Showing posts with label trigonometry. Show all posts
Showing posts with label trigonometry. Show all posts

10 February 2021

On Complex Numbers XIX (Euler's Formula II)

"The equation e^πi+1 = 0 is true only by virtue of a large number of profound connections across many fields. It is true because of what it means! And it means what it means because of all those metaphors and blends in the conceptual system of a mathematician who understands what it means. To show why such an equation is true for conceptual reasons is to give what we have called an idea analysis of the equation." (George Lakoff & Rafael E Nuñez, "Where Mathematics Come From: How the Embodied Mind Brings Mathematics into Being", 2000)

"The equation e^πi =-1 says that the function w= e^z, when applied to the complex number πi as input, yields the real number -1 as the output, the value of w. In the complex plane, πi is the point [0,π) - π on the i-axis. The function w=e^z maps that point, which is in the z-plane, onto the point (-1, 0) - that is, -1 on the x-axis-in the w-plane. […] But its meaning is not given by the values computed for the function w=e^z. Its meaning is conceptual, not numerical. The importance of  e^πi =-1 lies in what it tells us about how various branches of mathematics are related to one another - how algebra is related to geometry, geometry to trigonometry, calculus to trigonometry, and how the arithmetic of complex numbers relates to all of them." (George Lakoff & Rafael E Nuñez, "Where Mathematics Come From: How the Embodied Mind Brings Mathematics into Being", 2000)

"The significance of e^πi+1 = 0 is thus a conceptual significance. What is important is not just the numerical values of e, π, i, 1, and 0 but their conceptual meaning. After all, e, π, i, 1, and 0 are not just numbers like any other numbers. Unlike, say, 192,563,947.9853294867, these numbers have conceptual meanings in a system of common, important nonmathematical concepts, like change, acceleration, recurrence, and self-regulation.

They are not mere numbers; they are the arithmetizations of concepts. When they are placed in a formula, the formula incorporates the ideas the function expresses as well as the set of pairs of complex numbers it mathematically determines by virtue of those ideas." (George Lakoff & Rafael E Nuñez, "Where Mathematics Come From: How the Embodied Mind Brings Mathematics into Being", 2000)

"We will now turn to e^πi+1 = 0. Our approach will be there as it was here. e^πi+1 = 0 uses the conceptual structure of all the cases we have discussed so far - trigonometry, the exponentials, and the complex numbers. Moreover, it puts together all that conceptual structure. In other words, all those metaphors and blends are simultaneously activated and jointly give rise to inferences that they would not give rise to separately. Our job is to see how e^πi+1 = 0 is a precise consequence that arises when the conceptual structure of these three domains is combined to form a single conceptual blend." (George Lakoff & Rafael E Nuñez, "Where Mathematics Come From: How the Embodied Mind Brings Mathematics into Being", 2000)

"[…] the equation’s five seemingly unrelated numbers (e, i, π, 1, and 0) fit neatly together in the formula like contiguous puzzle pieces. One might think that a cosmic carpenter had jig-sawed them one day and mischievously left them conjoined on Euler’s desk as a tantalizing hint of the unfathomable connectedness of things.[…] when the three enigmatic numbers are combined in this form, e^iπ, they react together to carve out a wormhole that spirals through the infinite depths of number space to emerge smack dab in the heartland of integers." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"Thus, while feelings may be the essence of subjectivity, they are by no means part of our weaker nature - the valences they automatically generate are integral to our thought processes and without them we’d simply be lost. In particular, we’d have no sense of beauty at all, much less be able to feel (there’s that word again) that we’re in the presence of beauty when contemplating a work such as Euler’s formula. After all, e^iπ + 1 = 0 can give people limbic-triggered goosebumps when they first peer with understanding into its depths." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"Today, Euler’s formula is a tool as basic to electrical engineers and physicists as the spatula is to short-order cooks. It’s arguable that the formula’s ability to simplify the design and analysis of circuits contributed to the accelerating pace of electrical innovation during the twentieth century." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"[…] when the three enigmatic numbers are combined in this form, e^iπ, they react together to carve out a wormhole that spirals through the infinite depths of number space to emerge smack dab in the heartland of integers." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"Euler’s formula - although deceptively simple - is actually staggeringly conceptually difficult to apprehend in its full glory, which is why so many mathematicians and scientists have failed to see its extraordinary scope, range, and ontology, so powerful and extensive as to render it the master equation of existence, from which the whole of mathematics and science can be derived, including general relativity, quantum mechanics, thermodynamics, electromagnetism and the strong and weak nuclear forces! It’s not called the God Equation for nothing. It is much more mysterious than any theistic God ever proposed." (Thomas Stark, "God Is Mathematics: The Proofs of the Eternal Existence of Mathematics", 2018)

21 July 2019

On Complex Numbers VII

“The remark which you make concerning roots that can not be extracted, and containing imaginary quantities which when added together give none the less a real quantity, is surprising and entirely new. One would never have believed that √(1 + √-3) + √(1 - √- 3) would make √6, and there is something hidden in this which is incomprehensible.” (Christaan Huygens, [letter to Gottfried W Leibniz] cca. 1670)

"But if now a simple, that is, a linear equation, is multiplied by a quadratic, a cubic equation will result, which will have  real roots if the quadratic is possible, or two imaginary roots and only one real one if the quadratic is impossible. […] How can it be, that a real quantity, a root of the proposed equation, is expressed by the intervention of an imaginary? For this is the remarkable thing, that, as calculation shows, such an imaginary quantity is only observed to enter those cubic equations that have no imaginary root, all their roots being real or possible, as has been shown by trisection of an angle, by Albert Girard and others. […] This difficulty has been too much for all writers on algebra up to the present, and they have all said they that in this case Cardano’s rules fail." (Gottfried W Leibniz, cca. 1675)

"For this evil I have found a remedy and obtained a method, by which without experimentation the roots of such binomials can be extracted, imaginaries being no hindrance, and not only in the case of cubics but also in higher equations. This invention rests upon a certain peculiarity which I will explain later. Now I will add certain rules derived from the consideration of irrationals (although no mention is made of irrationals), by which a rational root can easily be extracted from them." (Gottfried W Leibniz, cca. 1675)

“Infinities and infinitely small quantities could be taken as fictions, similar to imaginary roots, except that it would make our calculations wrong, these fictions being useful and based in reality.” (Gottfried W Leibniz, [letter to Johann Bernoulli] 1689)

“For it ought to be considered that both –b   and –c  , as they stand alone, are, in some Sense, as much impossible Quantities as √(-b)  and √(-c) ; since the Sign –, according to the established Rules of Notation, shews the Quantity, to which it is prefixed, is to be subtracted, but to subtract something from nothing is impossible, and the Notion or Supposition of a Quantity actually less than Nothing, absurd and shocking to the Imagination.” (Thomas Simpson, “A Treatise of Algebra”, 1745) 

“After exponential quantities the circular functions, sine and cosine, should be considered because they arise when imaginary quantities are involved in the exponential."  (Leonhard Euler, ”Introductio in analysin infinitorum”, 1748)

“Moreover, the whole method has the essential disadvantage that it occupies the mind with the distinction of a great number of cases that can be recognized only by inner intuition, and thus neutralizes an important part of that which algebra is supposed to accomplish, which is relieving the power of inner intuition. Finally, in such a treatment algebra loses a great part of the generality that it can obtain by the mutual connection of different problems, which becomes evident so easily when one uses isolated negative quantities. [...] Since imaginary quantities have to occur, science would certainly not win that much by avoiding negative quantities than it would lose in terms of clarity and generality.” (Johann P W Stein,  “Die Elemente der Algebra: Erster Cursus”, 1828) 

"Originally assuming the concept of the absolute integers, it extended its domain step by step; integers were supplemented by fractions, rational numbers by irrational numbers, positive numbers by negative numbers, and real numbers by imaginary numbers. This advance, however, occurred initially with a fearfully hesitant step. The first algebraists preferred to call negative roots of equations false roots, and it is precisely these where the problem to which they refer was always termed in such a way as to ensure that the nature of the quantity sought did not admit any opposite.” (Carl F Gauss, “Theoria residuorum biquadraticum. Commentatio secunda. [Selbstanzeige]”, Göttingische gelehrte Anzeigen 23 (4), 1831)

“[T]he notion of a negative magnitude has become quite a familiar one […] But it is far otherwise with the notion which is really the fundamental one (and I cannot too strongly emphasize the assertion) underlying and pervading the whole of modern analysis and geometry, that of imaginary magnitude in analysis and of imaginary space (or space as a locus in quo of imaginary points and figures) in geometry: I use in each case the word imaginary as including real. This has not been, so far as I am aware, a subject of philosophical discussion or inquiry. […] considering the prominent position which the notion occupies-say even that the conclusion were that the notion belongs to mere technical mathematics, or has reference to nonentities in regard to which no science is possible, still it seems to me that (as a subject of philosophical discussion) the notion ought not to be thus ignored; it should at least be shown that there is a right to ignore it.” (Arthur Cayley, [address before the meeting of the British Association at Southport] 1870) 

“A satisfactory theory of the imaginary quantities of ordinary algebra, which is essentially a simple case of multiple algebra, with difficulty obtained recognition in the first third of this century. We must observe that this double algebra, as it has been called, was not sought for or invented; - it forced itself, unbidden, upon the attention of mathematicians, and with its rules already formed. [...] But the idea of double algebra, once received, although as it were unwillingly, must have suggested to many minds more or less distinctly the possibility of other multiple algebras, of higher orders, possessing interesting or useful properties.” (Josiah W Gibbs, “On multiple Algebra”, Proceedings of the American Association for the Advancement of Science Vol. 35, 1886)
Related Posts Plugin for WordPress, Blogger...

On Leonhard Euler

"I have been able to solve a few problems of mathematical physics on which the greatest mathematicians since Euler have struggled in va...