Showing posts with label physicists. Show all posts
Showing posts with label physicists. Show all posts

03 September 2021

On Physicists V

"Feedback and its big brother, control theory, are such important concepts that it is odd that they usually find no formal place in the education of physicists. On the practical side, experimentalists often need to use feedback. Almost any experiment is subject to the vagaries of environmental perturbations. Usually, one wants to vary a parameter of interest while holding all others constant. How to do this properly is the subject of control theory. More fundamentally, feedback is one of the great ideas developed (mostly) in the last century, with particularly deep consequences for biological systems, and all physicists should have some understanding of such a basic concept." (John Bechhoefer, "Feedback for physicists: A tutorial essay on control", Reviews of Modern Physics Vol. 77, 2005)

"[…] mathematicians are much more concerned for example with the structure behind something or with the whole edifice. Mathematicians are not really puzzlers. Those who really solve mathematical puzzles are the physicists. If you like to solve mathematical puzzles, you should not study mathematics but physics!" (Carlo Beenakker, [interview] 2006)

"Just as physicists have created models of the atom based on observed data and intuitive synthesis of the patterns in their data, so must designers create models of users based on observed behaviors and intuitive synthesis of the patterns in the data. Only after we formalize such patterns can we hope to systematically construct patterns of interaction that smoothly match the behavior patterns, mental models, and goals of users. Personas provide this formalization." (Alan Cooper et al, "About Face 3: The Essentials of Interaction Design", 2007)

"That is, the physicist likes to learn from particular illustrations of a general abstract concept. The mathematician, on the other hand, often eschews the particular in pursuit of the most abstract and general formulation possible. Although the mathematician may think from, or through, particular concrete examples in coming to appreciate the likely truth of very general statements, he will hide all those intuitive steps when he comes to present the conclusions of his thinking to outsiders. It presents the results of research as a hierarchy of definitions, theorems and proofs after the manner of Euclid; this minimizes unnecessary words but very effectively disguises the natural train of thought that led to the original results." (John D Barrow, "New Theories of Everything", 2007)

"Another feature of Bourbaki is that it rejects intuition of any kind. Bourbaki books tend not to contain explanations, examples, or heuristics. One of the main messages of the present book is that we record mathematics for posterity in a strictly rigorous, axiomatic fashion. This is the mathematician’s version of the reproducible experiment with control used by physicists and biologists and chemists. But we learn mathematics, we discover mathematics, we create mathematics using intuition and trial and error. We draw pictures. Certainly, we try things and twist things around and bend things to try to make them work. Unfortunately, Bourbaki does not teach any part of this latter process." (Steven G Krantz, "The Proof is in the Pudding: The Changing Nature of Mathematical Proof", 2010)

"There are actually two sides to the success of mathematics in explaining the world around us (a success that Wigner dubbed ‘the unreasonable effectiveness of mathematics’), one more astonishing than the other. First, there is an aspect one might call ‘active’. When physicists wander through nature’s labyrinth, they light their way by mathematics - the tools they use and develop, the models they construct, and the explanations they conjure are all mathematical in nature. This, on the face of it, is a miracle in itself. […] But there is also a ‘passive’ side to the mysterious effectiveness of mathematics, and it is so surprising that the 'active' aspect pales by comparison. Concepts and relations explored by mathematicians only for pure reasons - with absolutely no application in mind - turn out decades (or sometimes centuries) later to be the unexpected solutions to problems grounded in physical reality!" (Mario Livio, "Is God a Mathematician?", 2011)

"Order is not universal. In fact, many chaologists and physicists posit that universal laws are more flexible than first realized, and less rigid - operating in spurts, jumps, and leaps, instead of like clockwork. Chaos prevails over rules and systems because it has the freedom of infinite complexity over the known, unknown, and the unknowable." (Lawrence K Samuels, "Defense of Chaos: The Chaology of Politics, Economics and Human Action", 2013)

On Physicists II

"Our environment may and should mean something towards us which is not to be measured with the tools of the physicist or described by the metrical symbols of the mathematician." (Arthur S Eddington, "Science and the Unseen World", 1929)

"In every important advance the physicist finds that the fundamental laws are simplified more and more as experimental research advances. He is astonished to notice how sublime order emerges from what appeared to be chaos. And this cannot be traced back to the workings of his own mind but is due to a quality that is inherent in the world of perception." (Albert Einstein, 1932)

"[…] the supreme task of the physicist is the discovery of the most general elementary laws from which the world-picture can be deduced logically. […] the fact that in science we have to be content with an incomplete picture of the physical universe is not due to the nature of the universe itself but rather to us." (Albert Einstein, [preface to Max Planck's "Where is Science Going?"] 1933)

"[...] the mathematical physicist [...] obtains much prestige from the physicists because they are impressed with the amount of mathematics he knows, and much prestige from the mathematicians, because they are impressed with the amount of physics he knows." (William F G Swann, "The Architecture of the Universe", 1934)

"[…] there is probably less difference between the positions of a mathematician and of a physicist than is generally supposed, [...] the mathematician is in much more direct contact with reality. This may seem a paradox, since it is the physicist who deals with the subject-matter usually described as 'real', but [...] [a physicist] is trying to correlate the incoherent body of crude fact confronting him with some definite and orderly scheme of abstract relations, the kind of scheme he can borrow only from mathematics." (Godfrey H Hardy, "A Mathematician's Apology", 1940)

"At the present time it is of course quite customary for physicists to trespass on chemical ground, for mathematicians to do excellent work in physics, and for physicists to develop new mathematical procedures […] Trespassing is one of the most successful techniques in science." (Wolfgang Köhler, "Dynamics in Psychology", 1940)

"Physicists who are trying to understand nature may work in many different fields and by many different methods; one may dig, one may sow, one may reap. But the final harvest will always be a sheaf of mathematical formulae. These will never describe nature itself, hut only our observations on nature. Our studies can never put us into contact with reality; we can never penetrate beyond the impressions that reality implants in our minds." (James H Jeans, "Physics and Philosophy", 1942)

"In time they [physicists] hoped to devise a model which would reproduce all the phenomena of physics, and so make it possible to predict them all. […] To-day we not only have no perfect model, but we know that it is of no use to search for one - it could have no intelligible meaning for us. For we have found out that nature does not function in a way that can be made comprehensible to the human mind through models or pictures. […] Although we can never devise a pictorial representation which shall be both true to nature and intelligible to our minds, we may still be able to make partial aspects of the truth comprehensible through pictorial representations or parables. As the whole truth does not admit of intelligible representation, every such pictorial representation or parable must fail somewhere. The physicist of the last generation was continually making pictorial representations and parables, and also making the mistake of treating the half-truths of pictorial representations and parables as literal truths." (James H Jeans, "Physics and Philosophy" 3rd Ed., 1943)

"It is to be hoped that in the future more and more theoretical physicists will command a deep knowledge of mathematical principles; and also that mathematicians will no longer limit themselves so exclusively to the aesthetic development of mathematical abstractions." (George D Birkhoff, "Mathematical Nature of Physical Theories" American Scientific Vol. 31 (4), 1943)

On Physicists III

"The mathematicians know a great deal about very little and the physicists very little about a great deal." (Stanislaw Ulam, "On the Ergodic Behavior of Dynamical Systems", 1955)

"Mathematicians who build new spaces and physicists who find them in the universe can profit from the study of pictorial and architectural spaces conceived and built by men of art." (György Kepes, "The New Landscape In Art and Science", 1956)

"For a physicist mathematics is not just a tool by means of which phenomena can be calculated, it is the main source of concepts and principles by means of which new theories can be created." (Freeman J Dyson, "Mathematics in the Physical Sciences", Scientific American, 1964)

"Most of us who become experimental physicists do so for two reasons; we love the tools of physics because to us they have intrinsic beauty, and we dream of finding new secrets of nature as important and as exciting as those uncovered by our scientific heroes." (Luis W Alvarez, "Recent Developments in Particle Physics", [Nobel] 1968)

"Whenever the Eastern mystics express their knowledge in words - be it with the help of myths, symbols, poetic images or paradoxical statements-they are well aware of the limitations imposed by language and 'linear' thinking. Modern physics has come to take exactly the same attitude with regard to its verbal models and theories. They, too, are only approximate and necessarily inaccurate. They are the counterparts of the Eastern myths, symbols and poetic images, and it is at this level that I shall draw the parallels. The same idea about matter is conveyed, for example, to the Hindu by the cosmic dance of the god Shiva as to the physicist by certain aspects of quantum field theory. Both the dancing god and the physical theory are creations of the mind: models to describe their authors' intuition of reality." (Fritjof Capra, "The Tao of Physics: An Exploration of the Parallels Between Modern Physics and Eastern Mysticism", 1975)

"Here is one way to look at physics: the physicists are men looking for new interpretations of the Book of Nature. After each pedestrian period of normal science, they dream up a new model, a new picture, a new vocabulary, and then they announce that the true meaning of the Book has been discovered." (Richard Rorty, "Philosophy as a Kind of Writing", 1978)

"Until now, physical theories have been regarded as merely models with approximately describe the reality of nature. As the models improve, so the fit between theory and reality gets closer. Some physicists are now claiming that supergravity is the reality, that the model and the real world are in mathematically perfect accord." (Paul C W Davies, "Superforce", 1984)

"It is positively spooky how the physicist finds the mathematician has been there before him or her." (Steven Weinberg, "Lectures on the Applicability of Mathematics" , Notices of the American Mathematical Society, 1986)

"Where chaos begins, classical science stops. For as long as the world has had physicists inquiring into the laws of nature, it has suffered a special ignorance about disorder in the atmosphere, in the fluctuations of the wildlife populations, in the oscillations of the heart and the brain. The irregular side of nature, the discontinuous and erratic side these have been puzzles to science, or worse, monstrosities." (James Gleick, "Chaos", 1987)

"Physicists are all too apt to look for the wrong sorts of generalizations, to concoct theoretical models that are too neat, too powerful, and too clean. Not surprisingly, these seldom fit well with data. To produce a really good biological theory, one must try to see through the clutter produced by evolution to the basic mechanisms. What seems to physicists to be a hopelessly complicated process may have been what nature found simplest, because nature could build on what was already there." (Francis H C Crick, "What Mad Pursuit?: A Personal View of Scientific Discovery", 1988)

"Theoretical physicists are accustomed to living in a world which is removed from tangible objects by two levels of abstraction. From tangible atoms we move by one level of abstraction to invisible fields and particles. A second level of abstraction takes us from fields and particles to the symmetry-groups by which fields and particles are related. The superstring theory takes us beyond symmetry-groups to two further levels of abstraction. The third level of abstraction is the interpretation of symmetry-groups in terms of states in ten-dimensional space-time. The fourth level is the world of the superstrings by whose dynamical behavior the states are defined." (Freeman J Dyson, "Infinite in All Directions", 1988)

On Physicists IV

"That is, the physicist likes to learn from particular illustrations of a general abstract concept. The mathematician, on the other hand, often eschews the particular in pursuit of the most abstract and general formulation possible. Although the mathematician may think from, or through, particular concrete examples in coming to appreciate the likely truth of very general statements, he will hide all those intuitive steps when he comes to present the conclusions of his thinking to outsiders. It presents the results of research as a hierarchy of definitions, theorems and proofs after the manner of Euclid; this minimizes unnecessary words but very effectively disguises the natural train of thought that led to the original results." (John D Barrow, "New Theories of Everything", 1991)

"What is the origin of the urge, the fascination that drives physicists, mathematicians, and presumably other scientists as well? Psychoanalysis suggests that it is sexual curiosity. You start by asking where little babies come from, one thing leads to another, and you find yourself preparing nitroglycerine or solving differential equations. This explanation is somewhat irritating, and therefore probably basically correct." (David Ruelle, "Chance and Chaos", 1991)

"In the everyday world of human affairs, no one is surprised to learn that a tiny event over here can have an enormous effect over there. For want of a nail, the shoe was lost, et cetera. But when the physicists started paying serious attention to nonlinear systems in their own domain, they began to realize just how profound a principle this really was. […] Tiny perturbations won't always remain tiny. Under the right circumstances, the slightest uncertainty can grow until the system's future becomes utterly unpredictable - or, in a word, chaotic." (M Mitchell Waldrop, "Complexity: The Emerging Science at the Edge of Order and Chaos", 1992)

"Physicists' models are like maps: never final, never complete until they grow as large and complex as the reality they represent." (James Gleick, "Genius: The Life and Science of Richard Feynman, Epilogue", 1992)

"Empirical evidence can never establish mathematical existence--nor can the mathematician's demand for existence be dismissed by the physicist as useless rigor. Only a mathematical existence proof can ensure that the mathematical description of a physical phenomenon is meaningful." (Richard Courant, "The Parsimonious Universe, Stefan Hildebrandt & Anthony Tromba", 1996)

"Physicists are more like avant-garde composers, willing to bend traditional rules and brush the edge of acceptability in the search for solutions. Mathematicians are more like classical composers, typically working within a much tighter framework, reluctant to go to the next step until all previous ones have been established with due rigor. Each approach has its advantages as well as drawbacks; each provides a unique outlet for creative discovery. Like modern and classical music, it’s not that one approach is right and the other wrong – the methods one chooses to use are largely a matter of taste and training." (Brian Greene, "The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory", 1999)

"A more extreme form of exponential growth was probably responsible for the start of the universe. Astronomer and physicists now generally accept the Big Bang theory, according to which the universe started at an unimaginably small size and then doubled in a split second 100 times, enough to make it the size of a small grapefruit. This period of 'inflation' or exponential growth then ended, and linear growth took over, with an expanding fireball creating the universe that we know today." (Richar Koch, "The Power Laws", 2000)

"Theoretical physicists are like pure mathematicians, in that they are often interested in the hypothetical behaviour of entirely imaginary objects, such as parallel universes, or particles traveling faster than light, whose actual existence is not being seriously proposed at all." (John Ziman," Real Science: What it Is, and what it Means", 2000)

"Physics builds from observations. No physical theory can succeed if it is not confirmed by observations, and a theory strongly supported by observations cannot be denied. (William N Cropper, Great Physicists, 2001)

On Physicists I

"The domain of physics is no proper field for mathematical pastimes. The best security would be in giving a geometrical training to physicists, who need not then have recourse to mathematicians, whose tendency is to despise experimental science. By this method will that union between the abstract and the concrete be effected which will perfect the uses of mathematical, while extending the positive value of physical science. Meantime, the uses of analysis in physics is clear enough. Without it we should have no precision, and no co-ordination; and what account could we give of our study of heat, weight, light, etc.? We should have merely series of unconnected facts, in which we could foresee nothing but by constant recourse to experiment; whereas, they now have a character of rationality which fits them for purposes of prevision." (Auguste Comte, "The Positive Philosophy", 1830)

"So intimate is the union between Mathematics and Physics that probably by far the larger part of the accessions to our mathematical knowledge have been obtained by the efforts of mathematicians to solve the problems set to them by experiment, and to create for each successive class phenomena a new calculus or a new geometry, as the case might be, which might prove not wholly inadequate to the subtlety of nature. Sometimes the mathematician has been before the physicist, and it has happened that when some great and new question has occurred to the experimentalist or the observer, he has found in the armory of the mathematician the weapons which he needed ready made to his hand. But much oftener, the questions proposed by the physicist have transcended the utmost powers of the mathematics of the time, and a fresh mathematical creation has been needed to supply the logical instrument requisite to interpret the new enigma." (Henry J S Smith, Nature, Volume 8, 1873)

"Mathematician ought not to be for the physicist a simple provider of formulae."(Henri Poincaré, The Relations of Analysis and Mathematical Physics, Bulletin of the American Mathematical Society, Volume 4 (6), 1896)

"Mathematicians will do well to observe that a reasonable acquaintance with theoretical physics at its present stage of development, to mention only such broad subjects as electricity, elastics, hydrodynamics, etc., is as much as most of us can keep permanently assimilated. It should also be remembered that the step from the formal elegance of theory to the brute arithmetic of the special case is always humiliating, and that this labor usually falls to the lot of the physicist." (Carl Barus, "The Mathematical Theory of the Top", 1898)

"So is not mathematical analysis then not just a vain game of the mind? To the physicist it can only give a convenient language; but isn't that a mediocre service, which after all we could have done without; and, it is not even to be feared that this artificial language be a veil, interposed between reality and the physicist's eye? Far from that, without this language most of the initimate analogies of things would forever have remained unknown to us; and we would never have had knowledge of the internal harmony of the world, which is, as we shall see, the only true objective reality." (Henri Poincaré, "The Value of Science", 1905)

"The laws of nature are drawn from experience, but to express them one needs a special language: for, ordinary language is too poor and too vague to express relations so subtle, so rich, so precise. Here then is the first reason why a physicist cannot dispense with mathematics: it provides him with the one language he can speak […]. Who has taught us the true analogies, the profound analogies which the eyes do not see, but which reason can divine? It is the mathematical mind, which scorns content and clings to pure form." (Henri Poincaré, "The Value of Science", 1905)

"The goal is nothing other than the coherence and completeness of the system not only in respect of all details, but also in respect of all physicists of all places, all times, all peoples, and all cultures." (Max Planck, Acht Vorlesungen", 1910)

"The supreme task of the physicist is to arrive at those universal elementary laws from which the cosmos can be built up by pure deduction. There is no logical path to these laws; only intuition, resting on sympathetic understanding of experience, can reach them."(Albert Einstein, "Principles of Research", 1918)

"Probably, what characterizes all scientists, whatever they may be, archivists, mathematicians, chemists, astronomists, physicists, is that they do not seek to reach a practical conclusion by their work." (Charles Richet, "The Natural History of a Savant", 1927)

"If to-day you ask a physicist what he has finally made out the æther or the electron to be, the answer will not be a description in terms of billiard balls or fly-wheels or anything concrete; he will point instead to a number of symbols and a set of mathematical equations which they satisfy. What do the symbols stand for? The mysterious reply is given that physics is indifferent to that; it has no means of probing beneath the symbolism. To understand the phenomena of the physical world it is necessary to know the equations which the symbols obey but not the nature of that which is being symbolised [...]" (Arthur S Eddington, "Science and the Unseen World", 1929)

25 January 2021

On Hypotheses (2000-2009)

"Theoretical physicists are like pure mathematicians, in that they are often interested in the hypothetical behaviour of entirely imaginary objects, such as parallel universes, or particles traveling faster than light, whose actual existence is not being seriously proposed at all." (John Ziman," Real Science: What it Is, and what it Means", 2000)

"What does a rigorous proof consist of? The word ‘proof’ has a different meaning in different intellectual pursuits. A ‘proof’ in biology might consist of experimental data confirming a certain hypothesis; a ‘proof’ in sociology or psychology might consist of the results of a survey. What is common to all forms of proof is that they are arguments that convince experienced practitioners of the given field. So too for mathematical proofs. Such proofs are, ultimately, convincing arguments that show that the desired conclusions follow logically from the given hypotheses." (Ethan Bloch, "Proofs and Fundamentals", 2000)

"Given a conjecture, the best thing is to prove it. The second best thing is to disprove it. The third best thing is to prove that it is not possible to disprove it, since it will tell you not to waste your time trying to disprove it. That's what Godel did for the Continuum Hypothesis." (Saharon Shelah, [Rutgers University Colloquium] 2001)

"[Primes] are full of surprises and very mysterious […]. They are like things you can touch […] In mathematics most things are abstract, but I have some feeling that I can touch the primes, as if they are made of a really physical material. To me, the integers as a whole are like physical particles." (Yoichi Motohashi, "The Riemann Hypothesis: The Greatest Unsolved Problem in Mathematics", 2002)

"Eliciting and mapping the participant's mental models, while necessary, is far from sufficient [...] the result of the elicitation and mapping process is never more than a set of causal attributions, initial hypotheses about the structure of a system, which must then be tested. Simulation is the only practical way to test these models. The complexity of the cognitive maps produced in an elicitation workshop vastly exceeds our capacity to understand their implications. Qualitative maps are simply too ambiguous and too difficult to simulate mentally to provide much useful information on the adequacy of the model structure or guidance about the future development of the system or the effects of policies." (John D Sterman, "Learning in and about complex systems", Systems Thinking Vol. 3 2003)

"Inaccurate and imprecise measurements or a poor or unrealistic sampling design can result in the generation of inappropriate hypotheses. Measurement errors or a poor experimental design can give a false or misleading outcome that may result in the incorrect retention or rejection of an hypothesis." (Steve McKillup, "Statistics Explained: An Introductory Guide for Life Scientists", 2005)

"No hypothesis or theory can ever be proven - one day there may be evidence that rejects it and leads to a different explanation (which can include all the successful predictions of the previous hypothesis).Consequently we can only falsify or disprove hypotheses and theories – we can never ever prove them." (Steve McKillup, "Statistics Explained: An Introductory Guide for Life Scientists", 2005)

"The essential features of the ‘hypothetico-deductive’ view of scientific method are that a person observes or samples the natural world and uses all the information available to make an intuitive, logical guess, called an hypothesis, about how the system functions. The person has no way of knowing if their hypothesis is correct - it may or may not apply. Predictions made from the hypothesis are tested, either by further sampling or by doing experiments. If the results are consistent with the predictions then the hypothesis is retained. If they are not, it is rejected, and a new hypothesis formulated." (Steve McKillup, "Statistics Explained: An Introductory Guide for Life Scientists", 2005)

"Any physical theory is always provisional, in the sense that it is only a hypothesis: you can never prove it. No matter how many times the results of experiments agree with some theory, you can never be sure that the next time the result will not contradict the theory." (Stephen Hawking, "A Briefer History of Time: The Science Classic Made More Accessible", 2007)

"In mathematics, it’s the limitations of a reasoned argument with the tools you have available, and with magic it’s to use your tools and sleight of hand to bring about a certain effect without the audience knowing what you’re doing. [...]When you’re inventing a trick, it’s always possible to have an elephant walk on stage, and while the elephant is in front of you, sneak something under your coat, but that’s not a good trick. Similarly with mathematical proof, it is always possible to bring out the big guns, but then you lose elegance, or your conclusions aren’t very different from your hypotheses, and it’s not a very interesting theorem." (Persi Diaconis, 2008)

30 March 2020

Mathematicians vs. Physicists II

"The domain of physics is no proper field for mathematical pastimes. The best security would be in giving a geometrical training to physicists, who need not then have recourse to mathematicians, whose tendency is to despise experimental science." (Auguste Comte, "The Positive Philosophy", 1830)

"So intimate is the union between Mathematics and Physics that probably by far the larger part of the accessions to our mathematical knowledge have been obtained by the efforts of mathematicians to solve the problems set to them by experiment, and to create for each successive class phenomena a new calculus or a new geometry, as the case might be, which might prove not wholly inadequate to the subtlety of nature. Sometimes the mathematician has been before the physicist, and it has happened that when some great and new question has occurred to the experimentalist or the observer, he has found in the armory of the mathematician the weapons which he needed ready made to his hand. But much oftener, the questions proposed by the physicist have transcended the utmost powers of the mathematics of the time, and a fresh mathematical creation has been needed to supply the logical instrument requisite to interpret the new enigma." (Henry J S Smith, Nature, Volume 8, 1873) 

"At the present time it is of course quite customary for physicists to trespass on chemical ground, for mathematicians to do excellent work in physics, and for physicists to develop new mathematical procedures […] Trespassing is one of the most successful techniques in science." (Wolfgang Köhler, "Dynamics in Psychology", 1940)

"It is positively spooky how the physicist finds the mathematician has been there before him or her." (Steven Weinberg,"Lectures on the Applicability of Mathematics" , Notices of the American Mathematical Society, 1986) 

"Mathematician ought not to be for the physicist a simple provider of formulae."(Henri Poincaré, The Relations of Analysis and Mathematical Physics, Bulletin of the American Mathematical Society, Volume 4 (6), 1896)

"Probably, what characterizes all scientists, whatever they may be, archivists, mathematicians, chemists, astronomists, physicists, is that they do not seek to reach a practical conclusion by their work." (Charles Richet, "The Natural History of a Savant", 1927)

"[...] the mathematical physicist [...] obtains much prestige from the physicists because they are impressed with the amount of mathematics he knows, and much prestige from the mathematicians, because they are impressed with the amount of physics he knows." (William F G Swann, "The Architecture of the Universe", 1934) 

"Mathematicians who build new spaces and physicists who find them in the universe can profit from the study of pictorial and architectural spaces conceived and built by men of art." (György Kepes, "The New Landscape In Art and Science", 1956)

"Physicists are more like avant-garde composers, willing to bend traditional rules and brush the edge of acceptability in the search for solutions. Mathematicians are more like classical composers, typically working within a much tighter framework, reluctant to go to the next step until all previous ones have been established with due rigor. Each approach has its advantages as well as drawbacks; each provides a unique outlet for creative discovery. Like modern and classical music, it’s not that one approach is right and the other wrong – the methods one chooses to use are largely a matter of taste and training." (Brian Greene, "The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory", 1999)

"Theoretical physicists are like pure mathematicians, in that they are often interested in the hypothetical behaviour of entirely imaginary objects, such as parallel universes, or particles traveling faster than light, whose actual existence is not being seriously proposed at all." (John Ziman," Real Science: What it Is, and what it Means", 2000) 

Mathematicians vs. Physicists I

"Mathematicians will do well to observe that a reasonable acquaintance with theoretical physics at its present stage of development, to mention only such broad subjects as electricity, elastics, hydrodynamics, etc., is as much as most of us can keep permanently assimilated. It should also be remembered that the step from the formal elegance of theory to the brute arithmetic of the special case is always humiliating, and that this labor usually falls to the lot of the physicist." (Carl Barus, "The Mathematical Theory of the Top", 1898)

"Our environment may and should mean something towards us which is not to be measured with the tools of the physicist or described by the metrical symbols of the mathematician." (Arthur S Eddington, "Science and the Unseen World", 1929)

"[…] there is probably less difference between the positions of a mathematician and of a physicist than is generally supposed, [...] the mathematician is in much more direct contact with reality. This may seem a paradox, since it is the physicist who deals with the subject-matter usually described as 'real', but [...] [a physicist] is trying to correlate the incoherent body of crude fact confronting him with some definite and orderly scheme of abstract relations, the kind of scheme he can borrow only from mathematics." (Godfrey H Hardy, "A Mathematician's Apology", 1940)

"It is to be hoped that in the future more and more theoretical physicists will command a deep knowledge of mathematical principles; and also that mathematicians will no longer limit themselves so exclusively to the aesthetic development of mathematical abstractions." (George D Birkhoff, "Mathematical Nature of Physical Theories" American Scientific Vol. 31 (4), 1943)

"The mathematicians know a great deal about very little and the physicists very little about a great deal." (Stanislaw Ulam, "On the Ergodic Behavior of Dynamical Systems", 1955) 

"The mathematicians and physics men Have their mythology; they work alongside the truth, Never touching it; their equations are false But the things work. Or, when gross error appears, They invent new ones; they drop the theory of waves In universal ether and imagine curved space." (Robinson Jeffers," The Beginning and the End and Other Poems, The Great Wound", 1963) 

"When the problems in physics become difficult we may often look to the mathematician who may already have studied such things and have prepared a line of reasoning for us to follow. On the other hand they may not have, in which case we have to invent our own line of reasoning, which we then pass back to the mathematician." (Richard Feynman,"The Character of Physical Law", 1965)

"Empirical evidence can never establish mathematical existence--nor can the mathematician's demand for existence be dismissed by the physicist as useless rigor. Only a mathematical existence proof can ensure that the mathematical description of a physical phenomenon is meaningful." (Richard Courant, "The Parsimonious Universe, Stefan Hildebrandt & Anthony Tromba", 1996) 

"[…] mathematicians are much more concerned for example with the structure behind something or with the whole edifice. Mathematicians are not really puzzlers. Those who really solve mathematical puzzles are the physicists. If you like to solve mathematical puzzles, you should not study mathematics but physics!" (Carlo Beenakker, [interview] 2006)

"That is, the physicist likes to learn from particular illustrations of a general abstract concept. The mathematician, on the other hand, often eschews the particular in pursuit of the most abstract and general formulation possible. Although the mathematician may think from, or through, particular concrete examples in coming to appreciate the likely truth of very general statements, he will hide all those intuitive steps when he comes to present the conclusions of his thinking to outsiders. It presents the results of research as a hierarchy of definitions, theorems and proofs after the manner of Euclid; this minimizes unnecessary words but very effectively disguises the natural train of thought that led to the original results." (John D Barrow, "New Theories of Everything", 2007)

Related Posts Plugin for WordPress, Blogger...

On Leonhard Euler

"I have been able to solve a few problems of mathematical physics on which the greatest mathematicians since Euler have struggled in va...