion, but does not make the conclusion certain, nor does it remove doubt so that the mind may rest on the intuition of truth unless the mind discovers it by the path of experience." (Roger Bacon, "Opus Majus", 1267)

"That faculty which perceives and recognizes the noble proportions in what is given to the senses, and in other things situated outside itself, must be ascribed to the soul. It lies very close to the faculty which supplies formal schemata to the senses, or deeper still, and thus adjacent to the purely vital power of the soul, which does not think discursively […] Now it might be asked how this faculty of the soul, which does not engage in conceptual thinking, and can therefore have no proper knowledge of harmonic relations, should be capable of recognizing what is given in the outside world. For to recognize is to compare the sense perception outside with the original pictures inside, and to judge that it conforms to them." (Johannes Kepler, "Harmonices Mundi" ["Harmony of the World"] , 1619)

"Knowledge being to be had only of visible and certain truth, error is not a fault of our knowledge, but a mistake of our judgment, giving assent to that which is not true." (John Locke, "An Essay Concerning Human Understanding", 1689)

"[…] the highest probability amounts not to certainty, without which there can be no true knowledge." (John Locke, "An Essay Concerning Human Understanding", 1689)

14 June 2021

On Imagination (1750-1799)

"The imagination in a mathematician who creates makes no less difference than in a poet who invents […]." (Jean Le Rond d'Alembert, "Discours Preliminaire de L'Encyclopedie", 1751)

"Thus, metaphysics and mathematics are, among all the sciences that belong to reason, those in which imagination has the greatest role." (Jean Le Rond d'Alembert, "Discours Preliminaire de L'Encyclopedie", 1751)

"Things which do not now exist in the mind itself, can only be perceived, remembered, or imagined, by means of the ideas or images in the mind, which are the immediate objects of perception, remembrance, and imagination." (Thomas Reid, "An Inquiry into the Human Mind on the Principles", 1764)

"Men always fool themselves when they give up experience for systems born of the imagination. Man is the work of nature, he exists in nature, he is subject to its laws, he can not break free, he can not leave even in thought; it is in vain that his spirit wants to soar beyond the bounds of the visible world, he is always forced to return." (Paul-Henri T d’ Holbach, "Système de la Nature", 1770)

"Psychologists have hitherto failed to realize that imagination is a necessary ingredient of perception itself." (Immanuel Kant, "Critique of Pure Reason", 1781)

"The schema is in itself always a product of imagination. Since, however, the synthesis of imagination aims at no special intuition, but only at unity in the determination of sensibility, the schema has to be distinguished from the image." (Immanuel Kant," Critique of Pure Reason", 1781)

"There are conceptions which may be called fancy pictures. They are commonly called creatures of fancy, or of imagination. They are not the copies of any original that exists, but are originals themselves […]. They were conceived by their creators, and may be conceived by others, but they never existed. We do not ascribe the qualities of true or false to them, because they are not accompanied with any belief, nor do they imply any affirmation or negation." (Thomas Reid,"Essays on the Intellectual Powers of Man", 1785)

"The moment a person forms a theory, his imagination sees, in every object, only the traits which favor that theory." (Thomas Jefferson, [letter to Charles Thompson] 1787)

"Conjectures in philosophy are termed hypotheses or theories; and the investigation of an hypothesis founded on some slight probability, which accounts for many appearances in nature, has too often been considered as the highest attainment of a philosopher. If the hypothesis (sic) hangs well together, is embellished with a lively imagination, and serves to account for common appearances - it is considered by many, as having all the qualities that should recommend it to our belief, and all that ought to be required in a philosophical system." (George Adams, "Lectures on Natural and Experimental Philosophy" Vol. 1, 1794)

"Wit is the appearance, the external flash of imagination. Thus its divinity, and the witty character of mysticism." (K W Friedrich von Schlegel, "Dialogue on Poetry and Literary Aphorisms", [Aphorism 26] 1797) 

"The imagination is an eye where images remain forever." (Joseph Joubert, [Letter to Revd. Dr. Trusler] 1799)

Previous Post <<||>> Next Post

02 June 2021

On Hypotheses (1900-1909)

"Every generalisation is a hypothesis. Hypothesis therefore plays a necessary rôle, which no one has ever contested. Only, it should always be as soon as possible submitted to verification." (Henri Poincaré, "Science and Hypothesis", 1901)

"To undertake the calculation of any probability, and even for that calculation to have any meaning at all, we must admit, as a point of departure, an hypothesis or convention which has always something arbitrary about it. In the choice of this convention we can be guided only by the principle of sufficient reason. Unfortunately, this principle is very vague and very elastic, and in the cursory examination we have just made we have seen it assume different forms. The form under which we meet it most often is the belief in continuity, a belief which it would be difficult to justify by apodeictic reasoning, but without which all science would be impossible. Finally, the problems to which the calculus of probabilities may be applied with profit are those in which the result is independent of the hypothesis made at the outset, provided only that this hypothesis satisfies the condition of continuity." (Henri Poincaré, "Science and Hypothesis", 1901)

"Treatises on mechanics do not clearly distinguish between what is experiment, what is mathematical reasoning, what is convention, and what is hypothesis." (Henri Poincaré, "Science and Hypothesis", 1901)

"Entia non sunt multiplicanda praeter necessitatem. That is to say; before you try a complicated hypothesis, you should make quite sure that no simplification of it will explain the facts equally well." (Charles S Peirce," Pragmatism and Pragmaticism", [lecture] 1903)

"Chemistry and physics are experimental sciences; and those who are engaged in attempting to enlarge the boundaries of science by experiment are generally unwilling to publish speculations; for they have learned, by long experience, that it is unsafe to anticipate events. It is true, they must make certain theories and hypotheses. They must form some kind of mental picture of the relations between the phenomena which they are trying to investigate, else their experiments would be made at random, and without connection." (William Ramsay, "Radium and Its Products", Harper’s Magazine, 1904)

"A symbolical representation of a method of calculation has the same significance for a mathematician as a model or a visualisable working hypothesis has for a physicist. The symbol, the model, the hypothesis runs parallel with the thing to be represented. But the parallelism may extend farther, or be extended farther, than was originally intended on the adoption of the symbol. Since the thing represented and the device representing are after all different, what would be concealed in the one is apparent in the other." (Ernst Mach, "Space and Geometry: In the Light of physiological, phycological and physical inquiry", 1906) 

"The physicist can never subject an isolated hypothesis to experimental test, but only a whole group of hypotheses." (Pierre Duhem, "The Aim and Structure of Physical Theory", 1906)

"A mind exclusively bent upon the idea of utility necessarily narrows the range of the imagination. For it is the imagination which pictures to the inner eye of the investigator the indefinitely extending sphere of the possible, - that region of hypothesis and explanation, of underlying cause and controlling law. The area of suggestion and experiment is thus pushed beyond the actual field of vision." (John G Hibben, "The Paradox of Research", The North American Review 188 (634), 1908)

01 June 2021

On Imagination (2000-2024)

"One of the most fundamental notions in mathematics is that of number. Although the idea of number is basic, the numbers themselves possess both nuance and complexity that spark the imagination." (Edward B Burger, "Exploring the Number Jungle", 2000)

"To say that a thing is imaginary is not to dispose of it in the realm of mind, for the imagination, or the image making faculty, is a very important part of our mental functioning. An image formed by the imagination is a reality from the point of view of psychology; it is quite true that it has no physical existence, but are we going to limit reality to that which is material? We shall be far out of our reckoning if we do, for mental images are potent things, and although they do not actually exist on the physical plane, they influence it far more than most people suspect." (Dion Fortune," Spiritualism and Occultism", 2000)

"Science begins with the world we have to live in, accepting its data and trying to explain its laws. From there, it moves toward the imagination: it becomes a mental construct, a model of a possible way of interpreting experience. The further it goes in this direction, the more it tends to speak the language of mathematics, which is really one of the languages of the imagination, along with literature and music." (Northrop Frye, "The Educated Imagination", 2002)

"[…] because observations are all we have, we take them seriously. We choose hard data and the framework of mathematics as our guides, not unrestrained imagination or unrelenting skepticism, and seek the simplest yet most wide-reaching theories capable of explaining and predicting the outcome of today’s and future experiments." (Brian Greene, "The Fabric of the Cosmos", 2004)

"There is a strong parallel between mountain climbing and mathematics research. When first attempts on a summit are made, the struggle is to find any route. Once on the top, other possible routes up may be discerned and sometimes a safer or shorter route can be chosen for the descent or for subsequent ascents. In mathematics the challenge is finding a proof in the first place. Once found, almost any competent mathematician can usually find an alternative often much better and shorter proof. At least in mountaineering we know that the mountain is there and that, if we can find a way up and reach the summit, we shall triumph. In mathematics we do not always know that there is a result, or if the proposition is only a figment of the imagination, let alone whether a proof can be found." (Kathleen Ollerenshaw, "To talk of many things: An autobiography", 2004)

"Imagination has the creative task of making symbols, joining things together in such a way that they throw new light on each other and on everything around them. The imagination is a discovering faculty, a faculty for seeing relationships, for seeing meanings that are special and even quite new." (Thomas Merton, "Angelic Mistakes: The Art of Thomas Merton", 2006)

"To have the courage to think outside the square, we need to be intrigued by a problem. This intrigue will encourage us to use our imaginations to find solutions which are beyond our current view of the world. This was the challenge that faced mathematicians as they searched for a solution to the problem of finding meaning for the square root of a negative number, in particular v-1." (Les Evans, "Complex Numbers and Vectors", 2006)

"Unfortunately, if we were to use geometry to explore the concept of the square root of a negative number, we would be setting a boundary to our imagination that would be difficult to cross. To represent -1 using geometry would require us to draw a square with each side length being less than zero. To be asked to draw a square with side length less than zero sounds similar to the Zen Buddhists asking ‘What is the sound of one hand clapping?’" (Les Evans, "Complex Numbers and Vectors", 2006)

"Language use is a curious behavior, but once the transition to language is made, literature is a likely consequence, since it is linked to the dynamic of the linguistic symbol through the functioning of the imagination." (Russell Berman, "Fiction Sets You Free: Literature, Liberty and Western Culture", 2007)

"If worldviews or metanarratives can be compared to lenses, which of them brings things into the sharpest focus? This is not an irrational retreat from reason. Rather, it is about grasping a deeper order of things which is more easily accessed by the imagination than by reason." (Alister McGrath, "If I Had Lunch with C. S. Lewis: Exploring the Ideas of C. S. Lewis on the Meaning of Life", 2014)

"Mathematics is a fascinating discipline that calls for creativity, imagination, and the mastery of rigorous standards of proof." (John Meier & Derek Smith, "Exploring Mathematics: An Engaging Introduction to Proof", 2017)

"The mental model is the arena where imagination takes place. It enables us to experiment with different scenarios by making local alterations to the model. […] To speak of causality, we must have a mental model of the real world. […] Our shared mental models bind us together into communities." (Judea Pearl & Dana Mackenzie, "The Book of Why: The new science of cause and effect", 2018)

Previous Post << || >> Next Post

On Imagination (-1699)

"Sometimes a thing is perceived [via sense-perception] when it is observed; then it is imagined, when it is absent [in reality] through the representation of its form inside, Sense-perception grasps [the concept] insofar as it is buried in these accidents that cling to it because of the matter out of which it is made without abstracting it from [matter], and it grasps it only by means of a connection through position [ that exists] between its perception and its matter. It is for this reason that the form of [the thing] is not represented in the external sense when [sensation] ceases. As to the internal [faculty of] imagination, it imagines [the concept] together with these accidents, without being able to entirely abstract it from them. Still, [imagination] abstracts it from the afore-mentioned connection [through position] on which sense-perception depends, so that [imagination] represents the form [of the thing] despite the absence of the form's [outside] carrier." (Avicenna Latinus [Ibn Sina], "Pointer and Reminders", cca. 1030)

"Imagination is accordingly the first activity [movement] of the soul after it is subjected to external stimulation. Imagination  either formulates second judgment, or brings back first judgment by recollection." (John of Salisbury, "Metalogicon", 1159)

"The objection we are dealing with argues from the standpoint of an agent that presupposes time and acts in time, but did not institute time. Hence the question about 'why God's eternal will produces an effect now and and not earlier' presupposes that time exists; for 'now' and 'earlier' are segments of time. With regard to the universal production of things, among which time is also to be counted, we should not ask, 'Why now and not earlier?' Rather we should ask: 'Why did God wish this much time to intervene?' And this depends on the divine will, which is perfectly free to assign this or any other quantity to time. The same may be noted with respect to the dimensional quantity of the world. No one asks why God located the material world in such and such a place rather than higher up or lower down or in some other position; for there is no place outside the world. The fact that God portioned out so much quantity to the world that no part of it would be beyond the place occupied in some other locality, depends on the divine will. However, although there was no time prior to the world and no place outside the world, we speak as if there were. Thus we say that before the world existed there was nothing except God, and that there is no body lying outside the world. But in thus speaking of 'before' and 'outside,' we have in mind nothing but time and place as they exist in our imagination." (Thomas Aquinas, "Compendium Theologiae" ["Compendium of Theology"], cca. 1265 [unfinished])

"[…] the painter cannot produce any form or figure […] if first this form or figure is not imagined and reduced into a mental image (idea) by the inward wits. And to paint, one needs acute senses and a good imagination with which one can get to know the things one sees in such a way that, once these things are not present anymore and transformed into mental images (fantasmi), they can be presented to the intellect. In the second stage, the intellect by means of its judgement puts these things together and, finally, in the third stage the intellect turns these mental images […] into a finished composition which it afterwards represents in painting by means of its ability to cause movement in the body." (Romano Alberti, "Della nobiltà della Pittura", 1585)

"God forbid that we should give out a dream of our own imagination for a pattern of the world." (Francis Bacon, "The Great Instauration", 1620)

"From all this I am beginning to have a rather better understanding of what I am. But it still appears - and I cannot stop thinking this - that the corporeal things of which images are formed in my thought, and which the senses investigate, are known with much more distinctness than this puzzling 'I' which cannot be pictured in the imagination." (René Descartes, "Meditations" II, 1641)

"For after the object is removed, or the eye shut, we still retain an image of the thing seen, though more obscure than when we see it. And this is it the Latins call imagination, from the image made in seeing, and apply the same, though improperly, to all the other senses. But the Greeks call it fancy, which signifies appearance, and is as proper to one sense as to another. IMAGINATION, therefore, is nothing but decaying sense; and is found in men and many other living creatures, as well sleeping as waking." (Thomas Hobbes, "Leviathan: The Matter, Form and Power of a Commonwealth  Ecclesiastical and Civil", 1651)

"Measure, time and number are nothing but modes of thought or rather of imagination." (Baruch Spinoza, [Letter to Ludvicus Meyer] 1663)

Previous Post <<||>> Next Post

27 May 2021

On Creativity (Mathematics I)

"Creativity is the heart and soul of mathematics at all levels. The collection of special skills and techniques is only the raw material out of which the subject itself grows. To look at mathematics without the creative side of it, is to look at a black-and-white photograph of a Cezanne; outlines may be there, but everything that matters is missing." (Robert C Buck, "Teaching Machines and Mathematics Programs", American Mathematical Monthly 69, 1962)

"There are, roughly speaking, two kinds of mathematical creativity. One, akin to conquering a mountain peak, consists of solving a problem which has remained unsolved for a long time and has commanded the attention of many mathematicians. The other is exploring new territory." (Mark Kac, "Enigmas Of Chance", 1985)

"Music and higher mathematics share some obvious kinship. The practice of both requires a lengthy apprenticeship, talent, and no small amount of grace. Both seem to spring from some mysterious workings of the mind. Logic and system are essential for both, and yet each can reach a height of creativity beyond the merely mechanical." (Frederick Pratter, "How Music and Math Seek Truth in Beauty", Christian Science Monitor, 1995)

"Mathematics is a fascinating discipline that calls for creativity, imagination, and the mastery of rigorous standards of proof." (John Meier & Derek Smith, "Exploring Mathematics: An Engaging Introduction to Proof", 2017)

"Math is the beautiful, rich, joyful, playful, surprising, frustrating, humbling and creative art that speaks to something transcendental. It is worthy of much exploration and examination because it is intrinsically beautiful, nothing more to say. Why play the violin? Because it is beautiful! Why engage in math? Because it too is beautiful!" (James Tanton, "Thinking Mathematics")

"Mathematics is the summit of human thinking. It has all the creativity and imagination that you can find in all kinds of art, but unlike art-charlatans and all kinds of quacks will not succeed there." (Meir Shalev)

"No discovery has been made in mathematics, or anywhere else for that matter, by an effort of deductive logic; it results from the work of creative imagination which builds what seems to be truth, guided sometimes by analogies, sometimes by an esthetic ideal, but which does not hold at all on solid logical bases. Once a discovery is made, logic intervenes to act as a control; it is logic that ultimately decides whether the discovery is really true or is illusory; its role therefore, though considerable, is only secondary." (Henri Lebesgue)

"The essential feature of mathematical creativity is the exploration, under the pressure of powerful implosive forces, of difficult problems for whose validity and importance the explorer is eventually held accountable by reality." (Alfred Adler)

16 May 2021

K C Cole - Collected Quotes

"So much of science consists of things we can never see: light ‘waves’ and charged ‘particles’; magnetic ‘fields’ and gravitational ‘forces’; quantum ‘jumps’ and electron ‘orbits’. In fact, none of these phenomena is literally what we say it is. Light waves do not undulate through empty space in the same way that water waves ripple over a still pond; a field is only a mathematical description of the strength and direction of a force; an atom does not literally jump from one quantum state to another, and electrons do not really travel around the atomic nucleus in orbits. The words we use are merely metaphors." (K C Cole, "On Imagining the Unseeable", Discover Magazine, 1982)

"How deep truths can be defined as invariants – things that do not change no matter what; how invariants are defined by symmetries, which in turn define which properties of nature are conserved, no matter what. These are the selfsame symmetries that appeal to the senses in art and music and natural forms like snowflakes and galaxies. The fundamental truths are based on symmetry, and there’s a deep kind of beauty in that. (K C Cole, "The Universe and the Teacup: The Mathematics of Truth and Beauty", 1997) 

"Math has its own inherent logic, its own internal truth. Its beauty lies in its ability to distill the essence of truth without the messy interference of the real world. It’s clean, neat, above it all. It lives in an ideal universe built on the geometer’s perfect circles and polygons, the number theorist’s perfect sets. It matters not that these objects don’t exist in the real world. They are articles of faith." (K C Cole, "The Universe and the Teacup: The Mathematics of Truth and Beauty", 1997)

"Mathematicians do not see their art as a way of simply calculating or ordering reality. They understand that math articulates, manipulates, and discovers reality. In that sense, it’s both a language and a literature; a box of tools and the edifices constructed from them." (K C Cole, "The Universe and the Teacup: The Mathematics of Truth and Beauty", 1997)

"Mathematics can function as a telescope, a microscope, a sieve for sorting out the signal from the noise, a template for pattern perception, a way of seeking and validating truth. […] A knowledge of the mathematics behind our ideas can help us to fool ourselves a little less often, with less drastic consequences." (K C Cole, "The Universe and the Teacup: The Mathematics of Truth and Beauty", 1997)

"Mathematics is a way of thinking that can help make muddy relationships clear. It is a language that allows us to translate the complexity of the world into manageable patterns. In a sense, it works like turning off the houselights in a theater the better to see a movie. Certainly, something is lost when the lights go down; you can no longer see the faces of those around you or the inlaid patterns on the ceiling. But you gain a far better view of the subject at hand." (K C Cole, "The Universe and the Teacup: The Mathematics of Truth and Beauty", 1997)

"Mathematics seems to have astonishing power to tell us how things work, why things are the way they are, and what the universe would tell us if we could only learn to listen. This comes as a surprise from a branch of human activity that is supposed to be abstract, objective, and devoid of sentiment." (K C Cole, "The Universe and the Teacup: The Mathematics of Truth and Beauty", 1997)

"One of the main reasons that large numbers grow so explosively is that multiplication is a powerful engine for growth - even when the only number you happen to be multiplying is insignificantly puny, like the number two."  (K C Cole, "The Universe and the Teacup: The Mathematics of Truth and Beauty", 1997)

"Another limit imposed by reality is its sheer complexity, which makes it impossible to predict some ordinary things (like weather) at the same time that it’s possible to predict truly extraordinary things (like the fate of the universe)." (K C Cole, "The Universe and the Teacup: The Mathematics of Truth and Beauty", 1997)

"Abstractions are a way to distill the essence from an otherwise unfathomable situation." (K C Cole, "First You Build a Cloud and Other Reflections on Physics as a Way of Life", 1999)

"Imagining the unseeable is hard, because imagining means having an image in your mind. And how can you have a mental image of something you have never seen? Like perception itself, the models of science are embedded inextricably in the current worldview we call culture." (K C Cole, "First You Build a Cloud and Other Reflections on Physics as a Way of Life", 1999)

"Science [...] involves looking mostly at things we can never see." (K C Cole, "First You Build a Cloud and Other Reflections on Physics as a Way of Life", 1999)

"The abstractions of science are stereotypes, as two-dimensional and as potentially misleading as everyday stereotypes. And yet they are as necessary to the process of understanding as filtering is to the process of perception." (K C Cole, "First You Build a Cloud and Other Reflections on Physics as a Way of Life", 1999)

"The subjects of science are not only often unseeable; they are also untouchable, unmeasurable, and sometimes even unimaginable." (K C Cole, "First You Build a Cloud and Other Reflections on Physics as a Way of Life", 1999)

"If two quantum particles are entangled, they become, in effect, two parts of a single unit. What happens to one entangled particle happens to the other, no matter how far apart they are." (K C Cole, "Wormholes Untangle a Black Hole Paradox", 2015) [source

"Like many a maturing beauty, string theory has gotten rich in relationships, complicated, hard to handle and widely influential. Its tentacles have reached so deeply into so many areas in theoretical physics, it’s become almost unrecognizable, even to string theorists." (K C Cole, "The Strange Second Life of String Theory", Quanta Magazine", 2016) [source

"String theory today looks almost fractal. The more closely people explore any one corner, the more structure they find. Some dig deep into particular crevices; others zoom out to try to make sense of grander patterns. The upshot is that string theory today includes much that no longer seems stringy. Those tiny loops of string whose harmonics were thought to breathe form into every particle and force known to nature (including elusive gravity) hardly even appear anymore on chalkboards at conferences." (K C Cole, "The Strange Second Life of String Theory", Quanta Magazine", 2016) [source]

"[…] Einstein showed, for 'stuff' like space and time, seemingly stable, unchangeable aspects of nature; in truth, it’s the relationship between space and time that always stays the same, even as space contracts and time dilates. Like energy and matter, space and time are mutable manifestations of deeper, unshakable foundations: the things that never vary no matter what." (K C Cole, "The Simple Idea Behind Einstein’s Greatest Discoveries", Quanta Magazine, 2019) [source

08 March 2021

On Imagination (Unsourced)

"A good teacher can inspire hope, ignite the imagination, and instill a love of learning." (Brad Henry)

"An expert problem solver must be endowed with two incompatible qualities, a restless imagination and a patient pertinacity." (Howard W Eves)

"Do not quench your inspiration and your imagination; do not become the slave of your model." (Vincent van Gogh)

"Finding the right answer is important, of course. But more important is developing the ability to see that problems have multiple solutions, that getting from X to Y demands basic skills and mental agility, imagination, persistence, patience." (Mary H Futrell)

"He who has imagination without learning has wings but no feet." (Joseph Joubert)

"Here, where we reach the sphere of mathematics, we are among processes which seem to some the most inhuman of all human activities and the most remote from poetry. Yet it is here that the artist has the fullest scope of his imagination." (Havelock Ellis)

"Imagination, as well as reason, is necessary to perfection in the philosophical mind. A rapidity of combination, a power of perceiving analogies, and of comparing them by facts, is the creative source of discovery." (Sir Humphry Davy)

"Imagination does not breed insanity. Exactly what does breed insanity is reason. Poets do not go mad […] mathematicians go mad." (Gilbert Keith Chesterton)

"Imagination magnifies small objects with fantastic exaggeration until they fill our soul, and with bold insolence cuts down great things to its own size, as when speaking of God." (Blaise Pascal)

"[…] it is impossible to be a mathematician without being a poet in soul […] imagination and invention are identical […] the poet has only to perceive that which others do not perceive, to look deeper than others look. And the mathematician must do the same thing." (Sophia Kovalevskaya)

"Mathematics is the summit of human thinking. It has all the creativity and imagination that you can find in all kinds of art, but unlike art-charlatans and all kinds of quacks will not succeed there." (Meir Shalev)

"No discovery has been made in mathematics, or anywhere else for that matter, by an effort of deductive logic; it results from the work of creative imagination which builds what seems to be truth, guided sometimes by analogies, sometimes by an esthetic ideal, but which does not hold at all on solid logical bases. Once a discovery is made, logic intervenes to act as a control; it is logic that ultimately decides whether the discovery is really true or is illusory; its role therefore, though considerable, is only secondary." (Henri Lebesgue)

"One factor that has remained constant through all the twists and turns of the history of physics is the decisive importance of the mathematical imagination." (Freeman J Dyson)

"Philosophy becomes poetry, and science imagination, in the enthusiasm of genius." (Isaac Disraeli)

"The disclosure of a new fact, the leap forward, the conquest over yesterday’s ignorance, is an act not of reason but of imagination, of intuition." (Charles Nicolle)

"The mathematical works thrall and delight, just like the works of passion and imagination." (Dan Barbilian)

"The mathematician is entirely free, within the limits of his imagination, to construct what worlds he pleases. What he is to imagine is a matter for his own caprice; he is not thereby discovering the fundamental principles of the universe nor becoming acquainted with the ideas of God." (John W N Sullivan)

"The mathematician's best work is art […] a high and perfect art, as daring as the most secret dreams of imagination, clear and limpid. Mathematical genius and artistic genius touch each other." (Gustav Mittag-Leffler)

"The mere formulation of a problem is often far more essential than its solution. To raise new questions, new possibilities, to regard old problems from a new angle, requires creative imagination and marks real advances in science." (Albert Einstein)

"The moving power of mathematical invention is not reasoning but imagination." (Augustus De Morgan)

"There is poetry in science and the cultivation of the imagination is an essential prerequisite to the successful investigation of nature." (Joseph Henry)

"These are among the marvels that surpass the bounds of our imagination, and that must warn us how gravely one errs in trying to reason about infinites by using the same attributes that we apply to finites." (Galileo Galilei)

"We especially need imagination in science. It is not all mathematics, nor all logic, but it is somewhat beauty and poetry." (Maria Mitchell)

Previous Post <<||>> Next Post

16 February 2021

Karl E Weick - Collected Quotes

"If all of the elements in a large system are loosely coupled to one another, then any one element can adjust to and modify a local a local unique contingency without affecting the whole system. These local adaptations can be swift, relatively economical, and substantial." (Karl E Weick, "Educational organizations as loosely coupled systems", 1976)

"There is no methodological process by which one can confirm the existence of an object independent of the confirmatory process involving oneself. The outside is a void, there is only the inside. A person's world, the inside or internal view is all that can be known. The rest can only be the object of speculation." (Karl E Weick, 1977)

"In a loosely coupled system there is more room available for self-determination by the actors. If it is argued that a sense of efficacy is crucial for human beings. when a sense of efficacy might be greater in a loosely coupled system with autonomous units than it would be in a tightly coupled system where discretion is limited." (Karl E Weick, "Educational organizations as loosely coupled systems", 1976)

"Any approach to the study of organizations is built on specific assumptions about the nature of organizations and how they are designed and function." (Richard L Daft & Karl E Weick, "Toward a model of organizations as interpretation systems", Academy of Management Review Vol 9 (2), 1984)

"An ordered set of assertions about a generic behavior or structure assumed to hold throughout a significantly broad range of specific instances." (Karl E Weick, "Theory construction as disciplined imagination", 1989)

"Sensemaking is about the enlargement of small cues. It is a search for contexts within which small details fit together and make sense. It is people interacting to flesh out hunches. It is a continuous alternation between particulars and explanations with each cycle giving added form and substance to the other." (Karl E Weick, "Sensemaking in Organizations", 1995)

"Sensemaking tends to be swift, which means we are more likely to see products than processes." (Karl E Weick, Sensemaking in Organizations, 1995)

"The point we want to make here is that sensemaking is about plausibility, coherence, and reasonableness. Sensemaking is about accounts that are socially acceptable and credible... It would be nice if these accounts were also accurate. But in an equivocal, postmodern world, infused with the politics of interpretation and conflicting interests and inhabited by people with multiple shifting identities, an obsession with accuracy seems fruitless, and not of much practical help, either." (Karl E Weick, "Sensemaking in Organizations", 1995)

"To talk about sensemaking is to talk about reality as an ongoing accomplishment that takes form when people make retrospective sense of the situations in which they find themselves and their creations. There is a strong reflexive quality to this process. People make sense of things by seeing a world on which they already imposed what they believe. In other words, people discover their own inventions. This is why sensemaking can be understood as invention and interpretations understood as discovery. These are complementary ideas. If sensemaking is viewed as an act of invention, then it is also possible to argue that the artifacts it produces include language games and texts." (Karl E Weick, "Sensemaking in Organizations", 1995)

"The basic idea of sensemaking is that reality is an ongoing accomplishment that emerges from efforts to create order and make retrospective sense of what occurs." (Karl E Weick, "The collapse of sensemaking in organizations: The Mann Gulch disaster", Administrative Science Quarterly 3, 1993)

10 February 2021

Mental Models LXII

"A mental model is a collection of 'connected' autonomous objects. Running  a mental model corresponds to modifying the parameters of the model by propagating information using the internal rules and specified topology. Running a mental model can also occur when autonomous objects change state. For us the definition of state is distinct from the current parameter values of an object. A state change consists of the replacement of one set of behavior rules with another." (Michael D Williams et al, "Human Reasoning About a Simple Physical System", [in "Mental Models", Ed(s). Dedre Gentner & Albert L Stevens], 1983)

"Central to this conception of mental models is the notion of autonomous objects. An autonomous object is a mental object with an explicit representation of state, an explicit representation of its topological connections to other objects, and a set of internal parameters. Associated with each autonomous object is a set of rules which modify its parameters and thus specify its behavior." (Michael D Williams et al, "Human Reasoning About a Simple Physical System", [in "Mental Models", Ed(s). Dedre Gentner & Albert L Stevens], 1983)

"In the consideration of mental models we need really consider four different things: the target system, the conceputal model of that target system, the user’s mental model of the target system, and the scientist's conceptualization of that mental model. The system that the person is learning or using is, by definition, the target system. A conceptual model is invented to provide an appropriate representation of the target system, appropriate in the sense of being accurate, consistent, and complete." (Donald A Norman, "Some Observations on Mental Models" [in "Mental Models", Ed(s). Dedre Gentner & Albert L Stevens], 1983)

"The purpose of a mental model is to allow the person to understand and to anticipate the behavior of a physical system. This means that the model must have predictive power, either by applying rules of inference or by procedural derivation (in whatever manner these properties may be realized in a person); in other words, it should be possible for people to ' run' their models mentally. This means that the conceptual mental model must also include a model of the relevant human information processing and knowledge structures that make it possible for the person to use a mental model to predict and understand the physical system." (Donald A Norman, "Some Observations on Mental Models" [in "Mental Models"], Ed(s). Dedre Gentner & Albert L Stevens], 1983)

"From a functional point of view, mental models can be described as symbolic structures which permit people: to generate descriptions of the purpose of a system, to generate descriptions of the architecture of a system, to provide explanations of the state of a system, to provide explanations of the functioning of a system, to make predictions of future states of a system." (Gert Rickheit & Lorenz Sichelschmidt, "Mental Models: Some Answers, Some Questions, Some Suggestions", 1999)

"Under the label 'cognitive maps', mental models have been conceived of as the mental representation of spatial aspects of the environment. A mental model, in this sense, comprises the topology of an area, including relevant districts, landmarks, and paths. [...] Under the label 'naive physics', mental models have been conceived of as the mental representation of natural or technical systems. A mental model, in this sense, comprises the effective determinants, true or not, of the functioning of a physical system. [...] Under the label 'model based reasoning', the mental models notion is featured in yet another area of cognitive science - deductive reasoning. In contrast to the commonly held view that logical competence depends on formal rules of deduction, it has been argued that reasoning is a semantic process based on the manipulation of mental models. [...] Finally, under terms like 'discourse model', 'situation model', or 'scenario', mental models have been conceived of as the mental representation of a verbal description of some real or fictional state of affairs. The role of mental models in the comprehension of discourse is discussed in more detail below." (Gert Rickheit & Lorenz Sichelschmidt, "Mental Models: Some Answers, Some Questions, Some Suggestions", 1999)

"A mental model is an internal representation with analogical relations to its referential object, so that local and temporal aspects of the object are preserved. It comes somewhat close to the mental images people report having in their minds whilst processing information. The great advantage of the notion of mental models, however, is its ability to include the notion of a partner model and the notion of a situation model. Thus, mental models can build a bridge to the other two dimensions of communication, namely interaction and situation." (Gert Rickheit et al, "The concept of communicative competence" [in "Handbook of Communication Competence"], 2008)

"Because all mental models or mindsets are incomplete, we can engage in second-order studies, evaluations, judgments, and assessments about our own and other operative mental models. Of course this is highly complex since the act of reflection is itself a further of framing or reframing." (Patricia H Werhane et al, "Obstacles to Ethical: Decision-Making Mental Models, Milgram and the Problem of Obedience", 2013)

"Mental models bind our awareness within a particular scaffold and then selectively can filter the content we subsequently receive. Through recalibration using revised mental models, we argue, we cultivate strategies anew, creating new habits, and galvanizing more intentional and evolved mental models. This recalibration often entails developing a strong sense of self and self-worth, realizing that each of us has a range of moral choices that may deviate from those in authority, and moral imagination." (Patricia H Werhane et al, "Obstacles to Ethical: Decision-Making Mental Models, Milgram and the Problem of Obedience", 2013)

"These framing perspectives or mental models construe the data of our experiences, and it is the construed data that we call 'facts'. What we often call reality, or the world, is constructed or socially construed in certain ways such that one cannot get at the source of the data except through these construals." (Patricia H Werhane et al, "Obstacles to Ethical: Decision-Making Mental Models, Milgram and the Problem of Obedience", 2013)

Patricia H Werhan - Collected Quotes

"[...] each of us frames, orders and/or organizes our experiences in terms of socially learned incomplete mental models or mind sets that shape our experiences perspectivally. These mental models are constitutive of all our experiences. They are the ways in which we make sense of our experiences [...]" (Patricia H Werhane "A Place for Philosophers in Applied Ethics and the Role of Moral Reasoning in Moral Imagination", Business Ethics Quarterly 16 (3), 2007)

"The most serious problem in applied ethics, or at least in business ethics, is not that we frame experiences; it is not that these mental models are incomplete, sometimes biased, and surely parochial. The larger problem is that most of us either individually or as managers do not realize that we are framing, disregarding data, ignoring counterevidence, or not taking into account other points of view." (Patricia H Werhane "A Place for Philosophers in Applied Ethics and the Role of Moral Reasoning in Moral Imagination", Business Ethics Quarterly 16 (3), 2007)

"Although good ethical decision-making requires us carefully to take into account as much relevant information as is available to us, we have good reason to think that we commonly fall well short of this standard – either by overlooking relevant facts completely or by underestimating their significance. The mental models we employ can contribute to this problem. As we have explained, mental models frame our experiences in ways that both aid and hinder our perceptions. They enable us to focus selectively on ethically relevant matters. By their very nature, they provide incomplete perspectives, resulting in bounded awareness and bounded ethicality. Insofar as our mental modeling practices result in unwarranted partiality, or even ethical blindness, the desired reflective process is distorted. This distortion is aggravated by the fact that our mental models can have this distorting effect without our consciously realizing it. Thus, although we cannot do without mental models, they leave us all vulnerable to blindness and, insofar as we are unaware of this, self-deception." (Patricia H Werhane et al, "Obstacles to Ethical: Decision-Making Mental Models, Milgram and the Problem of Obedience", 2013)

"Because all mental models or mindsets are incomplete, we can engage in second-order studies, evaluations, judgments, and assessments about our own and other operative mental models. Of course this is highly complex since the act of reflection is itself a further of framing or reframing." (Patricia H Werhane et al, "Obstacles to Ethical: Decision-Making Mental Models, Milgram and the Problem of Obedience", 2013)

"It is important to emphasize that the dangers that certain mental models pose to ethical decision-making cannot be mitigated or overcome by imagining that we could somehow free ourselves of the need for mental models altogether. Without mental models to mediate and shape our experiences, we would be incapable of having experiences at all." (Patricia H Werhane et al, "Obstacles to Ethical: Decision-Making Mental Models, Milgram and the Problem of Obedience", 2013)

"Mental models bind our awareness within a particular scaffold and then selectively can filter the content we subsequently receive. Through recalibration using revised mental models, we argue, we cultivate strategies anew, creating new habits, and galvanizing more intentional and evolved mental models. This recalibration often entails developing a strong sense of self and self-worth, realizing that each of us has a range of moral choices that may deviate from those in authority, and moral imagination." (Patricia H Werhane et al, "Obstacles to Ethical: Decision-Making Mental Models, Milgram and the Problem of Obedience", 2013)

"Mental models serve to conceptualize, focus and shape our experiences, but in so doing, they sometimes cause us to ignore data and occlude critical reflection that might be relevant or, indeed, necessary to practical decision-making. [...] distorting mental models are the foundation or underpinning of many of the impediments to effective ethical decision-making." (Patricia H Werhane et al, "Obstacles to Ethical: Decision-Making Mental Models, Milgram and the Problem of Obedience", 2013)

"These framing perspectives or mental models construe the data of our experiences, and it is the construed data that we call 'facts'. What we often call reality, or the world, is constructed or socially construed in certain ways such that one cannot get at the source of the data except through these construals." (Patricia H Werhane et al, "Obstacles to Ethical: Decision-Making Mental Models, Milgram and the Problem of Obedience", 2013)

"Various scientific methodologies are themselves mental models through which scientists discover, predict, and hypothesize about what we then call reality. In the social constructionist paradigm such mental models frame all our experiences. They schematize, and otherwise facilitate and guide the ways in which we recognize, react, and organize the world. How we define the world is dependent on such schema and thus all realities are socially structured. In the socially constructed paradigm, the multivariate mental models or conceptual schema are the means and mode through which we constitute our experiences." (Patricia H Werhane et al, "Obstacles to Ethical: Decision-Making Mental Models, Milgram and the Problem of Obedience", 2013)

"We identify and analyze distorting mental models that constitute experience in a manner that occludes the moral dimension of situations from view, thereby thwarting the first step of ethical decision-making. Examples include an unexamined moral self-image, viewing oneself as merely a bystander, and an exaggerated conception of self-sufficiency. These mental models, we argue, generate blind spots to ethics, in the sense that they limit our ability to see facts that are right before our eyes – sometimes quite literally, as in the many examples of managers and employees who see unethical behavior take place in front of them, but do not recognize it as such." (Patricia H Werhane et al, "Obstacles to Ethical: Decision-Making Mental Models, Milgram and the Problem of Obedience", 2013)

08 February 2021

On Imagination (BC)

"We invoke the imagination and the intervals that it furnishes, since the form itself is without motion or genesis, indivisible and free of all underlying matter, though the elements latent in the form are produced distinctly and individually on the screen of imagination. What projects the images is the understanding; the source of what is projected is the form in the understanding; and what they are projected in is this 'passive nous' that unfolds in revolution about the partlessness of genuine Nous." (Proclus Lycaeus, "A Commentary on the First Book of Euclid’s Elements", cca 5th century)

"But since we have, in our work on the soul, treated of imagination, and the faculty of imagination is identical with that of sense-perception, though the being of a faculty of imagination is different from that of a faculty of sense-perception; and since imagination is the movement set up by a sensory faculty when actually discharging its function, while a dream appears to be an image (for which occurs in sleep - whether simply or in some particular way - is what we call a dream): it manifestly follows that dreaming is an activity of the faculty of sense-perception, but belongs to this faculty qua imaginative." (Aristotle, "On Dreams", 4th century BC)

"It is obvious then, that memory belongs to that part of the soul to which imagination belongs. […] Just as the picture painted on the panel is at once a picture and a portrait, and though one and the same, is both, yet the essence of the two is not the same, and it is possible to think of it both as a picture and as a portrait, so in the same way we must regard the mental picture within us both as an object of contemplation in itself and as a mental picture of something else […]. Insofar as we consider it in relation to something else, e.g. as a likeness, it is also an aid to memory." (Aristotle, "De Memoria et Reminiscentia" [On Memory and Recollection], 4th century BC)

"For imagination is different from either perceiving or discursive thinking, though it is not found without sensation, or judgement without it. That this activity is not the same kind of thinking as judgement is obvious. For imagining lies within our own power whenever we wish (e.g. we can call up a picture, as in the practice of mnemonics by the use of mental images), but in forming opinions we are not free: we cannot escape the alternative of falsehood or truth." (Aristotle, "De Anima", cca. 350 BC)

"[Imagination is] that in virtue of which we say that an image occurs to us and not as we speak of it metaphorically."  (Aristotle, "De Anima" III, cca. 350 BC)

"Since it seems that there is nothing outside and separate in existence from sensible spatial magnitudes, the objects of thought are in the sensible forms, viz. both the abstract objects and all the states and affections of sensible things. Hence no one can learn or understand anything in the absence of sense, and when the mind is actively aware of anything it is necessarily aware of it along with an image; for images are like sensuous contents except in that they contain no matter. Imagination is different from assertion and denial; for what is true or false involves a synthesis of thoughts. In what will the primary thoughts differ from images? Must we not say that neither these nor even our other thoughts are images, though they necessarily involve them?" (Aristotle, "De Anima", cca. 350 BC)

"Thinking is different from perceiving and is held to be in part imagination, in part judgement: we must therefore first mark off the sphere of imagination and then speak of judgement. If then imagination is that in virtue of which an image arises for us, excluding metaphorical uses of the term, is it a single faculty or disposition relative to images, in virtue of which we discriminate and are either in error or not? The faculties in virtue of which we do this are sense, opinion, knowledge, thought." (Aristotle, "De Anima", cca. 350 BC)

"Imagination (VIKALPA) is a thought based on a mental image describable by words but not based on an object directly observable." (Patanjali, "Yoga Sutra" cca. 500 BC - 400 AD)

Previous Post <<||>> Next Post

On Imagination (1800-1849)

"The philosopher who is really useful to the cause of science, is he who, uniting to a fertile imagination, a rigid severity in investigation and observation, is at once tormented by the desire of ascertaining the cause of the phenomena, and by the fear of deceiving himself in that which he assigns." (Pierre-Simon Laplace, "System of the World" Vol. 2, 1809)

"When the eye or the imagination is struck with an uncommon work, the next transition of an active mind is to the means by which it was performed." (Samuel Johnson, 1810)

"The imagination […] that reconciling and mediatory power, which incorporating the reason in images of the sense and organizing (as it were) the flux of the senses by the permanence and self-circling energies of the reason, gives birth to a system of symbols, harmonious in themselves, and consubstantial with the truths of which they are the conductors." (Samuel T Coleridge, "The Statesman's Manual", 1816)

"It seems to be like taking the pieces of a dissected map out of its box. We first look at one part, and then at another, then join and dove-tail them; and when the successive acts of attention have been completed, there is a retrogressive effort of mind to behold it as a whole. The poet should paint to the imagination, not to the fancy; and I know no happier case to exemplify the distinction between these two faculties." (Samuel T Coleridge," Biographia Literaria", 1817)

"Whilst chemical pursuits exalt the understanding, they do not depress the imagination or weaken genuine feeling; whilst they give the mind habits of accuracy, by obliging it to attend to facts, they likewise extend its analogies; and, though conversant with the minute forms of things, they have for their ultimate end the great and magnificent objects of nature." (Sir Humphry Davy, "Consolations in Travel, or the Last Days of a Philosopher", 1830)

"No occupation is more worthy of an intelligent and enlightened mind, than the study of Nature and natural objects; and whether we labour to investigate the structure and function of the human system, whether we direct our attention to the classification and habits of the animal kingdom, or prosecute our researches in the more pleasing and varied field of vegetable life, we shall constantly find some new object to attract our attention, some fresh beauties to excite our imagination, and some previously undiscovered source of gratification and delight." (Sir Joseph Paxton, "A Practical Treatise on the Cultivation of the Dahlia", 1838)

"But a thousand unconnected observations have no more value, as a demonstrative proof, than a single one. If we do not succeed in discovering causes by our researches, we have no right to create them by the imagination; we must not allow mere fancy to proceed beyond the bounds of our knowledge."(Justus von Liebig, "The Lancet", 1844)

"The nose of a mob is its imagination. By this, at any time, it can be quietly led." (Edgar A Poe, "The Works of Edgar Allan Poe", 1849)

Previous Post <<||>> Next Post

On Imagination (1925-1949)

"The sciences bring into play the imagination, the building of images in which the reality, of the past is blended with the ideals for the future, and from the picture there springs the prescience of genius." (William J Mayo, "Contributions of Pure Science to Progressive Medicine", The Journal of the American Medical Association Vol. 84 (20), 1925)

"We do not know why the imagination has accepted that image before the reason can reject it; or why such correspondences seem really to correspond to something in the soul." (Gilbert K Chesterton, "The Everlasting Man", 1925)

"The world is not run by thought, nor by imagination, but by opinion." (Elizabeth A Drew, "The Modern Novel", 1926)

"In this way things, external objects, are assimilated to more or less ordered motor schemas, and in this continuous assimilation of objects the child's own activity is the starting point of play. Not only this, but when to pure movement are added language and imagination, the assimilation is strengthened, and wherever the mind feels no actual need for accommodating itself to reality, its natural tendency will be to distort the objects that surround it in accordance with its desires or its fantasy, in short to use them for its satisfaction. Such is the intellectual egocentrism that characterizes the earliest form of child thought." (Jean Piaget, "The Moral Judgment of the Child", 1932)

"What is the inner secret of mathematical power? Briefly stated, it is that mathematics discloses the skeletal outlines of all closely articulated relational systems. For this purpose mathematics uses the language of pure logic with its score or so of symbolic words, which, in its important forms of expression, enables the mind to comprehend systems of relations otherwise completely beyond its power. These forms are creative discoveries which, once made, remain permanently at our disposal. By means of them the scientific imagination is enabled to penetrate ever more deeply into the rationale of the universe about us." (George D Birkhoff, "Mathematics: Quantity and Order", 1934)

"The scientist explores the world of phenomena by successive approximations. He knows that his data are not precise and that his theories must always be tested. It is quite natural that he tends to develop healthy skepticism, suspended judgment, and disciplined imagination." (Edwin P Hubble, 1938)

"The great instrument of moral good is the imagination; and poetry administers to the effect by acting on the cause." (Percy B Shelley, "A Defence of Poetry", 1840) [written 1821]

"The artist must bow to the monster of his own imagination." (Richard Wright, "Twelve Million Black Voices", 1941)

"Yet a review of receipt physics has shown that all attempts at mechanical models or pictures have failed and must fail. For a mechanical model or picture must represent things as happening in space and time, while it has recently become clear that the ultimate processes of nature neither occur in, nor admit of representation in, space and time. Thus an understanding of the ultimate processes of nature is for ever beyond our reach: we shall never be able - even in imagination - to open the case of our watch and see how the wheels go round. The true object of scientific study can never be the realities of nature, but only our own observations on nature." (James H Jeans, "Physics and Philosophy", 1942)

"The straight line of the geometers does not exist in the material universe. It is a pure abstraction, an invention of the imagination or, if one prefers, an idea of the Eternal Mind." (Eric T Bell, "The Magic of Numbers", 1946)

"For, in mathematics or symbolic logic, reason can crank out the answer from the symboled equations -even a calculating machine can often do so - but it cannot alone set up the equations. Imagination resides in the words which define and connect the symbols - subtract them from the most aridly rigorous mathematical treatise and all meaning vanishes." (Ralph W Gerard, "The Biological Basis of Imagination", American Thought, 1947)

"Imagination and fiction make up more than three-quarters of our real life." (Simone Weil, "Gravity and Grace", 1947)

"[...] when the pioneer in science sends for the groping feelers of his thoughts, he must have a vivid intuitive imagination, for new ideas are not generated by deduction, but by an artistically creative imagination. Nevertheless, the worth of a new idea is invariably determined, not by the degree of its intuitiveness - which, incidentally, is to a major extent a matter of experience and habit - but by the scope and accuracy of the individual laws to the discovery of which it eventually leads. (Max Planck, The Meaning and Limits of Exact Science, Science Vol. 110 (2857), 1949)

On Imagination (1900-1924)

"This is the greatest degree of impoverishment; the [mental] image, deprived little by little of its own characteristics, is nothing more than a shadow. […] Being dependent on the state of the brain, the image undergoes change like all living substance, - it is subject to gains and losses, especially losses. But each of the foregoing three classes has its use for the inventor. They serve as material for different kinds of imagination - in their concrete form, for the mechanic and the artist; in their schematic form, for the scientist and for others." (Théodule-Armand Ribot, "Essay on the Creative Imagination", 1900)

"This means that it is not a dead thing; it is not at all like a photographic plate with which one may reproduce copies indefinitely. Being dependent on the state of the brain, the image undergoes change like all living substance, - it is subject to gains and losses, especially losses. But each of the foregoing three classes has its use for the inventor. They serve as material for different kinds of imagination - in their concrete form, for the mechanic and the artist; in their schematic form, for the scientist and for others." (Théodule-Armand Ribot, "Essay on the Creative Imagination" , 1900)

"We form in the imagination some sort of diagrammatic, that is, iconic, representation of the facts, as skeletonized as possible. The impression of the present writer is that with ordinary persons this is always a visual image, or mixed visual and muscular; but this is an opinion not founded on any systematic examination." (Charles S Peirce, "Notes on Ampliative Reasoning", 1901)

"Imagination is as vital to any advance in science as learning and precision are essential for starting points." (Percival Lowell, "The Solar System", 1903)

"Nature talks in symbols; he who lacks imagination cannot understand her." (Abraham Miller, "Unmoral Maxims", 1906)

"Mathematics makes constant demands upon the imagination, calls for picturing in space (of one, two, three dimensions), and no considerable success can be attained without a growing ability to imagine all the various possibilities of a given case, and to make them defile before the mind's eye." (Jacob W A Young, "The Teaching of Mathematics", 1907)

"The motive for the study of mathematics is insight into the nature of the universe. Stars and strata, heat and electricity, the laws and processes of becoming and being, incorporate mathematical truths. If language imitates the voice of the Creator, revealing His heart, mathematics discloses His intellect, repeating the story of how things came into being. And the value of mathematics, appealing as it does to our energy and to our honor, to our desire to know the truth and thereby to live as of right in the household of God, is that it establishes us in larger and larger certainties. As literature develops emotion, understanding, and sympathy, so mathematics develops observation, imagination, and reason." (William E Chancellor, "A Theory of Motives, Ideals and Values in Education" 1907)

"The beautiful has its place in mathematics as elsewhere. The prose of ordinary intercourse and of business correspondence might be held to be the most practical use to which language is put, but we should be poor indeed without the literature of imagination. Mathematics too has its triumphs of the Creative imagination, its beautiful theorems, its proofs and processes whose perfection of form has made them classic. He must be a 'practical' man who can see no poetry in mathematics." (Wiliam F White, "A Scrap-book of Elementary Mathematics: Notes, Recreations, Essays", 1908)

"No system would have ever been framed if people had been simply interested in knowing what is true, whatever it may be. What produces systems is the interest in maintaining against all comers that some favourite or inherited idea of ours is sufficient and right. A system may contain an account of many things which, in detail, are true enough; but as a system, covering infinite possibilities that neither our experience nor our logic can prejudge, it must be a work of imagination and a piece of human soliloquy: It may be expressive of human experience, it may be poetical; but how should anyone who really coveted truth suppose that it was true?" (George Santayana, "The Genteel Tradition in American Philosophy", 1911)

"Only in men’s imagination does every truth find an effective and undeniable existence." (Joseph Conrad, "Some Reminiscences", 1912)

"What is the imagination? Only an arm or weapon of the interior energy; only the precursor of the reason." (Ralph W Emerson, "Miscellanies, Natural history of intellect", 1912)

"The concept of an independent system is a pure creation of the imagination. For no material system is or can ever be perfectly isolated from the rest of the world. Nevertheless it completes the mathematician’s ‘blank form of a universe’ without which his investigations are impossible. It enables him to introduce into his geometrical space, not only masses and configurations, but also physical structure and chemical composition." (Lawrence J Henderson, "The Order of Nature: An Essay", 1917)

"[…] because mathematics contains truth, it extends its validity to the whole domain of art and the creatures of the constructive imagination." (James B Shaw, "Lectures on the Philosophy of Mathematics", 1918)

"Nature uses human imagination to lift her work of creation to even higher levels." (Luigi Pirandello, "Six Characters in Search of an Author", 1921)

"The story of scientific discovery has its own epic unity - a unity of purpose and endeavour - the single torch passing from hand to hand through the centuries; and the great moments of science when, after long labour, the pioneers saw their accumulated facts falling into a significant order - sometimes in the form of a law that revolutionised the whole world of thought - have an intense human interest, and belong essentially to the creative imagination of poetry." (Alfred Noyes, "Watchers of the Sky", 1922)

On Imagination (1950-1974)

"[…] observation is not enough, and it seems to me that in science, as in the arts, there is very little worth having that does not require the exercise of intuition as well as of intelligence, the use of imagination as well as of information." (Kathleen Lonsdale, "Facts About Crystals", American Scientist Vol. 39 (4), 1951)

"There is always an analogy between nature and the imagination, and possibly poetry is merely the strange rhetoric of that parallel." (Wallace Stevens, "The Necessary Angel", 1951)

"All great discoveries in experimental physics have been due to the intuition of men who made free use of models, which were for them not products of the imagination, but representatives of real things." (Max Born, "Physical Reality", Philosophical Quarterly Vol. (11), 1953)

"The creative act owes little to logic or reason. In their accounts of the circumstances under which big ideas occurred to them, mathematicians have often mentioned that the inspiration had no relation to the work they happened to be doing. Sometimes it came while they were traveling, shaving or thinking about other matters. The creative process cannot be summoned at will or even cajoled by sacrificial offering. Indeed, it seems to occur most readily when the mind is relaxed and the imagination roaming freely." (Morris Kline, Scientific American, 1955)

"Nevertheless, there are three distinct types of paradoxes which do arise in mathematics. There are contradictory and absurd propositions, which arise from fallacious reasoning. There are theorems which seem strange and incredible, but which, because they are logically unassailable, must be accepted even though they transcend intuition and imagination. The third and most important class consists of those logical paradoxes which arise in connection with the theory of aggregates, and which have resulted in a re-examination of the foundations of mathematics." (James R Newman, "The World of Mathematics" Vol. III, 1956)

"The ultimate origin of the difficulty lies in the fact (or philosophical principle) that we are compelled to use the words of common language when we wish to describe a phenomenon, not by logical or mathematical analysis, but by a picture appealing to the imagination. Common language has grown by everyday experience and can never surpass these limits. Classical physics has restricted itself to the use of concepts of this kind; by analysing visible motions it has developed two ways of representing them by elementary processes; moving particles and waves. There is no other way of giving a pictorial description of motions - we have to apply it even in the region of atomic processes, where classical physics breaks down." (Max Born, "Atomic Physics", 1957)

"In imagination there exists the perfect mystery story. Such a story presents all the essential clews, and compels us to form our own theory of the case. If we follow the plot carefully we arrive at the complete solution for ourselves just before the author’s disclosure at the end of the book. The solution itself, contrary to those of inferior mysteries, does not disappoint us; moreover, it appears at the very moment we expect it." (Leopold Infeld, "The Evolution of Physics", 1961)

"The structures of mathematics and the propositions about them are ways for the imagination to travel and the wings, or legs, or vehicles to take you where you want to go." (Scott Buchanan, "Poetry and Mathematics", 1962)

"That perfected machines may one day succeed us is, I remember, an extremely commonplace notion on Earth. It prevails not only among poets and romantics but in all classes of society. Perhaps it is because it is so widespread, born spontaneously in popular imagination, that it irritates scientific minds. Perhaps it is also for this very reason that it contains a germ of truth. Only a germ: Machines will always be machines; the most perfected robot, always a robot." (Pierre Boulle, "Planet of the Apes", 1963)

"Science begins with the world we have to live in, accepting its data and trying to explain its laws. From there, it moves toward the imagination: it becomes a mental construct, a model of a possible way of interpreting experience." (Northrop Frye, "The Educated Imagination", 1964)

"The imagination equips us to perceive reality when it is not fully materialized." (Mary C Richards, "Centering in Pottery, Poetry, and the Person", 1964)

"[…] the human reason discovers new relations between things not by deduction, but by that unpredictable blend of speculation and insight […] induction, which - like other forms of imagination - cannot be formalized." (Jacob Bronowski, "The Reach of Imagination", 1967)

"Fantasies are more than substitutes for unpleasant reality; they are also dress rehearsals, plans. All acts performed in the world begin in the imagination." (Barbara G Harrison, [Ms. Magazine] 1973)

"Equilibrium is a figment of the human imagination." (Kenneth Boulding, Toward a General Social Science, 1974)

Previous Post << || >> Next Post

04 February 2021

On Imagination (1975-1999)

"Imagination is the outreaching of mind […] the bombardment of the conscious mind with ideas, impulses, images and every sort of psychic phenomena welling up from the preconscious. It is the capacity to ‘dream dreams and see visions’" (Rollo May, "The Courage to Create", 1975)

"The structures with which mathematics deals are more like lace, the leaves of trees, and the play of light and shadow on a human face, than they are like buildings and machines, the least of their representatives. The best proofs in mathematics are short and crisp like epigrams, and the longest have swings and rhythms that are like music. The structures of mathematics and the propositions about them are ways for the imagination to travel and the wings, or legs, or vehicles to take you where you want to go." (Scott Buchanan, "Poetry and Mathematics", 1975)

"[…] the distinction between rigorous thinking and more vague ‘imaginings’; even in mathematics itself, all is not a question of rigor, but rather, at the start, of reasoned intuition and imagination, and, also, repeated guessing. After all, most thinking is a synthesis or juxtaposition of advances along a line of syllogisms - perhaps in a continuous and persistent ‘forward'’ movement, with searching, so to speak ‘sideways’, in directions which are not necessarily present from the very beginning and which I describe as ‘sending out exploratory patrols’ and trying alternative routes." (Stanislaw M Ulam, "Adventures of a Mathematician", 1976)

"Imagination - backed up by practical tests to determine which imaginative leaps are securely founded - is the key to a more accurate world picture." (John R Gribbin, "White holes: Cosmic gushers in the universe", 1977)

"Science is not a heartless pursuit of objective information. It is a creative human activity, its geniuses acting more as artists than information processors. Changes in theory are not simply the derivative results of the new discoveries but the work of creative imagination influenced by contemporary social and political forces. " (Stephen J Gould, "Ever Since Darwin: Reflections in Natural History", 1977)

"Imagination is our means of interpreting the world, and it also is our means of forming images in the mind. The images themselves are not separate from our interpretations of the world; they are our way of thinking of the objects in the world. We see the forms in our mind’s eye and we see these very forms in the world. We could not do one of these things if we could not do the other" (Mary Warnock, "Imagination", 1978)

"Imagination will often carry us to worlds that never were. But without it we go nowhere." (Carl Sagan, "Cosmos", 1980)

"Metaphor is for most people a device of the poetic imagination and the rhetorical flourish - a matter of extraordinary rather than ordinary language. Moreover, metaphor is typieully viewed as characteristic of language alone, a matter of words rather than thought or action. For this reason, most people think they can get along perfectly well without metaphor. We have found, on the contrary, that metaphor is pervasive in everyday life, not just in language but in thought and action. Our ordinary conceptual system, in terms of which we both think and act, is fundamentally metaphorical in nature." (George Lakoff & Mark Johnson, "Metaphors we Live by", 1980)

"Science, since people must do it, is a socially embedded activity. It progresses by hunch, vision, and intuition. Much of its change through time does not record a closer approach to absolute truth, but the alteration of cultural contexts that influence it so strongly. Facts are not pure and unsullied bits of information; culture also influences what we see and how we see it. Theories, moreover, are not inexorable inductions from facts. The most creative theories are often imaginative visions imposed upon facts; the source of imagination is also strongly cultural." (Stephen J Gould, "The Mismeasure of Man", 1980)

"For the great majority of mathematicians, mathematics is […] a whole world of invention and discovery - an art. The construction of a new theorem, the intuition of some new principle, or the creation of a new branch of mathematics is the triumph of the creative imagination of the mathematician, which can be compared to that of a poet, the painter and the sculptor." (George F J Temple, "100 Years of Mathematics: a Personal Viewpoint", 1981)

"At present, no complete account can be given - one may as well ask for an inventory of the entire products of the human imagination - and indeed such an account would be premature, since mental models are supposed to be in people's heads, and their exact constitution is an empirical question. Nevertheless, there are three immediate constraints on possible models. […] 1. The principle of computability: Mental models, and the machinery for constructing and interpreting them, are computable. […] 2. The principle of finitism: A mental model must be finite in size and cannot directly represent an infinite domain. […] 3. The principle of constructivism: A mental model is constructed from tokens arranged in a particular structure to represent a state of affairs." (Philip Johnson-Laird, "Mental Models" 1983)

"Fortunately, somewhere between chance and mystery lies imagination, the only thing that protects our freedom, despite the fact that people keep trying to reduce it or kill it off altogether." (Luis Buñuel, "My Last Breath", 1983)

"The vision of the Universe that is so vivid in our minds is framed by a few iron posts of true observation - themselves resting on theory for their meaning - but most of all the walls and towers in the vision are of papier-mâché, plastered in between those posts by an immense labor of imagination and theory." (John A Wheeler & Wojciech H Zurek, "Quantum Theory and Measurement", 1983)

"Theoretical scientists, inching away from the safe and known, skirting the point of no return, confront nature with a free invention of the intellect. They strip the discovery down and wire it into place in the form of mathematical models or other abstractions that define the perceived relation exactly. The now-naked idea is scrutinized with as much coldness and outward lack of pity as the naturally warm human heart can muster. They try to put it to use, devising experiments or field observations to test its claims. By the rules of scientific procedure it is then either discarded or temporarily sustained. Either way, the central theory encompassing it grows. If the abstractions survive they generate new knowledge from which further exploratory trips of the mind can be planned. Through the repeated alternation between flights of the imagination and the accretion of hard data, a mutual agreement on the workings of the world is written, in the form of natural law." (Edward O Wilson, "Biophilia", 1984)

"[...] without imagination, heightened awareness, moral sense, and some reference to the general culture, the engineering experience becomes less meaningful, less fulfilling than it should be." (Samuel C Florman, "The Civilized Engineer", 1985)

"One cannot ‘invent’ the structure of an object. The most we can do is to patiently bring it to the light of day, with humility - in making it known, it is ‘discovered’. If there is some sort of inventiveness in this work, and if it happens that we find ourselves the maker or indefatigable builder, we are in no sense ‘making’ or ’building’ these ‘structures’. They have not waited for us to find them in order to exist, exactly as they are! But it is in order to express, as faithfully as possible, the things that we have been detecting or discovering, the reticent structure which we are trying to grasp at, perhaps with a language no better than babbling. Thereby are we constantly driven to ‘invent’ the language most appropriate to express, with increasing refinement, the intimate structure of the mathematical object, and to ‘construct’ with the help of this language, bit by bit, those ‘theories’ which claim to give a fair account of what has been apprehended and seen. There is a continual coming and going, uninterrupted, between the apprehension of things, and the means of expressing them by a language in constant state improvement [...].The sole thing that constitutes the true inventiveness and imagination of the researcher is the quality of his attention as he listens to the voices of things." (Alexander Grothendieck, "Récoltes et semailles –Rélexions et témoignage sur un passé de mathématicien", 1985)

"We who are heirs to three recent centuries of scientific development can hardly imagine a state of mind in which many mathematical objects were regarded as symbols of spiritual truths or episodes in sacred history. Yet, unless we make this effort of imagination, a fraction of the history of mathematics is incomprehensible." (Philip J Davis & Rueben Hersh, "The Mathematical Experience", 1985)

"Catastrophes are often stimulated by the failure to feel the emergence of a domain, and so what cannot be felt in the imagination is experienced as embodied sensation in the catastrophe. (William I Thompson, "Gaia, a Way of Knowing: Political Implications of the New Biology", 1987)

"If it should turn out that the whole of physical reality can be described by a finite set of equations, I would be disappointed. I would feel that the Creator had been uncharacteristically lacking in imagination." (Freeman J Dyson, "Infinite in All Directions", 1988)

"The dreams of people are in the machines, a planet network of active imaginations hooked into their made-up, make-believe worlds. Artificial reality is taking over; it has its own children." (Storm Constantine, "Immaculate" (1991)

"The most persuasive positive argument for mental images as objects is [that] whenever one thinks one is seeing something there must be something one is seeing. It might be an object directly, or it might be a mental picture. [This] point is so plausible that it is deniable only at the peril of becoming arbitrary. One should concede that the question whether mental images are entities of some sort is not resolvable by logical or linguistic analysis, and believe what makes sense of experience." (Eva T H Brann,"The World of Imagination" , 1991)

"In many ways, the mathematical quest to understand infinity parallels mystical attempts to understand God. Both religions and mathematics attempt to express the relationships between humans, the universe, and infinity. Both have arcane symbols and rituals, and impenetrable language. Both exercise the deep recesses of our mind and stimulate our imagination. Mathematicians, like priests, seek ‘ideal’, immutable, nonmaterial truths and then often try to apply theses truth in the real world." (Clifford A Pickover, "The Loom of God: Mathematical Tapestries at the Edge of Time", 1997)

"Simple observation generally gets us nowhere. It is the creative imagination that increases our understanding by finding connections between apparently unrelated phenomena, and forming logical, consistent theories to explain them. And if a theory turns out to be wrong, as many do, all is not lost. The struggle to create an imaginative, correct picture of reality frequently tells us where to go next, even when science has temporarily followed the wrong path." (Richard Morris, "The Universe, the Eleventh Dimension, and Everything: What We Know and How We Know It", 1999)

Previous Post << || >> Next Post

Related Posts Plugin for WordPress, Blogger...

On Leonhard Euler

"I have been able to solve a few problems of mathematical physics on which the greatest mathematicians since Euler have struggled in va...