Showing posts with label precision. Show all posts
Showing posts with label precision. Show all posts

17 January 2023

On Precision V: Systems

"Beauty had been born, not, as we so often conceive it nowadays, as an ideal of humanity, but as measure, as the reduction of the chaos of appearances to the precision of linear symbols. Symmetry, balance, harmonic division, mated and mensurated intervals – such were its abstract characteristics." (Herbert Read, "Icon and Idea: The Function of Art in the Development of Human Consciousness", 1955)

"The most fundamental concept in cybernetics is that of ‘difference’, either that two things are recognisably different or that one thing has changed with time. Its range of application need not be described now, for the subsequent chapters will illustrate the range abundantly. All the changes that may occur with time are naturally included, for when plants grow and planets age and machines move some change from one state to another is implicit. So our first task will be to develop this concept of 'change', not only making it more precise but making it richer, converting it to a form that experience has shown to be necessary if significant developments are to be made." (W Ross Ashby, "An Introduction to Cybernetics", 1956)

"Cybernetics is concerned primarily with the construction of theories and models in science, without making a hard and fast distinction between the physical and the biological sciences. The theories and models occur both in symbols and in hardware, and by 'hardware’ we shall mean a machine or computer built in terms of physical or chemical, or indeed any handleable parts. Most usually we shall think of hardware as meaning electronic parts such as valves and relays. Cybernetics insists, also, on a further and rather special condition that distinguishes it from ordinary scientific theorizing: it demands a certain standard of effectiveness. In this respect it has acquired some of the same motive power that has driven research on modern logic, and this is especially true in the construction and application of artificial languages and the use of operational definitions. Always the search is for precision and effectiveness, and we must now discuss the question of effectiveness in some detail. It should be noted that when we talk in these terms we are giving pride of place to the theory of automata at the expense, at least to some extent, of feedback and information theory." (Frank H George, "The Brain as a Computer", 1962)

"In general, complexity and precision bear an inverse relation to one another in the sense that, as the complexity of a problem increases, the possibility of analysing it in precise terms diminishes. Thus 'fuzzy thinking' may not be deplorable, after all, if it makes possible the solution of problems which are much too complex for precise analysis." (Lotfi A Zadeh, "Fuzzy languages and their relation to human intelligence", 1972)

"Most physical systems, particularly those complex ones, are extremely difficult to model by an accurate and precise mathematical formula or equation due to the complexity of the system structure, nonlinearity, uncertainty, randomness, etc. Therefore, approximate modeling is often necessary and practical in real-world applications. Intuitively, approximate modeling is always possible. However, the key questions are what kind of approximation is good, where the sense of 'goodness' has to be first defined, of course, and how to formulate such a good approximation in modeling a system such that it is mathematically rigorous and can produce satisfactory results in both theory and applications." (Guanrong Chen & Trung Tat Pham, "Introduction to Fuzzy Sets, Fuzzy Logic, and Fuzzy Control Systems", 2001)

"Group theory is a powerful tool for studying the symmetry of a physical system, especially the symmetry of a quantum system. Since the exact solution of the dynamic equation in the quantum theory is generally difficult to obtain, one has to find other methods to analyze the property of the system. Group theory provides an effective method by analyzing symmetry of the system to obtain some precise information of the system verifiable with observations." (Zhong-Qi Ma, Xiao-Yan Gu, "Problems and Solutions in Group Theory for Physicists", 2004)

"Swarm Intelligence can be defined more precisely as: Any attempt to design algorithms or distributed problem-solving methods inspired by the collective behavior of the social insect colonies or other animal societies. The main properties of such systems are flexibility, robustness, decentralization and self-organization." ("Swarm Intelligence in Data Mining", Ed. Ajith Abraham et al, 2006)

"Each systems archetype embodies a particular theory about dynamic behavior that can serve as a starting point for selecting and formulating raw data into a coherent set of interrelationships. Once those relationships are made explicit and precise, the 'theory' of the archetype can then further guide us in our data-gathering process to test the causal relationships through direct observation, data analysis, or group deliberation." (Daniel H Kim, "Systems Archetypes as Dynamic Theories", The Systems Thinker Vol. 24 (1), 2013)

"Without precise predictability, control is impotent and almost meaningless. In other words, the lesser the predictability, the harder the entity or system is to control, and vice versa. If our universe actually operated on linear causality, with no surprises, uncertainty, or abrupt changes, all future events would be absolutely predictable in a sort of waveless orderliness." (Lawrence K Samuels, "Defense of Chaos: The Chaology of Politics, Economics and Human Action", 2013)

On Precision IV: Mind

"It has never yet been supposed, that all the facts of nature, and all the means of acquiring precision in the computation and analysis of those facts, and all the connections of objects with each other, and all the possible combinations of ideas, can be exhausted by the human mind." (Nicolas de Condorcet, "Outlines of an Historical View of the Progress of the Human Mind", 1795)

"An icon is a representamen of what it represents and for the mind that interprets it as such, by virtue of its being an immediate image, that is to say by virtue of characters which belong to it in itself as a sensible object, and which it would possess just the same were there no object in nature that it resembled, and though it never were interpreted as a sign. It is of the nature of an appearance, and as such, strictly speaking, exists only in consciousness, although for convenience in ordinary parlance and when extreme precision is not called for, we extend the term icon to the outward objects which excite in consciousness the image itself." (Charles S Peirce, "On Existential Graphs, Euler's Diagrams, and Logical", 1903)

"Now, a symbol is not, properly speaking, either true or false; it is, rather, something more or less well selected to stand for the reality it represents, and pictures that reality in a more or less precise, or a more or less detailed manner." (Pierre-Maurice-Marie Duhem, "The Aim and Structure of Physical Theory", 1906)

"All traditional logic habitually assumes that precise symbols are being employed. It is therefore not applicable to this terrestrial life but only to an imagined celestial existence." (Bertrand Russell, 1923)

"As our mental eye penetrates into smaller and smaller distances and shorter and shorter times, we find nature behaving so entirely differently from what we observe in visible and palpable bodies of our surroundings that no model shaped after our large-scale experiences can ever be ‘true’. A complete satisfactory model of this type is not only practically inaccessible, but not even thinkable. Or, to be precise, we can, of course, think of it, but however we think it, it is wrong; not perhaps quite as meaningless as a ‘triangular circle’, but more so than a ‘winged lion’." (Erwin Schrödinger, "Science and Humanism", 1952)

"Concepts are inventions of the human mind used to construct a model of the world. They package reality into discrete units for further processing, they support powerful mechanisms for doing logic, and they are indispensable for precise, extended chains of reasoning. […] A mental model is a cognitive construct that describes a person's understanding of a particular content domain in the world." (John Sown, "Conceptual Structures: Information Processing in Mind and Machine", 1984)

"A formal system consists of a number of tokens or symbols, like pieces in a game. These symbols can be combined into patterns by means of a set of rules which defines what is or is not permissible (e.g. the rules of chess). These rules are strictly formal, i.e. they conform to a precise logic. The configuration of the symbols at any specific moment constitutes a ‘state’ of the system. A specific state will activate the applicable rules which then transform the system from one state to another. If the set of rules governing the behaviour of the system are exact and complete, one could test whether various possible states of the system are or are not permissible." (Paul Cilliers, "Complexity and Postmodernism: Understanding Complex Systems", 1998)

"A mental model represents a possibility, or, to be precise, the structure and content of the model capture what is common to the different ways in which the possibility could occur [...]" (Philip N Johnson-Laird, Mental Models, Sentential Reasoning, and Illusory Inferences, [in "Mental Models and the Mind"], 2006)

"Human language is a vehicle of truth but also of error, deception, and nonsense. Its use, as in the present discussion, thus requires great prudence. One can improve the precision of language by explicit definition of the terms used. But this approach has its limitations: the definition of one term involves other terms, which should in turn be defined, and so on. Mathematics has found a way out of this infinite regression: it bypasses the use of definitions by postulating some logical relations (called axioms) between otherwise undefined mathematical terms. Using the mathematical terms introduced with the axioms, one can then define new terms and proceed to build mathematical theories. Mathematics need, not, in principle rely on a human language. It can use, instead, a formal presentation in which the validity of a deduction can be checked mechanically and without risk of error or deception." (David Ruelle, "The Mathematician's Brain", 2007)

On Precision III: Imprecision

"The notion of a fuzzy set provides a convenient point of departure for the construction of a conceptual framework which parallels in many respects the framework used in the case of ordinary sets, but is more general than the latter and, potentially, may prove to have a much wider scope of applicability, particularly in the fields of pattern classification and information processing. Essentially, such a framework provides a natural way of dealing with problems in which the source of imprecision is the absence of sharply denned criteria of class membership rather than the presence of random variables." (Lotfi A Zadeh, "Fuzzy Sets", 1965)

"Mental models are fuzzy, incomplete, and imprecisely stated. Furthermore, within a single individual, mental models change with time, even during the flow of a single conversation. The human mind assembles a few relationships to fit the context of a discussion. As debate shifts, so do the mental models. Even when only a single topic is being discussed, each participant in a conversation employs a different mental model to interpret the subject. Fundamental assumptions differ but are never brought into the open. […] A mental model may be correct in structure and assumptions but, even so, the human mind - either individually or as a group consensus - is apt to draw the wrong implications for the future." (Jay W Forrester, "Counterintuitive Behaviour of Social Systems", Technology Review, 1971)

"[Fuzzy logic is] a logic whose distinguishing features are (1) fuzzy truth-values expressed in linguistic terms, e. g., true, very true, more or less true, or somewhat true, false, nor very true and not very false, etc.; (2) imprecise truth tables; and (3) rules of inference whose validity is relative to a context rather than exact." (Lotfi A. Zadeh, "Fuzzy logic and approximate reasoning", 1975)

"It is important to observe that there is an intimate connection between fuzziness and complexity. Thus, a basic characteristic of the human brain, a characteristic shared in varying degrees with all information processing systems, is its limited capacity to handle classes of high cardinality, that is, classes having a large number of members. Consequently, when we are presented with a class of very high cardinality, we tend to group its elements together into subclasses in such a way as to reduce the complexity of the information processing task involved. When a point is reached where the cardinality of the class of subclasses exceeds the information handling capacity of the human brain, the boundaries of the subclasses are forced to become imprecise and fuzziness becomes a manifestation of this imprecision." (Lotfi A Zadeh, "The Birth and Evolution of Fuzzy Logic", 1989)

"Whenever we axiomitize a real-world system, we always, of necessity, oversimplify. Frequently, the oversimplification will adequately describe the system for the purposes at hand. In many other cases, the oversimplification may seem deceptively close to reality, when in fact it is far wide of the mark. The best hope, of course, is the use of a model adequate to explain observation. However, when we are unable to develop an adequate model, we would generally be well advised to stick with empiricism and axiomatic imprecision." (James R Thompson, "Empirical Model Building", 1989)

"At the basis of the impossibility of making reliable predictions for systems such as the atmosphere, there is a phenomenon known today as the butterfly effect. This deals with the progressive limitless magnification of the slightest imprecision (error) present in the measurement of the initial data (the incomplete knowledge of the current state of each molecule of air), which, although in principle negligible, will increasingly expand during the course of the model’s evolution, until it renders any prediction on future states (atmospheric weather conditions when the forecast refers to more than a few days ahead) completely insignificant, as these states appear completely different from the calculated ones." (Cristoforo S Bertuglia & Franco Vaio, "Nonlinearity, Chaos, and Complexity: The Dynamics of Natural and Social Systems", 2003)

"Logic is the study of methods and principles of reasoning, where reasoning means obtaining new propositions from existing propositions. In classical logic, propositions are required to be either true or false; that is, the truth value of a proposition is either 0 or 1. Fuzzy logic generalizes classical two-value logic by allowing the truth values of a proposition to be any numbers in [0, 1]. This generalization allows us to perform fuzzy reasoning, also called approximate reasoning; that is, deducing imprecise conclusions (fuzzy propositions) from a collection of imprecise premises (fuzzy propositions). In this section, we first introduce some basic concepts and principles in classical logic and then study their generalizations to fuzzy logic." (Huaguang Zhang & Derong Liu, "Fuzzy Modeling and Fuzzy Control", 2006)

"Fuzzy logic is an application area of fuzzy set theory dealing with uncertainty in reasoning. It utilizes concepts, principles, and methods developed within fuzzy set theory for formulating various forms of sound approximate reasoning. Fuzzy logic allows for set membership values to range (inclusively) between 0 and 1, and in its linguistic form, imprecise concepts like 'slightly', 'quite' and 'very'. Specifically, it allows partial membership in a set." (Larbi Esmahi et al, "Adaptive Neuro-Fuzzy Systems", 2009)

On Precision II: Precision in Science

"[It] may be laid down as a general rule that, if the result of a long series of precise observations approximates a simple relation so closely that the remaining difference is undetectable by observation and may be attributed to the errors to which they are liable, then this relation is probably that of nature." (Pierre-Simon Laplace, "Mémoire sur les Inégalites Séculaires des Planètes et des Satellites", 1787)

"Simplicity and precision ought to be the characteristics of a scientific nomenclature: words should signify things, or the analogies of things, and not opinions." (Sir Humphry Davy, Elements of Chemical Philosophy", 1812)

"[Precision] is the very soul of science; and its attainment afford the only criterion, or at least the best, of the truth of theories, and the correctness of experiments." (John F W Herschel, "A Preliminary Discourse on the Study of Natural Philosophy", 1830)

"One is almost tempted to assert that quite apart from its intellectual mission, theory is the most practical thing conceivable, the quintessence of practice as it were, since the precision of its conclusions cannot be reached by any routine of estimating or trial and error; although given the hidden ways of theory, this will hold only for those who walk them with complete confidence." (Ludwig E Boltzmann, "On the Significance of Theories", 1890)

"As scientific men we have all, no doubt, felt that our fellow men have become more and more satisfying as fish have taken up their work which has been put often to base uses, which must lead to disaster. But what sin is to the moralist and crime to the jurist so to the scientific man is ignorance. On our plane, knowledge and ignorance are the immemorial adversaries. Scientific men can hardly escape the charge of ignorance with regard to the precise effect of the impact of modern science upon the mode of living of the people and upon their civilisation. For them, such a charge is worse than that of crime." (Frederick Soddy, [Nobel prize speech] 1922)

"The scientist explores the world of phenomena by successive approximations. He knows that his data are not precise and that his theories must always be tested. It is quite natural that he tends to develop healthy skepticism, suspended judgment, and disciplined imagination." (Edwin P Hubble, 1938)

"Starting from statistical observations, it is possible to arrive at conclusions which not less reliable or useful than those obtained in any other exact science. It is only necessary to apply a clear and precise concept of probability to such observations. " (Richard von Mises, "Probability, Statistics, and Truth", 1939)

"It is never possible to predict a physical occurrence with unlimited precision." (Max Planck, "A Scientific Autobiography", 1949)

"It is never possible to predict a physical occurrence with unlimited precision." (Max Planck, "The Meaning of Causality in Physics", 1953)

"Scientists whose work has no clear, practical implications would want to make their decisions considering such things as: the relative worth of (1) more observations, (2) greater scope of his conceptual model, (3) simplicity, (4) precision of language, (5) accuracy of the probability assignment." (C West Churchman, "Costs, Utilities, and Values", 1956)

"The most important maxim for data analysis to heed, and one which many statisticians seem to have shunned is this: ‘Far better an approximate answer to the right question, which is often vague, than an exact answer to the wrong question, which can always be made precise.’ Data analysis must progress by approximate answers, at best, since its knowledge of what the problem really is will at best be approximate." (John W Tukey, "The Future of Data Analysis", Annals of Mathematical Statistics, Vol. 33, No. 1, 1962)

"It is of course desirable to work with manageable models which maximize generality, realism, and precision toward the overlapping but not identical goals of understanding, predicting, and modifying nature. But this cannot be done. Therefore, several alternative strategies have evolved: (1) Sacrifice generality to realism and precision. [...] (2) Sacrifice realism to generality and precision.  [...] (3) Sacrifice precision to realism and generality. [...]" (Richard Levins, "The strategy of model building in population biology", American Scientist Vol. 54 (4), 1966) 

"A scientific theory is a concise and coherent set of concepts, claims, and laws (frequently expressed mathematically) that can be used to precisely and accurately explain and predict natural phenomena." (Mordechai Ben-Ari, "Just a Theory: Exploring the Nature of Science", 2005)

On Precision I: Precision in Mathematics

"The calculation of probabilities is of the utmost value, […] but in statistical inquiries there is need not so much of mathematical subtlety as of a precise statement of all the circumstances. The possible contingencies are too numerous to be covered by a finite number of experiments, and exact calculation is, therefore, out of the question. Although nature has her habits, due to the recurrence of causes, they are general, not invariable. Yet empirical calculation, although it is inexact, may be adequate in affairs of practice." (Gottfried W Leibniz [letter to Bernoulli], 1703)

"The domain of physics is no proper field for mathematical pastimes. The best security would be in giving a geometrical training to physicists, who need not then have recourse to mathematicians, whose tendency is to despise experimental science. By this method will that union between the abstract and the concrete be effected which will perfect the uses of mathematical, while extending the positive value of physical science. Meantime, the uses of analysis in physics is clear enough. Without it we should have no precision, and no co-ordination; and what account could we give of our study of heat, weight, light, etc.? We should have merely series of unconnected facts, in which we could foresee nothing but by constant recourse to experiment; whereas, they now have a character of rationality which fits them for purposes of prevision." (Auguste Comte, "The Positive Philosophy", 1830)

"Besides accustoming the student to demand complete proof, and to know when he has not obtained it, mathematical studies are of immense benefit to his education by habituating him to precision. It is one of the peculiar excellencies of mathematical discipline, that the mathematician is never satisfied with à peu près. He requires the exact truth." (John S Mill, "An Examination of Sir William Hamilton's Philosophy", 1865)

"Nor do I know any study which can compete with mathematics in general in furnishing matter for severe and continued thought. Metaphysical problems may be even more difficult; but then they are far less definite, and, as they rarely lead to any precise conclusion, we miss the power of checking our own operations, and of discovering whether we are thinking and reasoning or merely fancying and dreaming." (Isaac Todhunter, "Conflict of Studies and Other Essays", 1873)

"Thought is symbolical of Sensation as Algebra is of Arithmetic, and because it is symbolical, is very unlike what it symbolises. For one thing, sensations are always positive; in this resembling arithmetical quantities. A negative sensation is no more possible than a negative number. But ideas, like algebraic quantities, may be either positive or negative. However paradoxical the square of a negative quantity, the square root of an unknown quantity, nay, even in imaginary quantity, the student of Algebra finds these paradoxes to be valid operations. And the student of Philosophy finds analogous paradoxes in operations impossible in the sphere of Sense. Thus although it is impossible to feel non-existence, it is possible to think it; although it is impossible to frame an image of Infinity, we can, and do, form the idea, and reason on it with precision." (George H Lewes "Problems of Life and Mind", 1873)

"The culture of the geometric imagination, tending to produce precision in remembrance and invention of visible forms will, therefore, tend directly to increase the appreciation of works of belles-letters." (Thomas Hill, "Uses of Mathesis", Bibliotheca Sacra Vol. 32, 1875)

"In mathematics we see the conscious logical activity of our mind in its purest and most perfect form; here is made manifest to us all the labor and the great care with which it progresses, the precision which is necessary to determine exactly the source of the established general theorems, and the difficulty with which we form and comprehend abstract conceptions; but we also learn here to have confidence in the certainty, breadth, and fruitfulness of such intellectual labor." (Hermann von Helmholtz, "Vorträge und Reden", 1896)

"The mathematical formula is the point through which all the light gained by science passes in order to be of use to practice; it is also the point in which all knowledge gained by practice, experiment, and observation must be concentrated before it can be scientifically grasped. The more distant and marked the point, the more concentrated will be the light coming from it, the more unmistakable the insight conveyed. All scientific thought, from the simple gravitation formula of Newton, through the more complicated formulae of physics and chemistry, the vaguer so called laws of organic and animated nature, down to the uncertain statements of psychology and the data of our social and historical knowledge, alike partakes of this characteristic, that it is an attempt to gather up the scattered rays of light, the different parts of knowledge, in a focus, from whence it can be again spread out and analyzed, according to the abstract processes of the thinking mind. But only when this can be done with a mathematical precision and accuracy is the image sharp and well-defined, and the deductions clear and unmistakable. As we descend from the mechanical, through the physical, chemical, and biological, to the mental, moral, and social sciences, the process of focalization becomes less and less perfect, - the sharp point, the focus, is replaced by a larger or smaller circle, the contours of the image become less and less distinct, and with the possible light which we gain there is mingled much darkness, the sources of many mistakes and errors. But the tendency of all scientific thought is toward clearer and clearer definition; it lies in the direction of a more and more extended use of mathematical measurements, of mathematical formulae." (John T Merz, "History of European Thought in the 19th Century" Vol. 1, 1904)

"The apodictic quality of mathematical thought, the certainty and correctness of its conclusions, are due, not to a special mode of ratiocination, but to the character of the concepts with which it deals. What is that distinctive characteristic? I answer: precision, sharpness, completeness of definition. But how comes your mathematician by such completeness? There is no mysterious trick involved; some ideas admit of such precision, others do not; and the mathematician is one who deals with those that do." (Cassius J Keyser, "The Universe and Beyond", Hibbert Journal Vol. 3, 1904–1905)

"The development of mathematics toward greater precision has led, as is well known, to the formalization of large tracts of it, so that one can prove any theorem using nothing but a few mechanical rules. [...] One might therefore conjecture that these axioms and rules of inference are sufficient to decide any mathematical question that can at all be formally expressed in these systems. It will be shown below that this is not the case, that on the contrary there are in the two systems mentioned relatively simple problems in the theory of integers that cannot be decided on the basis of the axioms." (Kurt Gödel, "On Formally Undecidable Propositions of Principia Mathematica and Related Systems", 1931)

"We love to discover in the cosmos the geometrical forms that exist in the depths of our consciousness. The exactitude of the proportions of our monuments and the precision of our machines express a fundamental character of our mind. Geometry does not exist in the earthly world. It has originated in ourselves. The methods of nature are never so precise as those of man. We do not find in the universe the clearness and accuracy of our thought. We attempt, therefore, to abstract from the complexity of phenomena some simple systems whose components bear to one another certain relations susceptible of being described mathematically." (Alexis Carrel, "Man the Unknown", 1935)

"Mathematicians create by acts of insight and intuition. Logic then sanctions the conquests of intuition. It is the hygiene that mathematics practices to keep its ideas healthy and strong. Moreover, the whole structure rests fundamentally on uncertain ground, the intuition of humans. Here and there an intuition is scooped out and replaced by a firmly built pillar of thought; however, this pillar is based on some deeper, perhaps less clearly defined, intuition. Though the process of replacing intuitions with precise thoughts does not change the nature of the ground on which mathematics ultimately rests, it does add strength and height to the structure." (Morris Kline, "Mathematics in Western Culture", 1964)

"Statistics are the art of stating in precise terms that which one does not know." (William Kruskal, "Statistics, Moliere, and Henry Adams", American Scientist Magazine, 1967)

"The popular image of mathematics as a collection of precise facts, linked together by well-defined logical paths, is revealed to be false. There is randomness and hence uncertainty in mathematics, just as there is in physics." (Paul Davis, "The Mind of God", 1992)

"The voyage of discovery into our own solar system has taken us from clockwork precision into chaos and complexity. This still unfinished journey has not been easy, characterized as it is by twists, turns, and surprises that mirror the intricacies of the human mind at work on a profound puzzle. Much remains a mystery. We have found chaos, but what it means and what its relevance is to our place in the universe remains shrouded in a seemingly impenetrable cloak of mathematical uncertainty." (Ivars Peterson, "Newton’s Clock", 1993)

"[…] equations are like poetry: They speak truths with a unique precision, convey volumes of information in rather brief terms, and often are difficult for the uninitiated to comprehend." (Michael Guillen, "Five Equations That Changed the World", 1995)

"Group theory is a powerful tool for studying the symmetry of a physical system, especially the symmetry of a quantum system. Since the exact solution of the dynamic equation in the quantum theory is generally difficult to obtain, one has to find other methods to analyze the property of the system. Group theory provides an effective method by analyzing symmetry of the system to obtain some precise information of the system verifiable with observations." (Zhong-Qi Ma & Xiao-Yan Gu, "Problems and Solutions in Group Theory for Physicists", 2004)

"At every major step physics has required, and frequently stimulated, the introduction of new mathematical tools and concepts. Our present understanding of the laws of physics, with their extreme precision and universality, is only possible in mathematical terms." (Michael F Atiyah, 2005)

"It makes no sense to seek a single best way to represent knowledge - because each particular form of expression also brings its particular limitations. For example, logic-based systems are very precise, but they make it hard to do reasoning with analogies. Similarly, statistical systems are useful for making predictions, but do not serve well to represent the reasons why those predictions are sometimes correct." (Marvin Minsky, "The Emotion Machine: Commonsense Thinking, Artificial Intelligence, and the Future of the Human Mind", 2006)

"Popular accounts of mathematics often stress the discipline’s obsession with certainty, with proof. And mathematicians often tell jokes poking fun at their own insistence on precision. However, the quest for precision is far more than an end in itself. Precision allows one to reason sensibly about objects outside of ordinary experience. It is a tool for exploring possibility: about what might be, as well as what is." (Donal O’Shea, "The Poincaré Conjecture", 2007)

"Mathematics is a model of exact reasoning, the most precise branch of human knowledge." (Paul Hartal, Mathematics and Reality, 2010)

"Mathematics is both abstract and concrete, revealing much of the mental experiment, working with unobserved abstractions and objects, and the current scientific progress depended on the ability to operate precisely with abstractions and force of reasoning; […]" (Octavian Stanasila, Metabolism of Mathematics and Computer Science No. 8, 2015)

"Mathematics is pure language - the language of science. It is unique among languages in its ability to provide precise expression for every thought or concept that can be formulated in its terms. (In a spoken language, there exist words, like "happiness", that defy definition.) It is also an art - the most intellectual and classical of the arts." (Alfred Adler)

"Mathematics is the science that yields the best opportunity to observe the working of the mind. Its study is the best training of our abilities as it develops both the power and the precision of our thinking. Mathematics is valuable on account of the number and variety of its applications. And it is equally valuable in another respect: By cultivating it, we acquire the habit of a method of reasoning which can be applied afterwards to the study of any subject and can guide us in life's great and little problems." (Nicolas de Condorcet)

"While the individual man is an insoluble puzzle, in the aggregate he becomes a mathematical certainty. You can, for example, never foretell what anyone man will be up to, but you can say with precision what an average number will be up to. Individuals vary, but percentages remain constant. So says the statistician." (Sir Arthur C Doyle)

15 April 2022

On Precision (-1899)

"It is the mark of an educated mind to rest satisfied with the degree of precision which the nature of the subject admits and not to seek exactness where only an approximation is possible."  (Aristotle, "Nicomachean Ethics", Book II, 349 BC)

"The calculation of probabilities is of the utmost value, […] but in statistical inquiries there is need not so much of mathematical subtlety as of a precise statement of all the circumstances. The possible contingencies are too numerous to be covered by a finite number of experiments, and exact calculation is, therefore, out of the question. Although nature has her habits, due to the recurrence of causes, they are general, not invariable. Yet empirical calculation, although it is inexact, may be adequate in affairs of practice." (Gottfried W Leibniz [letter to Bernoulli], 1703)

"[It] may be laid down as a general rule that, if the result of a long series of precise observations approximates a simple relation so closely that the remaining difference is undetectable by observation and may be attributed to the errors to which they are liable, then this relation is probably that of nature." (Pierre-Simon Laplace, "Mémoire sur les Inégalites Séculaires des Planètes et des Satellites", 1787)

"It has never yet been supposed, that all the facts of nature, and all the means of acquiring precision in the computation and analysis of those facts, and all the connections of objects with each other, and all the possible combinations of ideas, can be exhausted by the human mind." (Nicolas de Condorcet, "Outlines Of An Historical View Of The Progress Of The Human Mind", 1795)

"Simplicity and precision ought to be the characteristics of a scientific nomenclature: words should signify things, or the analogies of things, and not opinions." (Sir Humphry Davy, Elements of Chemical Philosophy", 1812)

"[Precision] is the very soul of science; and its attainment afford the only criterion, or at least the best, of the truth of theories, and the correctness of experiments." (John F W Herschel, "A Preliminary Discourse on the Study of Natural Philosophy", 1830)

"The domain of physics is no proper field for mathematical pastimes. The best security would be in giving a geometrical training to physicists, who need not then have recourse to mathematicians, whose tendency is to despise experimental science. By this method will that union between the abstract and the concrete be effected which will perfect the uses of mathematical, while extending the positive value of physical science. Meantime, the uses of analysis in physics is clear enough. Without it we should have no precision, and no co-ordination; and what account could we give of our study of heat, weight, light, etc.? We should have merely series of unconnected facts, in which we could foresee nothing but by constant recourse to experiment; whereas, they now have a character of rationality which fits them for purposes of prevision." (Auguste Comte, "The Positive Philosophy", 1830)

"Even if a curve is not drawn nor it is assumed to be tracked by the eye, but we have a 'perception' of it, it has in any case a limited precision and does not therefore correspond to the exact concept of a function of precision mathematics but rather to the idea of a function stripe." (Felix Klein, 1873)

"For an understanding of Nature, questions about the infinitely large are idle questions. It is different, however, with questions about the infinitely small. Our knowledge of their causal relations depends essentially on the precision with which we succeed in tracing phenomena on the infinitesimal level." (Bernhard Riemann, "Gesammelte Mathematische Werke", 1876)

"There is no more remarkable feature in the mathematical theory of probability than the manner in which it has been found to harmonize with, and justify, the conclusions to which mankind have been led, not by reasoning, but by instinct and experience, both of the individual and of the race. At the same time it has corrected, extended, and invested them with a definiteness and precision of which these crude, though sound, appreciations of common sense were till then devoid." (Morgan W Crofton, "Probability", Encyclopaedia Britannica 9th Ed,, 1885)

"In mathematics we see the conscious logical activity of our mind in its purest and most perfect form; here is made manifest to us all the labor and the great care with which it progresses, the precision which is necessary to determine exactly the source of the established general theorems, and the difficulty with which we form and comprehend abstract conceptions; but we also learn here to have confidence in the certainty, breadth, and fruitfulness of such intellectual labor." (Hermann von Helmholtz, "Vorträge und Reden", 1896)

"Physical research by experimental methods is both a broadening and a narrowing field. There are many gaps yet to be filled, data to be accumulated, measurements to be made with great precision, but the limits within which we must work are becoming, at the same time, more and more defined." (Elihu Thomson, "Annual Report of the Board of Regents of the Smithsonian Institution", 1899) 

On Precision (Unsourced)

"It is the mark of an educated mind to rest satisfied with the degree of precision which the nature of the subject admits and not to seek exactness where only an approximation is possible."  (Aristotle, "Nicomachean Ethics", Book II, 349 BC)

"No forms of error are so erroneous as those that have the appearance without the reality of mathematical precision." (Henri-Frédéric Amiel)

"The axioms of geometry are - according to my way of thinking - not arbitrary, but sensible. statements, which are, in general, induced by space perception and are determined as to their precise content by expediency." (Felix Klein)

"This method of subjecting the infinite to algebraic manipulations is called differential and integral calculus. It is the art of numbering and measuring with precision things the existence of which we cannot even conceive. Indeed, would you not think that you are being laughed at, when told that there are lines infinitely great which form infinitely small angles? Or that a line which is straight so long as it is finite would, by changing its direction infinitely little, become an infinite curve? Or that there are infinite squares, infinite cubes, and infinities of infinities, one greater than another, and that, as compared with the ultimate infinitude, those which precede it are as nought. All these things at first appear as excess of frenzy; yet, they bespeak the great scope and subtlety of the human spirit, for they have led to the discovery of truths hitherto undreamt of." (Voltaire)

"While the individual man is an insoluble puzzle, in the aggregate he becomes a mathematical certainty. You can, for example, never foretell what anyone man will be up to, but you can say with precision what an average number will be up to. Individuals vary, but percentages remain constant. So says the statistician." (Sir Arthur C Doyle)

On Precision (1900-1924)

 "An icon is a representamen of what it represents and for the mind that interprets it as such, by  virtue of its being an immediate image, that is to say by virtue of characters which belong to it in itself as a sensible object, and which it would possess just the same were there no object in nature that it resembled, and though it never were interpreted as a sign. It is of the nature of an appearance, and as such, strictly speaking, exists only in consciousness, although for convenience in ordinary parlance and when extreme precision is not called for, we extend the term icon to the outward objects which excite in consciousness the image itself." (Charles S Peirce, "On Existential Graphs, Euler's Diagrams, and Logical", 1903)

"The mathematical formula is the point through which all the light gained by science passes in order to be of use to practice; it is also the point in which all knowledge gained by practice, experiment, and observation must be concentrated before it can be scientifically grasped. The more distant and marked the point, the more concentrated will be the light coming from it, the more unmistakable the insight conveyed. All scientific thought, from the simple gravitation formula of Newton, through the more complicated formulae of physics and chemistry, the vaguer so called laws of organic and animated nature, down to the uncertain statements of psychology and the data of our social and historical knowledge, alike partakes of this characteristic, that it is an attempt to gather up the scattered rays of light, the different parts of knowledge, in a focus, from whence it can be again spread out and analyzed, according to the abstract processes of the thinking mind. But only when this can be done with a mathematical precision and accuracy is the image sharp and well-defined, and the deductions clear and unmistakable. As we descend from the mechanical, through the physical, chemical, and biological, to the mental, moral, and social sciences, the process of focalization becomes less and less perfect, - the sharp point, the focus, is replaced by a larger or smaller circle, the contours of the image become less and less distinct, and with the possible light which we gain there is mingled much darkness, the sources of many mistakes and errors. But the tendency of all scientific thought is toward clearer and clearer definition; it lies in the direction of a more and more extended use of mathematical measurements, of mathematical formulae." (John T Merz, "History of European Thought in the 19th Century" Vol. 1, 1904)

"The apodictic quality of mathematical thought, the certainty and correctness of its conclusions, are due, not to a special mode of ratiocination, but to the character of the concepts with which it deals. What is that distinctive characteristic? I answer: precision, sharpness, completeness of definition. But how comes your mathematician by such completeness? There is no mysterious trick involved; some ideas admit of such precision, others do not; and the mathematician is one who deals with those that do." (Cassius J Keyser, "The Universe and Beyond", Hibbert Journal Vol. 3, 1904–1905)

"The laws of nature are drawn from experience, but to express them one needs a special language: for, ordinary language is too poor and too vague to express relations so subtle, so rich, so precise. Here then is the first reason why a physicist cannot dispense with mathematics: it provides him with the one language he can speak […]. Who has taught us the true analogies, the profound analogies which the eyes do not see, but which reason can divine? It is the mathematical mind, which scorns content and clings to pure form." (Henri Poincaré, "The Value of Science", 1905)

"It is difficult to find an intelligible account of the meaning of ‘probability’, or of how we are ever to determine the probability of any particular proposition; and yet treatises on the subject profess to arrive at complicated results of the greatest precision and the most profound practical importance." (John M Keynes, "A Treatise on Probability", 1921)

On Precision (1925-1949)

 "As the objects of abstract geometry cannot be totally grasped by space intuition, a rigorous proof in abstract geometry can never be based only on intuition, but it must be founded on logical deduction from valid and precise axioms. Nevertheless intuition maintains, also in precision geometry, its irreplaceable value that cannot be substituted by logical considerations. Intuition helps us to construct a proof and to gain an overview, it is, moreover, a source of inventions and new mental connections." (Felix Klein, "Elementary Mathematics from a Higher Standpoint" Vol III: "Precision Mathematics and Approximation Mathematics", 1928)

"The different premises will possibly allow equally good explanations with respect to the imprecise nature of our sensory perception, because the sensory perception is, in fact, not concerned with issues of precision mathematics but of approximation mathematics." (Felix Klein, "Elementary Mathematics from a Higher Standpoint" Vol III: "Precision Mathematics and Approximation Mathematics", 1928)

"The difference between commensurable and incommensurable in its strict sense (and hence also the concept of irrational number) belongs solely to precision mathematics." (Felix Klein, "Elementary Mathematics from a Higher Standpoint" Vol III: "Precision Mathematics and Approximation Mathematics", 1928)

"The mistake from which todays’ science suffers is that the theoreticians are concerned too unilaterally with precision mathematics, while the practitioners use a sort of approximate mathematics, without being in touch with precision mathematics through which they could reach a real approximation mathematics." (Felix Klein, "Elementary Mathematics from a Higher Standpoint" Vol III: "Precision Mathematics and Approximation Mathematics", 1928)

"The weak point in all such reflections is that they depend on an arbitrary preference of certain ideas and concepts of precision mathematics, while observations in nature always have only limited precision and can be related in very different manners to topics of precision mathematics. It is more generally questionable whether we should be looking for the essence of a correct explanation of nature on the basis of precision mathematics, and whether we could ever go beyond a skillful use of approximation mathematics." (Felix Klein, "Elementary Mathematics from a Higher Standpoint" Vol III: "Precision Mathematics and Approximation Mathematics", 1928)

"The making of things to a high measure of accuracy is not just a test of workmanship. It is a fundamental to service production. In such production there can be no fitting of parts in assemblies or in repairs. Every crankshaft must be exactly like any other crankshaft. Of course no two parts are ever absolutely alike, except by accident, for it does not pay to try for accuracy beyond a certain point. But any kind of a machine which has moving parts must be accurately made or there will be an amount of vibration through play that will shorten the life of the machine and also decrease its running efficiency." (Henry Ford, "Moving Forward", 1930)

"The development of mathematics toward greater precision has led, as is well known, to the formalization of large tracts of it, so that one can prove any theorem using nothing but a few mechanical rules.[...] One might therefore conjecture that these axioms and rules of inference are sufficient to decide any mathematical question that can at all be formally expressed in these systems. It will be shown below that this is not the case, that on the contrary there are in the two systems mentioned relatively simple problems in the theory of integers that cannot be decided on the basis of the axioms." (Kurt Gödel, "On Formally Undecidable Propositions of Principia Mathematica and Related Systems", 1931)

"We love to discover in the cosmos the geometrical forms that exist in the depths of our consciousness. The exactitude of the proportions of our monuments and the precision of our machines express a fundamental character of our mind. Geometry does not exist in the earthly world. It has originated in ourselves. The methods of nature are never so precise as those of man. We do not find in the universe the clearness and accuracy of our thought. We attempt, therefore, to abstract from the complexity of phenomena some simple systems whose components bear to one another certain relations susceptible of being described mathematically." (Alexis Carrel, "Man the Unknown", 1935)

"It is never possible to predict a physical occurrence with unlimited precision." (Max Planck, "A Scientific Autobiography", 1949)

"Mathematics is one component of any plan for liberal education. Mother of all the sciences, it is a builder of the imagination, a weaver of patterns of sheer thought, an intuitive dreamer, a poet. The study of mathematics cannot be replaced by any other activity that will train and develop man's purely logical faculties to the same level of rationality. Through countless dimensions, riding high the winds of intellectual adventure and filled with the zest of discovery, the mathematician tracks the heavens for harmony and eternal verity. There is not wholly unexpected surprise, but surprise nevertheless, that mathematics has direct application to the physical world about us. For mathematics, in a wilderness of tragedy and change, is a creature of the mind, born to the cry of humanity in search of an invariant reality, immutable in substance, unalterable with time. Mathematics is an infinity of flexibles forcing pure thought into a cosmos. It is an arc of austerity cutting realms of reason with geodesic grandeur. Mathematics is crystallized clarity, precision personified, beauty distilled and rigorously sublimated. The life of the spirit is a life of thought; the ideal of thought is truth; everlasting truth is the goal of mathematics." (Cletus O Oakley, "Mathematics", The American Mathematical Monthly, 1949)

On Precision (1950-1974)

"Precision is expressed by an international standard, viz., the standard error. It measures the average of the difference between a complete coverage and a long series of estimates formed from samples drawn from this complete coverage by a particular procedure or drawing, and processed by a particular estimating formula." (W Edwards Deming, "On the Presentation of the Results of Sample Surveys as Legal Evidence", Journal of the American Statistical Association Vol 49 (268), 1954)

"Beauty had been born, not, as we so often conceive it nowadays, as an ideal of humanity, but as measure, as the reduction of the chaos of appearances to the precision of linear symbols. Symmetry, balance, harmonic division, mated and mensurated intervals - such were its abstract characteristics." (Herbert Read, "Icon and Idea: The Function of Art in the Development of Human Consciousness", 1955)

"Scientists whose work has no clear, practical implications would want to make their decisions considering such things as: the relative worth of (1) more observations, (2) greater scope of his conceptual model, (3) simplicity, (4) precision of language, (5) accuracy of the probability assignment." (C West Churchman, "Costs, Utilities, and Values", 1956)

"The precision of a number is the degree of exactness with which it is stated, while the accuracy of a number is the degree of exactness with which it is known or observed. The precision of a quantity is reported by the number of significant figures in it." (Edmund C Berkeley & Lawrence Wainwright, Computers: Their Operation and Applications", 1956)

"The two most important characteristics of the language of statistics are first, that it describes things in quantitative terms, and second, that it gives this description an air of accuracy and precision." (Ely Devons, "Essays in Economics", 1961)

"Cybernetics is concerned primarily with the construction of theories and models in science, without making a hard and fast distinction between the physical and the biological sciences. The theories and models occur both in symbols and in hardware, and by 'hardware’ we shall mean a machine or computer built in terms of physical or chemical, or indeed any handleable parts. Most usually we shall think of hardware as meaning electronic parts such as valves and relays. Cybernetics insists, also, on a further and rather special condition that distinguishes it from ordinary scientific theorizing: it demands a certain standard of effectiveness. In this respect it has acquired some of the same motive power that has driven research on modern logic, and this is especially true in the construction and application of artificial languages and the use of operational definitions. Always the search is for precision and effectiveness, and we must now discuss the question of effectiveness in some detail. It should be noted that when we talk in these terms we are giving pride of place to the theory of automata at the expense, at least to some extent, of feedback and information theory." (Frank H George, "The Brain As A Computer", 1962)

"The notion of a fuzzy set provides a convenient point of departure for the construction of a conceptual framework which parallels in many respects the framework used in the case of ordinary sets, but is more general than the latter and, potentially, may prove to have a much wider scope of applicability, particularly in the fields of pattern classification and information processing. Essentially, such a framework provides a natural way of dealing with problems in which the source of imprecision is the absence of sharply denned criteria of class membership rather than the presence of random variables." (Lotfi A Zadeh, "Fuzzy Sets", 1965)

"It is of course desirable to work with manageable models which maximize generality, realism, and precision toward the overlapping but not identical goals of understanding, predicting, and modifying nature. But this cannot be done. Therefore, several alternative strategies have evolved: (1) Sacrifice generality to realism and precision. [...] (2) Sacrifice realism to generality and precision.  [...] (3) Sacrifice precision to realism and generality. [...]" (Richard Levins, "The strategy of model building in population biology", American Scientist Vol. 54 (4), 1966) 

"In general, complexity and precision bear an inverse relation to one another in the sense that, as the complexity of a problem increases, the possibility of analysing it in precise terms diminishes. Thus 'fuzzy thinking' may not be deplorable, after all, if it makes possible the solution of problems which are much too complex for precise analysis." (Lotfi A Zadeh, "Fuzzy languages and their relation to human intelligence", 1972)

"As the complexity of a system increases, our ability to make precise and yet significant statements about its behavior diminishes until a threshold is reached beyond which precision and significance (or relevance) become almost mutually exclusive characteristics." (Lotfi A Zadeh, 1973)

"Since small differences in probability cannot be appreciated by the human mind, there seems little point in being excessively precise about uncertainty." (George E P Box & G C Tiao, "Bayesian inference in statistical analysis", 1973)

On Precision (1975-1999)

"Simplicity is worth buying if we do not have to pay too great a loss of precision for it." (George Pólya, "Mathematical Methods in Science", 1977)

"Concepts are inventions of the human mind used to construct a model of the world. They package reality into discrete units for further processing, they support powerful mechanisms for doing logic, and they are indispensable for precise, extended chains of reasoning. […] A mental model is a cognitive construct that describes a person's understanding of a particular content domain in the world." (John Sown, "Conceptual Structures: Information Processing in Mind and Machine", 1984)

"Computational reducibility may well be the exception rather than the rule: Most physical questions may be answerable only through irreducible amounts of computation. Those that concern idealized limits of infinite time, volume, or numerical precision can require arbitrarily long computations, and so be formally undecidable." (Stephen Wolfram, Undecidability and intractability in theoretical physics", Physical Review Letters 54 (8), 1985)

"Whenever we axiomitize a real-world system, we always, of necessity, oversimplify. Frequently, the oversimplification will adequately describe the system for the purposes at hand. In many other cases, the oversimplification may seem deceptively close to reality, when in fact it is far wide of the mark. The best hope, of course, is the use of a model adequate to explain observation. However, when we are unable to develop an adequate model, we would generally be well advised to stick with empiricism and axiomatic imprecision." (James R Thompson, "Empirical Model Building", 1989)

"The voyage of discovery into our own solar system has taken us from clockwork precision into chaos and complexity. This still unfinished journey has not been easy, characterized as it is by twists, turns, and surprises that mirror the intricacies of the human mind at work on a profound puzzle. Much remains a mystery. We have found chaos, but what it means and what its relevance is to our place in the universe remains shrouded in a seemingly impenetrable cloak of mathematical uncertainty." (Ivars Peterson, "Newton’s Clock", 1993)

"The temptation to use mathematics is irresistible for economists. It appears to convey the appropriate air of scientific authority and precision to economists' musings." (Paul Ormerod, "The Death of Economics", 1994)

"Negative feedback only improves the precision of goal-seeking, but does not determine it. Feedback devices are only executive mechanisms that operate during the translation of a program." (Ernst Mayr, "Toward a New Philosophy of Biology: Observations of an Evolutionist", 1988)

On Precision (2000-)

"A mathematical model uses mathematical symbols to describe and explain the represented system. Normally used to predict and control, these models provide a high degree of abstraction but also of precision in their application." (Lars Skyttner, "General Systems Theory: Ideas and Applications", 2001)

"Logic is the study of methods and principles of reasoning, where reasoning means obtaining new propositions from existing propositions. In classical logic, propositions are required to be either true or false; that is, the truth value of a proposition is either 0 or 1. Fuzzy logic generalizes classical two-value logic by allowing the truth values of a proposition to be any numbers in [0, 1]. This generalization allows us to perform fuzzy reasoning, also called approximate reasoning; that is, deducing imprecise conclusions (fuzzy propositions) from a collection of imprecise premises (fuzzy propositions). In this section, we first introduce some basic concepts and principles in classical logic and then study their generalizations to fuzzy logic." (Huaguang Zhang & Derong Liu, "Fuzzy Modeling and Fuzzy Control", 2006)

"Statistics can certainly pronounce a fact, but they cannot explain it without an underlying context, or theory. Numbers have an unfortunate tendency to supersede other types of knowing. […] Numbers give the illusion of presenting more truth and precision than they are capable of providing." (Ronald J Baker, "Measure what Matters to Customers: Using Key Predictive Indicators", 2006)

"Human language is a vehicle of truth but also of error, deception, and nonsense. Its use, as in the present discussion, thus requires great prudence. One can improve the precision of language by explicit definition of the terms used. But this approach has its limitations: the definition of one term involves other terms, which should in turn be defined, and so on. Mathematics has found a way out of this infinite regression: it bypasses the use of definitions by postulating some logical relations (called axioms) between otherwise undefined mathematical terms. Using the mathematical terms introduced with the axioms, one can then define new terms and proceed to build mathematical theories. Mathematics need, not, in principle rely on a human language. It can use, instead, a formal presentation in which the validity of a deduction can be checked mechanically and without risk of error or deception." (David Ruelle, "The Mathematician's Brain", 2007)

"Popular accounts of mathematics often stress the discipline’s obsession with certainty, with proof. And mathematicians often tell jokes poking fun at their own insistence on precision. However, the quest for precision is far more than an end in itself. Precision allows one to reason sensibly about objects outside of ordinary experience. It is a tool for exploring possibility: about what might be, as well as what is." (Donal O’Shea, “The Poincaré Conjecture”, 2007)

"It is obviously pointless to report or quote results to more digits than is warranted. In fact, it is misleading or at the very least unhelpful, because it fails to communicate to the reader another important aspect of the result - namely its reliability! A good rule (sometimes known as Ehrenberg’s rule) is to quote all digits up to and including the first two variable digits." (Philipp K Janert, "Data Analysis with Open Source Tools", 2010)

"Precision and recall are ways of monitoring the power of the machine learning implementation. Precision is a metric that monitors the percentage of true positives. […] Recall is the ratio of true positives to true positive plus false negatives." (Matthew Kirk, "Thoughtful Machine Learning", 2015)

"GIGO is a famous saying coined by early computer scientists: garbage in, garbage out. At the time, people would blindly put their trust into anything a computer output indicated because the output had the illusion of precision and certainty. If a statistic is composed of a series of poorly defined measures, guesses, misunderstandings, oversimplifications, mismeasurements, or flawed estimates, the resulting conclusion will be flawed." (Daniel J Levitin, "Weaponized Lies", 2017)

"Repeated observations of the same phenomenon do not always produce the same results, due to random noise or error. Sampling errors result when our observations capture unrepresentative circumstances, like measuring rush hour traffic on weekends as well as during the work week. Measurement errors reflect the limits of precision inherent in any sensing device. The notion of signal to noise ratio captures the degree to which a series of observations reflects a quantity of interest as opposed to data variance. As data scientists, we care about changes in the signal instead of the noise, and such variance often makes this problem surprisingly difficult." (Steven S Skiena, "The Data Science Design Manual", 2017)

"Artificial intelligence is defined as the branch of science and technology that is concerned with the study of software and hardware to provide machines the ability to learn insights from data and the environment, and the ability to adapt in changing situations with high precision, accuracy and speed." (Amit Ray, "Compassionate Artificial Intelligence", 2018)

19 April 2021

On Sampling (-1949)

"By a small sample we may judge of the whole piece." (Miguel de Cervantes, "Don Quixote de la Mancha", 1605–1615)

"To a very striking degree our culture has become a Statistical culture. Even a person who may never have heard of an index number is affected [...] by [...] of those index numbers which describe the cost of living. It is impossible to understand Psychology, Sociology, Economics, Finance or a Physical Science without some general idea of the meaning of an average, of variation, of concomitance, of sampling, of how to interpret charts and tables." (Carrol D Wright, 1887)

"If the number of experiments be very large, we may have precise information as to the value of the mean, but if our sample be small, we have two sources of uncertainty: (I) owing to the 'error of random sampling' the mean of our series of experiments deviates more or less widely from the mean of the population, and (2) the sample is not sufficiently large to determine what is the law of distribution of individuals." (William S Gosset, "The Probable Error of a Mean", Biometrika, 1908)

"The postulate of randomness thus resolves itself into the question, 'of what population is this a random sample?' which must frequently be asked by every practical statistician." (Ronald Fisher, "On the Mathematical Foundation of Theoretical Statistics", Philosophical Transactions of the Royal Society of London Vol. A222, 1922)

"The principle underlying sampling is that a set of objects taken at random from a larger group tends to reproduce the characteristics of that larger group: this is called the Law of Statistical Regularity. There are exceptions to this rule, and a certain amount of judgment must be exercised, especially when there are a few abnormally large items in the larger group. With erratic data, the accuracy of sampling can often be tested by comparing several samples. On the whole, the larger the sample the more closely will it tend to resemble the population from which it is taken; too small a sample would not give reliable results." (Lewis R Connor, "Statistics in Theory and Practice", 1932)

"If the chance of error alone were the sole basis for evaluating methods of inference, we would never reach a decision, but would merely keep increasing the sample size indefinitely." (C West Churchman, "Theory of Experimental Inference", 1948)

"If significance tests are required for still larger samples, graphical accuracy is insufficient, and arithmetical methods are advised. A word to the wise is in order here, however. Almost never does it make sense to use exact binomial significance tests on such data - for the inevitable small deviations from the mathematical model of independence and constant split have piled up to such an extent that the binomial variability is deeply buried and unnoticeable. Graphical treatment of such large samples may still be worthwhile because it brings the results more vividly to the eye." (Frederick Mosteller & John W Tukey, "The Uses and Usefulness of Binomial Probability Paper?", Journal of the American Statistical Association 44, 1949) 

04 December 2020

Fuzzy Logic I

"A fuzzy set is a class of objects with a continuum of grades of membership. Such a set is characterized by a membership (characteristic) function which assigns to each object a grade of membership ranging between zero and one. The notions of inclusion, union, intersection, complement, relation, convexity, etc., are extended to such sets, and various properties of these notions in the context of fuzzy sets are established. In particular, a separation theorem for convex fuzzy sets is proved without requiring that the fuzzy sets be disjoint." (Lotfi A Zadeh, "Fuzzy Sets", 1965)

"The notion of a fuzzy set provides a convenient point of departure for the construction of a conceptual framework which parallels in many respects the framework used in the case of ordinary sets, but is more general than the latter and, potentially, may prove to have a much wider scope of applicability, particularly in the fields of pattern classification and information processing. Essentially, such a framework provides a natural way of dealing with problems in which the source of imprecision is the absence of sharply denned criteria of class membership rather than the presence of random variables." (Lotfi A Zadeh, "Fuzzy Sets", 1965)

"In general, complexity and precision bear an inverse relation to one another in the sense that, as the complexity of a problem increases, the possibility of analysing it in precise terms diminishes. Thus 'fuzzy thinking' may not be deplorable, after all, if it makes possible the solution of problems which are much too complex for precise analysis." (Lotfi A Zadeh, "Fuzzy languages and their relation to human intelligence", 1972)

"Let me say quite categorically that there is no such thing as a fuzzy concept. [...] We do talk about fuzzy things but they are not scientific concepts. Some people in the past have discovered certain interesting things, formulated their findings in a non-fuzzy way, and therefore we have progressed in science." (Rudolf E Kálmán, 1972)

"[Fuzzy logic is] a logic whose distinguishing features are (1) fuzzy truth-values expressed in linguistic terms, e. g., true, very true, more or less true, or somewhat true, false, nor very true and not very false, etc.; (2) imprecise truth tables; and (3) rules of inference whose validity is relative to a context rather than exact." (Lotfi A. Zadeh, "Fuzzy logic and approximate reasoning", 1975)

"[...] much of the information on which human decisions are based is possibilistic rather than probabilistic in nature, and the intrinsic fuzziness of natural languages - which is a logical consequence of the necessity to express information in a summarized form - is, in the main, possibilistic in origin." (Lotfi A Zadeh, "Fuzzy Sets as the Basis for a Theory of Possibility", Fuzzy Sets and Systems, 1978) 

"Philosophical objections may be raised by the logical implications of building a mathematical structure on the premise of fuzziness, since it seems (at least superficially) necessary to require that an object be or not be an element of a given set. From an aesthetic viewpoint, this may be the most satisfactory state of affairs, but to the extent that mathematical structures are used to model physical actualities, it is often an unrealistic requirement. [...] Fuzzy sets have an intuitively plausible philosophical basis. Once this is accepted, analytical and practical considerations concerning fuzzy sets are in most respects quite orthodox." (James Bezdek, 1981)

"Fuzziness, then, is a concomitant of complexity. This implies that as the complexity of a task, or of a system for performing that task, exceeds a certain threshold, the system must necessarily become fuzzy in nature. Thus, with the rapid increase in the complexity of the information processing tasks which the computers are called upon to perform, we are reaching a point where computers will have to be designed for processing of information in fuzzy form. In fact, it is the capability to manipulate fuzzy concepts that distinguishes human intelligence from the machine intelligence of current generation computers. Without such capability we cannot build machines that can summarize written text, translate well from one natural language to another, or perform many other tasks that humans can do with ease because of their ability to manipulate fuzzy concepts." (Lotfi A Zadeh, "The Birth and Evolution of Fuzzy Logic", 1989)

"It is important to observe that there is an intimate connection between fuzziness and complexity. Thus, a basic characteristic of the human brain, a characteristic shared in varying degrees with all information processing systems, is its limited capacity to handle classes of high cardinality, that is, classes having a large number of members. Consequently, when we are presented with a class of very high cardinality, we tend to group its elements together into subclasses in such a way as to reduce the complexity of the information processing task involved. When a point is reached where the cardinality of the class of subclasses exceeds the information handling capacity of the human brain, the boundaries of the subclasses are forced to become imprecise and fuzziness becomes a manifestation of this imprecision." (Lotfi A Zadeh, "The Birth and Evolution of Fuzzy Logic", 1989)

"A fuzzy set can be defined mathematically by assigning to each possible individual in the universe of discourse a value representing its grade of membership in the fuzzy set. This grade corresponds to the degree to which that individual is similar or compatible with the concept represented by the fuzzy set. Thus, individuals may belong in the fuzzy act to a greater or lesser degree as indicated by a larger or smaller membership grade. As already mentioned, these membership grades are very often represented by real-number values ranging in the closed interval between 0 and 1." (George J Klir & Bo Yuan, "Fuzzy Sets and Fuzzy Logic: Theory and Applications", 1995)


12 September 2017

On Truth (Unsourced)

"Truth in science can be defined as the working hypothesis best suited to open the way to the next better one.” (Konrad Lorenz)

“Truth is what stands the test of experience.” (Albert Einstein)

“The truth is that which works.” (John Dewey)

"Truth is ever to be found in the simplicity, and not in the multiplicity and confusion of things.” (Isaac Newton)

“The opposite of a correct statement is a false statement. The opposite of a profound truth may well be another profound truth.” (Niels Bohr)

“Every truth is true only up to a point. Beyond that, by way of counter-point, it becomes untruth.” (Søren Kierkegaard)

“All truths are easy to understand once they are discovered; the point is to discover them.” (Galileo Galilei)

“Truth, like gold, is to be obtained not by its growth, but by washing away from it all that is not gold.” (Lev Nikolaevich Tolstoy)

“It is the mark of an instructed mind to rest assured with that degree of precision that the nature of the subject admits, and not to seek exactness when only an approximation of the truth is possible.” (Aristotle)

“We can never achieve absolute truth, but we can live hopefully by a system of calculated probabilities. The law of probability gives to natural and human sciences - to human experience as a whole - the unity of life we seek.” (Agnes Meyer)
Related Posts Plugin for WordPress, Blogger...

On Leonhard Euler

"I have been able to solve a few problems of mathematical physics on which the greatest mathematicians since Euler have struggled in va...