Showing posts with label series. Show all posts
Showing posts with label series. Show all posts

15 April 2022

On Series XII: Nature

"Further we believe that GOD Himself is present everywhere throughout the whole of the undoubtedly divisible space that all bodies occupy; & yet He is onefold in the highest degree & admits not of any composite nature whatever. Moreover, the same idea seems to depend on an analogy between space & time. For, just as rest is a conjunction with a continuous series of all the instants In the interval of time during which the rest endures; so also this virtual extension is a conjunction of one instant of time with a continuous series of all the points of space throughout which this one-fold entity extends virtually. Hence, just as rest is believed to exist in Nature, so also are we bound to admit virtual extension; & if this is admitted, then it will be possible for the primary elements of matter to be simple, & yet not absolutely non-extended." (Roger J Boscovich, "Philosophiae Naturalis Theoria Redacta Ad Unicam Legera Virium in Natura Existentium, 1758)

"Nature, displayed in its full extent, presents us with an immense tableau, in which all the order of beings are each represented by a chain which sustains a continuous series of objects, so close and so similar that their difference would be difficult to define. This chain is not a simple thread which is only extended in length, it is a large web or rather a network, which, from interval to interval, casts branches to the side in order to unite with the networks of another order." (Comte Georges-Louis Leclerc de Buffon, "Les Oiseaux Qui Ne Peuvent Voler", Histoire Naturelle des Oiseaux Vol. I, 1770)

"[…] without the theory of evolution all the big general series of phenomena of organic nature remain completely incomprehensible and inexplicable riddles, while by means of this theory they can be explained simply and consistently. This holds especially true for two complexes of biological phenomena which we now in conclusion wish to single out in a few words. These form the subject of two special branches of physiology which so far have been largely neglected, namely, the ecology and chorology of organisms." (Ernst Häckel, "Generelle Morphologie der Organismen", 1866)

"Nature's action is complex: and nothing is gained in the long run by pretending that it is simple, and trying to describe it in a series of elementary propositions." (Alfred Marshall, "Principles of Economics", 1890)

"We define law, using the word in the philosophic sense, as the constant relation discoverable in a series of phenomena." (Michel Bréal, "Essai de semantique", 1897)

"Nature is an infinitely complex series of facts; it is not an object lesson, and it is not a ready-made sermon on conduct or morality." (Hal Borland, "The Enduring Pattern, A Place to Live: Time", 1959)

On Series IX: Mind

"[It] may be laid down as a general rule that, if the result of a long series of precise observations approximates a simple relation so closely that the remaining difference is undetectable by observation and may be attributed to the errors to which they are liable, then this relation is probably that of nature." (Pierre-Simon Laplace, "Mémoire sur les Inégalites Séculaires des Planètes et des Satellites", 1787)

"Such is the tendency of the human mind to speculation, that on the least idea of an analogy between a few phenomena, it leaps forward, as it were, to a cause or law, to the temporary neglect of all the rest; so that, in fact, almost all our principal inductions must be regarded as a series of ascents and descents, and of conclusions from a few cases, verified by trial on many." (Sir John Herschel, "A Preliminary Discourse on the Study of Natural Philosophy" , 1830)

"The very genius of the common geometry as a method of reasoning - a system of investigation - is, that it is but a series of observations. The figure being before the eye in actual representation, or before the mind in conception, is so closely scrutinized, that all its distinctive features are perceived; auxiliary lines are drawn (the imagination leading in this), and a new series of inspections is made; and thus, by means of direct, simple observations, the investigation proceeds." (Edward Olney, "Mathematics", The Cyclopedia of Education, 1877)

"There are great differences in the power of forming pictures of objects in the mind's eye; in other words of visualising them. In some persons the faculty of perceiving these images is so feeble that they hardly visualise at all. […] Other persons perceive past scenes with a distinctness and an appearance of reality that differ little from actual vision. Between these wide extremes I have met with a mass of intermediate cases extending in an unbroken series."  (Francis Galton, "Mental imagery", 1880)

"The essential characteristic of reasoning by recurrence is that it contains, condensed, so to speak, in a single formula, an infinite number of syllogisms. […] We see, then, that in reasoning by recurrence we confine ourselves to the enunciation of the minor of the first syllogism, and the general formula which contains as particular cases all the majors. This unending series of syllogisms is thus reduced to a phrase of a few lines." (Henri Poincaré, "Science and Hypothesis", 1901)

"[…] mathematical verities flow from a small number of self-evident propositions by a chain of impeccable reasonings; they impose themselves not only on us, but on nature itself. They fetter, so to speak, the Creator and only permit him to choose between some relatively few solutions. A few experiments then will suffice to let us know what choice he has made. From each experiment a number of consequences will follow by a series of mathematical deductions, and in this way each of them will reveal to us a corner of the universe. This, to the minds of most people, and to students who are getting their first ideas of physics, is the origin of certainty in science." (Henri Poincaré, "The Foundations of Science", 1913)

"[…] to the scientific mind the living and the non-living form one continuous series of systems of differing degrees of complexity […], while to the philosophic mind the whole universe, itself perhaps an organism, is composed of a vast number of interlacing organisms of all sizes." (James G Needham, "Developments in Philosophy of Biology", Quarterly Review of Biology Vol. 3 (1), 1928)

"We say the map is different from the territory. But what is the territory? Operationally, somebody went out with a retina or a measuring stick and made representations which were then put on paper. What is on the paper map is a representation of what was in the retinal representation of the man who made the map; and as you push the question back, what you find is an infinite regress, an infinite series of maps. The territory never gets in at all. […] Always, the process of representation will filter it out so that the mental world is only maps of maps, ad infinitum." (Gregory Bateson, "Steps to an Ecology of Mind", 1972)

"Tactics involve calculations that can tax the human brain, but when you boil them down, they are actually the simplest part of chess and are almost trivial compared to strategy. Think of tactics as forced, planned responses, basically a series of  'if-then' statements that would make a computer programmer feel right at home." (Garry Kasparov, "How Life Imitates Chess", 2007)

"The mind creates a metaphor of ourselves and of the world that surrounds us. And it is so skillful that it has created machines that are capable of simulating human beings’ own creativity in a series of 1s and 0s [...]" (Diego Rasskin-Gutman, "Chess Metaphors: Artificial Intelligence and the Human Mind", 2009)

"In almost every true series of observations, some are found, which differ so much from the others as to indicate some abnormal source of error not contemplated in the theoretical discussions, and the introduction of which into the investigations can only serve, in the present state of science, to perplex and mislead the inquirer." (Benjamin Peirce, The Astronomical Journal)

On Series XIV: Knowledge

"Analysis is a method where one assumes that which is sought, and from this, through a series of implications, arrives at something which is agreed upon on the basis of synthesis; because in analysis, one assumes that which is sought to be known, proved, or constructed, and examines what this is a consequence of and from what this latter follows, so that by backtracking we end up with something that is already known or is part of the starting points of the theory; we call such a method analysis; it is, in a sense, a solution in reversed direction. In synthesis we work in the opposite direction: we assume the last result of the analysis to be true. Then we put the causes from analysis in their natural order, as consequences, and by putting these together we obtain the proof or the construction of that which is sought. We call this synthesis." (Pappus of Alexandria, cca. 4th century BC)

"In the series of things those which follow are always aptly fitted to those which have gone before; for this series is not like a mere enumeration of disjointed things, which has only a necessary sequence, but it is a rational connection: and as all existing things are arranged together harmoniously, so the things which come into existence exhibit no mere succession, but a certain wonderful relationship." (Marcus Aurelius, "Meditations", cca. 180 AD)

"With the synthesis of every new concept in the aggregation of coordinate characteristics the extensive or complex distinctness is increased; with the further analysis of concepts in the series of subordinate characteristics the intensive or deep distinctness is increased. The latter kind of distinctness, as it necessarily serves the thoroughness and conclusiveness of cognition, is therefore mainly the business of philosophy and is carried farthest especially in metaphysical investigations." (Immanuel Kant, "Logic", 1800)

"Isolated facts and experiments have in themselves no value, however great their number may be. They only become valuable in a theoretical or practical point of view when they make us acquainted with the law of a series of uniformly recurring phenomena, or, it may be, only give a negative result showing an incompleteness in our knowledge of such a law, till then held to be perfect." (Hermann von Helmholtz, "The Aim and Progress of Physical Science", 1869)

"The steps to scientific as well as other knowledge consist in a series of logical fictions which are as legitimate as they are indispensable in the operations of thought, but whose relations to the phenomena whereof they are the partial and not unfrequently merely symbolical representations must never be lost sight of." (John Stallo, "The Concepts and Theories of Modern Physics", 1884) 

"Human knowledge is not (or does not follow) a straight line, but a curve, which endlessly approximates a series of circles, a spiral. Any fragment, segment, section of this curve can be transformed (transformed one-sidedly) into an independent, complete, straight line [...]" (Vladimir I Lenin, "On the Question of Dialectics", 1915)

"Knowledge is not a series of self-consistent theories that converges toward an ideal view; it is rather an ever increasing ocean of mutually incompatible (and perhaps even incommensurable) alternatives, each single theory, each fairy tale, each myth that is part of the collection forcing the others into greater articulation and all of them contributing, via this process of competition, to the development of our consciousness." (Paul K Feyerabend, "Against Method: Outline of an Anarchistic Theory of Knowledge", 1975)

On Series II: Events

"In the same way, this should also happen with regard to time, namely, that between a preceding continuous time & the next following there should be a single instant, which is the indivisible boundary of either. There cannot be two instants, as we intimated above, contiguous to one another; but between one instant & another there must always intervene some interval of continuous time divisible indefinitely. In the same way, in any quantity which lasts for a continuous interval of time, there must be obtained a series of magnitudes of such a kind that to each instant of time there is its corresponding magnitude; & this magnitude connects the one that precedes with the one that follows it, & differs from the former by some definite magnitude. Nay even in that class of quantities, in which we cannot have two magnitudes at the same time, this very point can be deduced far more clearly, namely, that there cannot be any sudden change from one to another. For at that instant, when the sudden change should take place, & the series be broken by some momentary definite addition, two -magnitudes would necessarily be obtained, namely, the last of the first series & the first of the next. Now this very point is still more clearly seen in those states of things, in which on the one hand there must be at any instant some state so that at no time can the thing be without some state of the kind, whilst on the other hand it can never have two states of the kind simultaneously." (Roger J Boscovich, "Philosophiae Naturalis Theoria Redacta Ad Unicam Legera Virium in Natura Existentium, 1758)

"How can a past idea be present?… it can only be going, infinitesimally past, less past than any assignable past date. We are thus brought to the conclusion that the present is connected to the past by a series of real infinitesimal steps." (Charles S Peirce, "The Law of Mind", 1892)

"It is sometimes difficult to avoid the impression that there is a sort of foreknowledge of the coming series of events." (Carl G Jung, "Synchronicity: An Acausal Connecting Principle", 1952)

"This transition from uncertainty to near certainty when we observe long series of events, or large systems, is an essential theme in the study of chance." (David Ruelle, "Chance and Chaos", 1991)

"Prior to the discovery of the butterfly effect it was generally believed that small differences averaged out and were of no real significance. The butterfly effect showed that small things do matter. This has major implications for our notions of predictability, as over time these small differences can lead to quite unpredictable outcomes. For example, first of all, can we be sure that we are aware of all the small things that affect any given system or situation? Second, how do we know how these will affect the long-term outcome of the system or situation under study? The butterfly effect demonstrates the near impossibility of determining with any real degree of accuracy the long term outcomes of a series of events." (Elizabeth McMillan, Complexity, "Management and the Dynamics of Change: Challenges for practice", 2008)

"Regression toward the mean. That is, in any series of random events an extraordinary event is most likely to be followed, due purely to chance, by a more ordinary one." (Leonard Mlodinow, "The Drunkard’s Walk: How Randomness Rules Our Lives", 2008)

On Series VI: Mathematics

"It is easily seen from a consideration of the nature of demonstration and analysis that there can and must be truths which cannot be reduced by any analysis to identities or to the principle of contradiction but which involve an infinite series of reasons which only God can see through." (Gottfried W Leibniz, "Nouvelles lettres et opuscules inédits", 1857)

"It is difficult, however, to learn all these things from situations such as occur in everyday life. What we need is a series of abstract and quite impersonal situations to argue about in which one side is surely right and the other surely wrong. The best source of such situations for our purposes is geometry. Consequently we shall study geometric situations in order to get practice in straight thinking and logical argument, and in order to see how it is possible to arrange all the ideas associated with a given subject in a coherent, logical system that is free from contradictions. That is, we shall regard the proof of each proposition of geometry as an example of correct method in argumentation, and shall come to regard geometry as our ideal of an abstract logical system. Later, when we have acquired some skill in abstract reasoning, we shall try to see how much of this skill we can apply to problems from real life." (George D Birkhoff & Ralph Beately, "Basic Geometry", 1940)

"Entropy theory, on the other hand, is not concerned with the probability of succession in a series of items but with the overall distribution of kinds of items in a given arrangement." (Rudolf Arnheim, "Entropy and Art: An Essay on Disorder and Order", 1974) 

"Contrary to the impression students acquire in school, mathematics is not just a series of techniques. Mathematics tells us what we have never known or even suspected about notable phenomena and in some instances even contradicts perception. It is the essence of our knowledge of the physical world. It not only transcends perception but outclasses it." (Morris Kline, "Mathematics and the Search for Knowledge", 1985)

"The various homology and cohomology theories appear as complicated machines, the end product of which is an assignment of a graded group to a topological space, through a series of processes which look so arbitrary that one wonders why they succeed at all." (Jean Dieudonné, "A History of Algebraic and Differential Topology, 1900 - 1960", 1989)

"Probability theory is an ideal tool for formalizing uncertainty in situations where class frequencies are known or where evidence is based on outcomes of a sufficiently long series of independent random experiments. Possibility theory, on the other hand, is ideal for formalizing incomplete information expressed in terms of fuzzy propositions." (George Klir, "Fuzzy sets and fuzzy logic", 1995)

"One of the basic tasks of topology is to learn to distinguish nonhomeomorphic figures. To this end one introduces the class of invariant quantities that do not change under homeomorphic transformations of a given figure. The study of the invariance of topological spaces is connected with the solution of a whole series of complex questions: Can one describe a class of invariants of a given manifold? Is there a set of integral invariants that fully characterizes the topological type of a manifold? and so forth." (Michael I Monastyrsky, "Riemann, Topology, and Physics", 1999)

"A proof in mathematics is an argument and so falls under the controlling power of logic itself. […] Within mathematics, a proof is an intellectual structure in which premises are conveyed to their conclusions by specific inferential steps. Assumptions in mathematics are called axioms, and conclusions theorems. This definition may be sharpened a little bit. A proof is a finite series of statements such that every statement is either an axiom or follows directly from an axiom by means of tight, narrowly defined rules. The mathematician’s business is to derive theorems from his axioms; if his system has been carefully constructed, a gross cascade of theorems will flow from a collection of carefully chosen axioms." (David Berlinski, "Infinite Ascent: A short history of mathematics", 2005)

"One could also question whether we are looking for a single overarching mathematical structure or a combination of different complementary points of view. Does a fundamental theory of Nature have a global definition, or do we have to work with a series of local definitions, like the charts and maps of a manifold, that describe physics in various 'duality frames'. At present string theory is very much formulated in the last kind of way." (Robbert Dijkgraaf, "Mathematical Structures", 2005)

"[…] the mathematician learns early to accept no fact, to believe no statement, however apparently reasonable or obvious or trivial, until it has been proved, rigorously and totally by a series of steps proceeding from universally accepted first principles." (Alfred Adler)

On Series XII: Science

"Science still has many chasms, which interrupt the series of facts and often render it expremely difficult to reconcile them with each other [...]" (Antoine Lavoisier, "Elements of Chemistry: In a New Systematic Order; Containing All the Modern Discoveries", 1799)

"The impossibility of separating the nomenclature of a science from the science itself, is owing to this, that every branch of physical science must consist of three things; the series of facts which are the objects of the science, the ideas which represent these facts, and the words by which these ideas are expressed. Like three impressions of the same seal, the word ought to produce the idea, and the idea to be a picture of the fact." (Antoine Lavoisier, "Elements of Chemistry: In a New Systematic Order; Containing All the Modern Discoveries", 1799)

"The domain of physics is no proper field for mathematical pastimes. The best security would be in giving a geometrical training to physicists, who need not then have recourse to mathematicians, whose tendency is to despise experimental science. By this method will that union between the abstract and the concrete be effected which will perfect the uses of mathematical, while extending the positive value of physical science. Meantime, the uses of analysis in physics is clear enough. Without it we should have no precision, and no co-ordination; and what account could we give of our study of heat, weight, light, etc.? We should have merely series of unconnected facts, in which we could foresee nothing but by constant recourse to experiment; whereas, they now have a character of rationality which fits them for purposes of prevision." (Auguste Comte, "The Positive Philosophy", 1830)

"The earlier truths are not expelled but absorbed, not contradicted but extended; and the history of each science, which may thus appear like a succession of revolutions, is, in reality, a series of developements." (William Whewell, "History of the inductive sciences: from the earliest to the present times", 1837)

"[…] mathematical verities flow from a small number of self-evident propositions by a chain of impeccable reasonings; they impose themselves not only on us, but on nature itself. They fetter, so to speak, the Creator and only permit him to choose between some relatively few solutions. A few experiments then will suffice to let us know what choice he has made. From each experiment a number of consequences will follow by a series of mathematical deductions, and in this way each of them will reveal to us a corner of the universe. This, to the minds of most people, and to students who are getting their first ideas of physics, is the origin of certainty in science." (Henri Poincaré, "The Foundations of Science", 1913)

"The function of a mathematician, then, is simply to observe the facts about his own intricate system of reality, that astonishingly beautiful complex of logical relations which forms the subject-matter of his science, as if he were an explorer looking at a distant range of mountains, and to record the results of his observations in a series of maps, each of which is a branch of pure mathematics. […] Among them there perhaps none quite so fascinating, with quite the astonishing contrasts of sharp outline and shade, as that which constitutes the theory of numbers." (Godfrey H. Hardy, "The Theory of Numbers", Nature 1922)

"Common sense […] may be thought of as a series of concepts and conceptual schemes which have proved highly satisfactory for the practical uses of mankind. Some of those concepts and conceptual schemes were carried over into science with only a little pruning and whittling and for a long time proved useful. As the recent revolutions in physics indicate, however, many errors can be made by failure to examine carefully just how common sense ideas should be defined in terms of what the experimenter plans to do." (James B Conant, "Science and Common Sense", 1951)

"It is indeed wrong to think that the poetry of Nature’s moods in all their infinite variety is lost on one who observes them scientifically, for the habit of observation refines our sense of beauty and adds a brighter hue to the richly coloured background against which each separate fact is outlined. The connection between events, the relation of cause and effect in different parts of a landscape, unite harmoniously what would otherwise be merely a series of detached sciences." (Marcel Minnaert, "The Nature of Light and Colour in the Open Air", 1954)

"The organization of science into disciplines sets up a series of ghettos with remarkable distances of artificial social space between them." (Kenneth Boulding, "Image and Environment: Cognitive Mapping and Spatial Behavior", 1973)

"All revolutionary advances in science may consist less of sudden and dramatic revelations than a series of transformations, of which the revolutionary significance may not be seen (except afterwards, by historians) until the last great step. In many cases the full potentiality and force of a most radical step in such a sequence of transformations may not even be manifest to its author." (I Bernard Cohen, "The Newtonian Revolution", 1980)

"The view of science is that all processes ultimately run down, but entropy is maximized only in some far, far away future. The idea of entropy makes an assumption that the laws of the space-time continuum are infinitely and linearly extendable into the future. In the spiral time scheme of the timewave this assumption is not made. Rather, final time means passing out of one set of laws that are conditioning existence and into another radically different set of laws. The universe is seen as a series of compartmentalized eras or epochs whose laws are quite different from one another, with transitions from one epoch to another occurring with unexpected suddenness." (Terence McKenna, "True Hallucinations", 1989)

"Most people think of science as a series of steps forged in concrete, but it’s not. It’s a puzzle, and not all of the pieces will ever be firmly in place. When you’re able to fit some of the together, to see an answer, it’s thrilling." (Nora Roberts, "Homeport", 1998)

"Science is like photographing a series of close-ups with your back to the sun. No matter which way you move, your shadow always falls across the scene you photograph. No matter what you do, you can never efface yourself from the photographed scene." (F David Peat, "From Certainty to Uncertainty", 2002)

"A fact is not novel if it has an analogue which could have some interest. A fact which does not fit in with a series of known facts is a fact which deserves particular attention. If the mind had to retain all individual facts, it could not manage and science would not exist; but when these facts can be connected by general laws and by theories, when a large number of these facts can be represented by a single one, one can remember them more easily, one can generalise one’s ideas, one can compare one general fact with another general fact and discoveries can succeed each other. It is only when laws can be introduced into a science that it assumes the true character of science." (Joseph L Gay-Lussac)

"The sciences are now masked, but when the masks are lifted, they will be seen in their beauty. Upon inspecting the chain of the sciences, it will not appear more difficult to remember them than a series of numbers." (René Descartes)

14 April 2022

On Series III: Time Series

"Diagrams are sometimes used, not merely to convey several pieces of information such as several time series on one chart, but also to provide visual evidence of relationships between the series." (Alfred R Ilersic, "Statistics", 1959)

"Numerical data, which have been recorded at intervals of time, form what is generally described as a time series. [...] The purpose of analyzing time series is not always the determination of the trend by itself. Interest may be centered on the seasonal movement displayed by the series and, in such a case, the determination of the trend is merely a stage in the process of measuring and analyzing the seasonal variation. If a regular basic or under- lying seasonal movement can be clearly established, forecasting of future movements becomes rather less a matter of guesswork and more a matter of intelligent forecasting." (Alfred R Ilersic, "Statistics", 1959)

"Time series analysis often requires more knowledge of the data and relevant information about their background than it does of statistical techniques. Whereas the data in some other fields may be controlled so as to increase their representativeness, economic data are so changeable in their nature that it is usually impossible to sort out the separate effects of the various influences. Attempts to isolate cyclical, seasonal and irregular, or random movements, are made primarily in the hope that some underlying pattern of change over time may be revealed."  (Alfred R Ilersic, "Statistics", 1959)

"No observations are absolutely trustworthy. In no field of observation can we entirely rule out the possibility that an observation is vitiated by a large measurement or execution error. If a reading is found to lie a very long way from its fellows in a series of replicate observations, there must be a suspicion that the deviation is caused by a blunder or gross error of some kind. [...] One sufficiently erroneous reading can wreck the whole of a statistical analysis, however many observations there are." (Francis J Anscombe, "Rejection of Outliers", Technometrics Vol. 2 (2), 1960)

"A time series is a sequence of observations, usually ordered in time, although in some cases the ordering may be according to another dimension. The feature of time series analysis which distinguishes it from other statistical analysis is the explicit recognition of the importance of the order in which the observations are made. While in many problems the observations are statistically independent, in time series successive observations may be dependent, and the dependence may depend on the positions in the sequence. The nature of a series and the structure of its generating process also may involve in other ways the sequence in which the observations are taken." (Theodore W Anderson, "The Statistical Analysis of Time Series", 1971)

"Entropy theory, on the other hand, is not concerned with the probability of succession in a series of items but with the overall distribution of kinds of items in a given arrangement." (Rudolf Arnheim, "Entropy and Art: An Essay on Disorder and Order", 1974) 

"This transition from uncertainty to near certainty when we observe long series of events, or large systems, is an essential theme in the study of chance." (David Ruelle, "Chance and Chaos", 1991)

"System dynamics models are not derived statistically from time-series data. Instead, they are statements about system structure and the policies that guide decisions. Models contain the assumptions being made about a system. A model is only as good as the expertise which lies behind its formulation. A good computer model is distinguished from a poor one by the degree to which it captures the essence of a system that it represents. Many other kinds of mathematical models are limited because they will not accept the multiple-feedback-loop and nonlinear nature of real systems." (Jay W Forrester, "Counterintuitive Behavior of Social Systems", 1995)

"Like modeling, which involves making a static one-time prediction based on current information, time-series prediction involves looking at current information and predicting what is going to happen. However, with time-series predictions, we typically are looking at what has happened for some period back through time and predicting for some point in the future. The temporal or time element makes time-series prediction both more difficult and more rewarding. Someone who can predict the future based on what has occurred in the past can clearly have tremendous advantages over someone who cannot." (Joseph P Bigus,"Data Mining with Neural Networks: Solving business problems from application development to decision support", 1996)

"Many of the basic functions performed by neural networks are mirrored by human abilities. These include making distinctions between items (classification), dividing similar things into groups (clustering), associating two or more things (associative memory), learning to predict outcomes based on examples (modeling), being able to predict into the future (time-series forecasting), and finally juggling multiple goals and coming up with a good-enough solution (constraint satisfaction)." (Joseph P Bigus,"Data Mining with Neural Networks: Solving business problems from application development to decision support", 1996)

"Averages, ranges, and histograms all obscure the time-order for the data. If the time-order for the data shows some sort of definite pattern, then the obscuring of this pattern by the use of averages, ranges, or histograms can mislead the user. Since all data occur in time, virtually all data will have a time-order. In some cases this time-order is the essential context which must be preserved in the presentation." (Donald J Wheeler," Understanding Variation: The Key to Managing Chaos" 2nd Ed., 2000)

"No comparison between two values can be global. A simple comparison between the current figure and some previous value and convey the behavior of any time series. […] While it is simple and easy to compare one number with another number, such comparisons are limited and weak. They are limited because of the amount of data used, and they are weak because both of the numbers are subject to the variation that is inevitably present in weak world data. Since both the current value and the earlier value are subject to this variation, it will always be difficult to determine just how much of the difference between the values is due to variation in the numbers, and how much, if any, of the difference is due to real changes in the process." (Donald J Wheeler, "Understanding Variation: The Key to Managing Chaos" 2nd Ed., 2000)

"Prior to the discovery of the butterfly effect it was generally believed that small differences averaged out and were of no real significance. The butterfly effect showed that small things do matter. This has major implications for our notions of predictability, as over time these small differences can lead to quite unpredictable outcomes. For example, first of all, can we be sure that we are aware of all the small things that affect any given system or situation? Second, how do we know how these will affect the long-term outcome of the system or situation under study? The butterfly effect demonstrates the near impossibility of determining with any real degree of accuracy the long term outcomes of a series of events." (Elizabeth McMillan, Complexity, "Management and the Dynamics of Change: Challenges for practice", 2008)

"Regression toward the mean. That is, in any series of random events an extraordinary event is most likely to be followed, due purely to chance, by a more ordinary one." (Leonard Mlodinow, "The Drunkard’s Walk: How Randomness Rules Our Lives", 2008)

"Using random processes in our models allows economists to capture the variability of time series data, but it also poses challenges to model builders. As model builders, we must understand the uncertainty from two different perspectives. Consider first that of the econometrician, standing outside an economic model, who must assess its congruence with reality, inclusive of its random perturbations. An econometrician’s role is to choose among different parameters that together describe a family of possible models to best mimic measured real world time series and to test the implications of these models. I refer to this as outside uncertainty. Second, agents inside our model, be it consumers, entrepreneurs, or policy makers, must also confront uncertainty as they make decisions. I refer to this as inside uncertainty, as it pertains to the decision-makers within the model. What do these agents know? From what information can they learn? With how much confidence do they forecast the future? The modeler’s choice regarding insiders’ perspectives on an uncertain future can have significant consequences for each model’s equilibrium outcomes." (Lars P Hansen, "Uncertainty Outside and Inside Economic Models", [Nobel lecture] 2013)

"With time series though, there is absolutely no substitute for plotting. The pertinent pattern might end up being a sharp spike followed by a gentle taper down. Or, maybe there are weird plateaus. There could be noisy spikes that have to be filtered out. A good way to look at it is this: means and standard deviations are based on the naïve assumption that data follows pretty bell curves, but there is no corresponding 'default' assumption for time series data (at least, not one that works well with any frequency), so you always have to look at the data to get a sense of what’s normal. [...] Along the lines of figuring out what patterns to expect, when you are exploring time series data, it is immensely useful to be able to zoom in and out." (Field Cady, "The Data Science Handbook", 2017)

"[Making reasoned macro calls] starts with having the best and longest-time-series data you can find. You may have to take some risks in terms of the quality of data sources, but it amazes me how people are often more willing to act based on little or no data than to use data that is a challenge to assemble." (Robert J Shiller)

On Series IV: Infinite Series

"Even as the finite encloses an infinite series And in the unlimited limits appear, So the soul of immensity dwells in minutia And in narrowest limits no limit in here. What joy to discern the minute in infinity! The vast to perceive in the small, what divinity!"  (Jacques Bernoulli, "Ars Conjectandi", 1713)

"I regard the whole of arithmetic as a necessary, or at least natural, consequence of the simplest arithmetic act, that of counting, and counting itself as nothing else than the successive creation of the infinite series of positive integers in which each individual is defined by the one immediately preceding; the simplest act is the passing from an already-formed individual to the consecutive new one to be formed. The chain of these numbers forms in itself an exceedingly useful instrument for the human mind; it presents an inexhaustible wealth of remarkable laws obtained by the introduction of the four fundamental operations of arithmetic. Addition is the combination of any arbitrary repetitions of the above-mentioned simplest act into a single act; from it in a similar way arises multiplication. While the performance of these two operations is always possible, that of the inverse operations, subtraction and division, proves to be limited. Whatever the immediate occasion may have been, whatever comparisons or analogies with experience, or intuition, may have led thereto; it is certainly true that just this limitation in performing the indirect operations has in each case been the real motive for a new creative act; thus negative and fractional numbers have been created by the human mind; and in the system of all rational numbers there has been gained an instrument of infinitely greater perfection." (Richard Dedekind, "On Continuity and Irrational Numbers", 1872)

"To the thought of considering the infinitely great not merely in the form of what grows without limits - and in the closely related form of the convergent infinite series first introduced in the seventeenth century-, but also fixing it mathematically by numbers in the determinate form of the completed-infinite, I have been logically compelled in the course of scientific exertions and attempts which have lasted many years, almost against my will, for it contradicts traditions which had become precious to me; and therefore I believe that no arguments can be made good against it which I would not know how to meet." (Georg Cantor, "Grundlagen einer allgemeinen Mannigfaltigkeitslehre", 1883)

"Mathematics has, of course, given the solution of the difficulties in terms of the abstract concept of converging infinite series. In a certain metaphysical sense this notion of convergence does not answer Zeno’s argument, in that it does not tell how one is to picture an infinite number of magnitudes as together making up only a finite magnitude; that is, it does not give an intuitively clear and satisfying picture, in terms of sense experience, of the relation subsisting between the infinite series and the limit of this series." (Carl B Boyer, "The History of the Calculus and Its Conceptual Development", 1959)

"By studying analytic functions using power series, the algebra of the Middle Ages was connected to infinite operations (various algebraic operations with infinite series). The relation of algebra with infinite operations was later merged with the newly developed differential and integral calculus. These developments gave impetus to early stages of the development of analysis. In a way, we can say that analyticity is the notion that first crossed the boundary from finite to infinite by passing from polynomials to infinite series. However, algebraic properties of polynomial functions still are strongly present in analytic functions." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"[...] the only characteristic property that continuous functions have is that near objects are sent to corresponding near objects, that is, a convergent sequence is mapped to the corresponding convergent sequence. It is reasonable to say that we cannot expect to extract from that property neither numerical consequences, nor a method to extensively study continuity. On the contrary, analytic functions can be represented by equations (precisely speaking, by infinite series). Compared to analytic functions, continuous functions, in general, are difficult to represent explicitly, although they exist as a concept." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"What a wealth of insight Euler’s formula reveals and what delicacy and precision of reasoning it exhibits. It provides a definition of complex exponentiation: It is a definition of complex exponentiation, but the definition proceeds in the most natural way, like a trained singer’s breath. It closes the complex circle once again by guaranteeing that in taking complex numbers to complex powers the mathematician always returns with complex numbers. It justifies the method of infinite series and sums. And it exposes that profound and unsuspected connection between exponential and trigonometric functions; with Euler’s formula the very distinction between trigonometric and exponential functions acquires the shimmer of a desert illusion." (David Berlinski, "Infinite Ascent: A short history of mathematics", 2005)

"With the exception of the geometric series, there does not exist in all of mathematics a single infinite series whose sum has been determined rigorously." (Niels H Abel)

On Series I: Power Series

"Since one could directly derive the expansion in series of algebraic functions according to the powers of an increment, the derivatives, and the integral, one not only held that it was possible to assume the existence of such a series, derivative, and integral for all functions in general, but one never even had the idea that herein lay an assertion, whether it now be an axiom or a theorem - so self-evident did the transfer of the properties of algebraic functions to transcendental ones seem in the light of the geometrical view of curves representing functions. And examples in which purely analytic functions displayed singularities that were clearly different from those of algebraic functions remained entirely unnoticed." (Hermann Hankel, 1870)

"Analytic functions are those that can be represented by a power series, convergent within a certain region bounded by the so-called circle of convergence. Outside of this region the analytic function is not regarded as given a priori ; its continuation into wider regions remains a matter of special investigation and may give very different results, according to the particular case considered." (Felix Klein, "Sophus Lie", [lecture] 1893)

"Nothing in our experience suggests the introduction of [complex numbers]. Indeed, if a mathematician is asked to justify his interest in complex numbers, he will point, with some indignation, to the many beautiful theorems in the theory of equations, of power series, and of analytic functions in general, which owe their origin to the introduction of complex numbers. The mathematician is not willing to give up his interest in these most beautiful accomplishments of his genius." (Eugene P Wigner, “The Unreasonable Effectiveness of Mathematics in the Natural Sciences”, Communications in Pure and Applied Mathematics 13 (1), 1960)

"Analyticity is the property of a differentiable function y = f(x) that can be represented by the infinite series for all x near each point x0." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"By studying analytic functions using power series, the algebra of the Middle Ages was connected to infinite operations (various algebraic operations with infinite series). The relation of algebra with infinite operations was later merged with the newly developed differential and integral calculus. These developments gave impetus to early stages of the development of analysis. In a way, we can say that analyticity is the notion that first crossed the boundary from finite to infinite by passing from polynomials to infinite series. However, algebraic properties of polynomial functions still are strongly present in analytic functions." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"[...] the only characteristic property that continuous functions have is that near objects are sent to corresponding near objects, that is, a convergent sequence is mapped to the corresponding convergent sequence. It is reasonable to say that we cannot expect to extract from that property neither numerical consequences, nor a method to extensively study continuity. On the contrary, analytic functions can be represented by equations (precisely speaking, by infinite series). Compared to analytic functions, continuous functions, in general, are difficult to represent explicitly, although they exist as a concept." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"The splendid creations of this theory have excited the admiration of mathematicians mainly because they have enriched our science in an almost unparalleled way with an abundance of new ideas and opened up heretofore wholly unknown fields to research. The Cauchy integral formula, the Riemann mapping theorem and the Weierstrass power series calculus not only laid the groundwork for a new branch of mathematics but at the same time they furnished the first and till now the most fruitful example of the intimate connections between analysis and algebra. But it isn't just the wealth of novel ideas and discoveries which the new theory furnishes; of equal importance on the other hand are the boldness and profundity of the methods by which the greatest of difficulties are overcome and the most recondite of truths, the mysteria functiorum, are exposed tothe brightest." (Richard Dedekind) 

Related Posts Plugin for WordPress, Blogger...

On Leonhard Euler

"I have been able to solve a few problems of mathematical physics on which the greatest mathematicians since Euler have struggled in va...