Showing posts with label infinite. Show all posts
Showing posts with label infinite. Show all posts

27 December 2023

Manfred Schroeder - Collected Quotes

"A Markov process is a stochastic process in which present events depend on the past only through some finite number of generations. In a first-order Markov process, the influential past is limited to a single earlier generation: the present can be fully accounted for by the immediate past." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"[…] a pink (or white, or brown) noise is the very paradigm of a statistically self-similar process. Phenomena whose power spectra are homogeneous power functions lack inherent time and frequency scales; they are scale-free. There is no characteristic time or frequency -whatever happens in one time or frequency range happens on all time or frequency scales. If such noises are recorded on magnetic tape and played back at various speeds, they sound the same […]" (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"All physical objects that are 'self-similar' have limited self-similarity - just as there are no perfectly periodic functions, in the mathematical sense, in the real world: most oscillations have a beginning and an end (with the possible exception of our universe, if it is closed and begins a new life cycle after every 'big crunch' […]. Nevertheless, self-similarity is a useful  abstraction, just as periodicity is one of the most useful concepts in the sciences, any finite extent notwithstanding." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"[…] an epidemic does not always percolate through an entire population. There is a percolation threshold below which the epidemic has died out before most of the people have." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"Apart from power laws, iteration is one of the prime sources of self-similarity. Iteration here means the repeated application of some rule or operation - doing the same thing over and over again. […] A concept closely related to iteration is recursion. In an age of increasing automation and computation, many processes and calculations are recursive, and if a recursive algorithm is in fact repetitious, self-similarity is waiting in the wings."(Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"Formally, a Cantor set is defined as a set that is totally disconnected, closed, and perfect. A totally disconnected set is a set that contains no intervals and therefore has no interior points. A closed set is one that contains all its boundary elements. (A boundary element is an element that contains elements both inside and outside the set in arbitrarily small neighborhoods.) A perfect set is a nonempty set that is equal to the set of its accumulation points. All three conditions are met by our middle-third—erasing construction, the original Cantor set." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"[…] homogeneous functions have an interesting scaling property: they reproduce themselves upon rescaling. This scaling invariance can shed light into some of the darker corners of physics, biology, and other sciences, and even illuminate our appreciation of music." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"In a white-noise process, every value of the process (e.g., the successive frequencies of a melody) is completely independent of its past - it is a total surprise. By contrast, in 'brown music' (a term derived from Brownian motion), only the increments are independent of the past, giving rise to a rather boring tune." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"In contrast to gravitation, interatomic forces are typically modeled as inhomogeneous power laws with at least two different exponents. Such laws (and exponential laws, too) are not scale-free; they necessarily introduce a characteristic length, related to the size of the atoms. Power laws also govern the power spectra of all kinds of noises, most intriguing among them the ubiquitous (but sometimes difficult to explain)." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"In physics, there are numerous phenomena that are said to be 'true on all scales', such as the Heisenberg uncertainty relation, to which no exception has been found over vast ranges of the variables involved (such as energy versus time, or momentum versus position). But even when the size ranges are limited, as in galaxy clusters (by the size of the universe) or the magnetic domains in a piece of iron near the transition point to ferromagnetism (by the size of the magnet), the concept true on all scales is an important postulate in analyzing otherwise often obscure observations." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"Nature abounds with periodic phenomena: from the motion of a swing to the oscillations of atoms, from the chirping of a grasshopper to the orbits of the heavenly bodies. […] Of course, nothing in nature is exactly periodic. All motion has a beginning and an end, so that, in the mathematical sense, strict periodicity does not exist in the real world. Nevertheless, periodicity has proved to be a supremely useful concept in elucidating underlying laws and mechanisms in many fields." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"Percolation is a widespread paradigm. Percolation theory can therefore illuminate a great many seemingly diverse situations. Because of its basically geometric character, it facilitates the analysis of intricate patterns and textures without needless physical complications. And the self-similarity that prevails at critical points permits profitably mining the connection with scaling and fractals." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"[…] physicists have come to appreciate a fourth kind of temporal behavior: deterministic chaos, which is aperiodic, just like random noise, but distinct from the latter because it is the result of deterministic equations. In dynamic systems such chaos is often characterized by small fractal dimensions because a chaotic process in phase space typically fills only a small part of the entire, energetically available space." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"[…] power laws, with integer or fractional exponents, are one of the most fertile fields and abundant sources of self-similarity." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"Scaling invariance results from the fact that homogeneous power laws lack natural scales; they do not harbor a characteristic unit (such as a unit length, a unit time, or a unit mass). Such laws are therefore also said to be scale-free or, somewhat paradoxically, 'true on all scales'. Of course, this is strictly true only for our mathematical models. A real spring will not expand linearly on all scales; it will eventually break, at some characteristic dilation length. And even Newton's law of gravitation, once properly quantized, will no doubt sprout a characteristic length." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"The only prerequisite for a self-similar law to prevail in a given size range is the absence of an inherent size scale." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"The unifying concept underlying fractals, chaos, and power laws is self-similarity. Self-similarity, or invariance against changes in scale or size, is an attribute of many laws of nature and innumerable phenomena in the world around us. Self-similarity is, in fact, one of the decisive symmetries that shape our universe and our efforts to comprehend it." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"[…] the world is not complete chaos. Strange attractors often do have structure: like the Sierpinski gasket, they are self-similar or approximately so. And they have fractal dimensions that hold important clues for our attempts to understand chaotic systems such as the weather." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"Understandably, invariant sets (and their complements) play a crucial role in dynamic systems in general because they tell the most important fact about any initial condition, namely, its eventual fate: will the iterates be bounded, or will they be unstable and diverge? Or will the orbit be periodic or aperiodic?" (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

12 February 2023

Rudy Rucker - Collected Quotes

"In the initial stages of research, mathematicians do not seem to function like theorem-proving machines. Instead, they use some sort of mathematical intuition to ‘see’ the universe of mathematics and determine by a sort of empirical process what is true. This alone is not enough, of course. Once one has discovered a mathematical truth, one tries to find a proof for it." (Rudy Rucker, "Infinity and the Mind: The science and philosophy of the infinite", 1982)

"The study of infinity is much more than a dry academic game. The intellectual pursuit of the absolute infinity is, as Georg Cantor realized, a form of the soul's quest for God. Whether or not the goal is ever reached, an awareness of the process brings enlightenment." (Rudy Rucker, "Infinity and the Mind: The science and philosophy of the infinite", 1982)

"At the most elemental level, reality evanesces into something called Schröedinger's Wave Function: a mathematical abstraction which is best represented as a pattern in an infinite-dimensional space, Hilbert Space. Each point of the Hilbert Space represents a possible state of affairs. The wave function for some one physical or mental system takes the form of, let us say, a coloring in of Hilbert Space. The brightly colored parts represent likely states for the system, the dim parts represent less probable states of affairs." (Rudy Rucker, "The Sex Sphere", 1983)

"The space of our universe is the hypersurface of a vast expanding hypersphere." (Rudy Rucker, "The Sex Sphere", 1983)

"What is the shape of space? Is it flat, or is it bent? Is it nicely laid out, or is it warped and shrunken? Is it finite, or is it infinite? Which of the following does space resemble more: (a) a sheet of paper, (b) an endless desert, (c) a soap bubble, (d) a doughnut, (e) an Escher drawing, (f) an ice cream cone, (g) the branches of a tree, or (h) a human body?" (Rudy Rucker, "The Fourth Dimension: Toward a Geometry of Higher Reality", 1984)

"A photon is a wavy yet solid little package that can zip through empty space without the benefit of any invisible jelly vibrating underfoot." (Rudy Rucker, "The Fourth Dimension: Toward a Geometry of Higher Reality", 1984)

"The world is colors and motion, feelings and thought [...] and what does math have to do with it? No much, if "math" means being bored in high school, but in truth mathematics is the one universal science. Mathematics is the study of pure pattern, and everything in the cosmos is a kind of pattern." (Rudy Rucker, "Mind Tools", 1987)

29 January 2023

Barnaby Sheppard - Collected Quotes

"For group theoretic reasons the most impressive paradoxical decompositions occur in dimension at least three, but there are also interesting decompositions in lower dimensions. For example, one can partition a disc into finitely many subsets and rigidly rearrange these subsets to form a square of the same area as the original disc. Even without the Axiom of Choice it is possible to construct some counterintuitive subsets of the plane, so Choice cannot be held responsible for all that is counterintuitive in geometry. Some more radical alternatives to the Axiom of Choice obstruct such constructions more effectively." (Barnaby Sheppard, "The Logic of Infinity", 2014)

"Given any collection of infinite sets the Axiom of Choice tells us that there exists a set which has one element in common with each of the sets in the collection. Choice, which seems to be an intuitively sound principle, is equivalent to the much less plausible statement that every set has a well-ordering. Although many tried to prove Choice, they only seemed to be able to find equivalent statements which were just as difficult to prove." (Barnaby Sheppard, "The Logic of Infinity", 2014)

"Intuition is reliable only in the limited environment in which it has evolved. Unable to abandon its prejudices completely, we must constantly question what appears to be obvious, often revealing conceptual problems and hidden paradoxes. One intuitive notion which is ultimately paradoxical is that of arbitrary collections."  (Barnaby Sheppard, "The Logic of Infinity", 2014)

"Objections to the Axiom of Choice, either the strong or the weak version, are typically either philosophical, based on the intuitive temporal implausibility of making an infinite number of choices, or on the non-constructive nature of the axiom, or are based on a peculiar identification of continuum-based models of physics with the physical objects being modelled; properties of the model which are implied by the Axiom of Choice are deemed to be counterintuitive because the physical objects they model don’t have these properties. Motivated by these objections, or just for curiosity, several alternatives to Choice have been explored." (Barnaby Sheppard, "The Logic of Infinity", 2014)

"Since the membership relation is well-founded, well-founded relations can be defined on any class, however, the existence of a well-ordering of every set cannot be proved without appealing to the Axiom of Choice. Indeed, the assumption that every set has a well-ordering is equivalent to the Axiom of Choice." (Barnaby Sheppard, "The Logic of Infinity", 2014)

"Some intuitive sets seem to have a less tangible existence than others, but it is difficult to draw a clear boundary between these different levels of concreteness. Naively we might expect to be able to include everything, to associate a set with any given property (precisely the set of all things having that property), but by a clever choice of property this leads to a contradiction. One of the tasks of set theory is to exclude these paradox-generating predicates and to describe the stable construction of new sets from old. Mathematics has a long history of creating concrete models of notions which at their birth were difficult abstract ideas."  (Barnaby Sheppard, "The Logic of Infinity", 2014)

"The most obvious variations of the Axiom of Choice are those that restrict the cardinality of the sets in question. Other variations impose relational restrictions between the sets. When the early set theorists tried to prove the Axiom of Choice they invariably ended up showing it is equivalent to some other statement that they were unable to prove. This collection of equivalent statements has grown to an enormous size. One of its striking features is that some of the statements seem intuitively obvious while others are either wildly counterintuitive or evade any kind of evaluation." (Barnaby Sheppard, "The Logic of Infinity", 2014)

"The most well-known equivalent of the Axiom of Choice is the Well-Ordering Theorem, which states that every set has a well-ordering. Choice is also equivalent to the statement that every infinite set is equipollent to its cartesian square (we have already seen some concrete examples of this equipollence, without having to appeal to Choice, in the case of Z and R). One of the reasons that the Axiom of Choice is so widely adopted is that it is so useful, and the contortions one must make to prove a statement without it, if this is possible, are often painful." (Barnaby Sheppard, "The Logic of Infinity", 2014)

"The so-called ‘imaginary numbers’ were successfully used long before they were properly defined as elements of a concrete field extension of the real numbers. The axiomatic description of a theory generally appears only in its mature stages, after many of its properties have been informally explored. Perhaps the longest duration between the usage and formalization of a notion is that of the natural numbers." (Barnaby Sheppard, "The Logic of Infinity", 2014)

31 October 2021

Freeman J Dyson - Collected Quotes

"The reason why new concepts in any branch of science are hard to grasp is always the same; contemporary scientists try to picture the new concept in terms of ideas which existed before." (Freeman J Dyson, "Innovation in Physics" , Scientific American, 1958)

"It has been generally believed that only the complex numbers could legitimately be used as the ground field in discussing quantum-mechanical operators. Over the complex field, Frobenius' theorem is of course not valid; the only division algebra over the complex field is formed by the complex numbers themselves. However, Frobenius' theorem is relevant precisely because the appropriate ground field for much of quantum mechanics is real rather than complex." (Freeman Dyson, "The Threefold Way. Algebraic Structure of Symmetry Groups and Ensembles in Quantum Mechanics" , Journal of Mathematical Physics Vol. 3, 1962)

"For a physicist mathematics is not just a tool by means of which phenomena can be calculated, it is the main source of concepts and principles by means of which new theories can be created." (Freeman J Dyson, "Mathematics in the Physical Sciences", Scientific American, 1964)

"Mathematical intuition is more often conservative than revolutionary, more often hampering than liberating." (Freeman J Dyson, "Mathematics in the Physical Sciences", Scientific American Vol,. 211 (3), 1964)

"The trouble with group theory is that it leaves so much unexplained that one would like to explain. It isolates in a beautiful way those aspects of nature that can be understood in terms of abstract symmetry alone. It does not offer much hope of explaining the messier facts of life, the numerical values of particle lifetimes and interaction strengths - the great bulk of quantitative experimental data that is now waiting for explanation. The process of abstraction seems to have been too drastic, so that many essential and concrete features of the real world have been left out of consideration. Altogether group theory succeeds just because its aims are modest. It does not try to explain everything, and it does not seem likely that it will grow into a complete or comprehensive theory of the physical world." (Freeman J Dyson, "Mathematics in the Physical Sciences", Scientific American Vol. 211 (3), 1964)

"A good scientist is a person with original ideas. A good engineer is a person who makes a design that works with as few original ideas as possible. There are no prima donnas in engineering." (Freeman J Dyson, "Disturbing the Universe", 1979)

"In the long run, qualitative changes always outweigh quantitative ones. Quantitative predictions of economic and social trends are made obsolete by qualitative changes in the rules of the game. Quantitative predictions of technological progress are made obsolete by unpredictable new inventions. I am interested in the long run, the remote future, where quantitative predictions are meaningless. The only certainty in that remote future is that radically new things will be happening." (Freeman J Dyson, "Disturbing the Universe", 1979)

"I have found a universe growing without limit in richness and complexity, a universe of life surviving forever and making itself known to its neighbors across unimaginable gulfs of space and time. Whether the details of my calculations turn out to be correct or not, there are good scientific reasons for taking seriously the possibility that life and intelligence can succeed in molding this universe of ours to their own purposes." (Freeman J Dyson, "Infinite in All Directions", 1988)

"If it should turn out that the whole of physical reality can be described by a finite set of equations, I would be disappointed. I would feel that the Creator had been uncharacteristically lacking in imagination." (Freeman J Dyson, "Infinite in All Directions", 1988)

"The principle of maximum diversity operates both at the physical and at the mental level. It says that the laws of nature and the initial conditions are such as to make the universe as interesting as possible.  As a result, life is possible but not too easy. Always when things are dull, something new turns up to challenge us and to stop us from settling into a rut. Examples of things which make life difficult are all around us: comet impacts, ice ages, weapons, plagues, nuclear fission, computers, sex, sin and death.  Not all challenges can be overcome, and so we have tragedy. Maximum diversity often leads to maximum stress. In the end we survive, but only by the skin of our teeth." (Freeman J Dyson, "Infinite in All Directions", 1988)

"Theoretical physicists are accustomed to living in a world which is removed from tangible objects by two levels of abstraction. From tangible atoms we move by one level of abstraction to invisible fields and particles. A second level of abstraction takes us from fields and particles to the symmetry-groups by which fields and particles are related. The superstring theory takes us beyond symmetry-groups to two further levels of abstraction. The third level of abstraction is the interpretation of symmetry-groups in terms of states in ten-dimensional space-time. The fourth level is the world of the superstrings by whose dynamical behavior the states are defined." (Freeman J Dyson, "Infinite in All Directions", 1988)

"The bottom line for mathematicians is that the architecture has to be right. In all the mathematics that I did, the essential point was to find the right architecture. It's like building a bridge. Once the main lines of the structure are right, then the details miraculously fit. The problem is the overall design." (Freeman J Dyson, [interview] 1994)

"I see some parallels between the shifts of fashion in mathematics and in music. In music, the popular new styles of jazz and rock became fashionable a little earlier than the new mathematical styles of chaos and complexity theory. Jazz and rock were long despised by classical musicians, but have emerged as art-forms more accessible than classical music to a wide section of the public. Jazz and rock are no longer to be despised as passing fads. Neither are chaos and complexity theory. But still, classical music and classical mathematics are not dead. Mozart lives, and so does Euler. When the wheel of fashion turns once more, quantum mechanics and hard analysis will once again be in style." (Freeman J Dyson, "Book Review of ‘Nature’s Numbers’", The American Mathematical Monthly, Vol. 103 (7), 1996)

"The total disorder in the universe, as measured by the quantity that physicists call entropy, increases steadily steadily as we go from past to future. On the other hand, the total order in the universe, as measured by the complexity and permanence of organized structures, also increases steadily as we go from past to future." (Freeman J Dyson, [Page-Barbour lecture], 2004)

"The progress of science requires the growth of understanding in both directions, downward from the whole to the parts and upward from the parts to the whole." (Freeman J Dyson, "The Scientist As Rebel", 2006)

"The total disorder in the universe, as measured by the quantity that physicists call entropy, increases steadily as we go from past to future. On the other hand, the total order in the universe, as measured by the complexity and permanence of organized structures, also increases steadily as we go from past to future." (Freeman J Dyson, "A Many-Colored Glass: Reflections on the Place of Life in the Universe", 2007)

"Recreational mathematics is a splendid hobby which young and old can equally enjoy. The popularity of Sudoku shows that an aptitude for recreational mathematics is widespread in the population. From Sudoku it is easy to ascend to mathematical pursuits that offer more scope for imagination and originality." (Freeman Dyson, 2011)

"The whole point of science is that most of it is uncertain. That’s why science is exciting–because we don’t know. Science is all about things we don’t understand. The public, of course, imagines science is just a set of facts. But it’s not. Science is a process of exploring, which is always partial. We explore, and we find out things that we understand. We find out things we thought we understood were wrong. That’s how it makes progress." (Freeman Dyson,  [interview] 2014)

"A model is done when nothing else can be taken out." (Freeman J Dyson)

"Much of the history of science, like the history of religion, is a history of struggles driven by power and money. And yet, this is not the whole story. Genuine saints occasionally play an important role, both in religion and science. For many scientists, the reward for being a scientist is not the power and the money but the chance of catching a glimpse of the transcendent beauty of nature." (Freeman J Dyson)

"It often happens that understanding of the mathematical nature of an equation is impossible without a detailed understanding of its solution." (Freeman J Dyson)

"One factor that has remained constant through all the twists and turns of the history of physics is the decisive importance of the mathematical imagination." (Freeman J Dyson)

03 June 2021

Calculus I: Differential Calculus I

"Thus, differential calculus has all the exactitude of other algebraic operations." (Pierre-Simon Laplace, "A Philosophical Essay on Probabilities", 1814)

"The invention of a new symbol is a step in the advancement of civilisation. Why were the Greeks, in spite of their penetrating intelligence and their passionate pursuit of Science, unable to carry Mathematics farther than they did? and why, having formed the conception of the Method of Exhaustions, did they stop short of that of the Differential Calculus? It was because they had not the requisite symbols as means of expression. They had no Algebra. Nor was the place of this supplied by any other symbolical language sufficiently general and flexible; so that they were without the logical instruments necessary to construct the great instrument of the Calculus." (George H Lewes "Problems of Life and Mind", 1873)

"Everyone who understands the subject will agree that even the basis on which the scientific explanation of nature rests is intelligible only to those who have learned at least the elements of the differential and integral calculus, as well as analytical geometry." (Felix Klein, Jahresbericht der Deutsche Mathematiker Vereinigung Vol. 1, 1902)

"The chief difficulty of modern theoretical physics resides not in the fact that it expresses itself almost exclusively in mathematical symbols, but in the psychological difficulty of supposing that complete nonsense can be seriously promulgated and transmitted by persons who have sufficient intelligence of some kind to perform operations in differential and integral calculus […]" (Celia Green, "The Decline and Fall of Science", 1976)

"The invention of the differential calculus was based on the recognition that an instantaneous rate is the asymptotic limit of averages in which the time interval involved is systematically shrunk. This is a concept that mathematicians recognized long before they had the skill to actually compute such an asymptotic limit." (Michael Guillen,"Bridges to Infinity: The Human Side of Mathematics", 1983)

"The acceptance of complex numbers into the realm of algebra had an impact on analysis as well. The great success of the differential and integral calculus raised the possibility of extending it to functions of complex variables. Formally, we can extend Euler's definition of a function to complex variables without changing a single word; we merely allow the constants and variables to assume complex values. But from a geometric point of view, such a function cannot be plotted as a graph in a two-dimensional coordinate system because each of the variables now requires for its representation a two-dimensional coordinate system, that is, a plane. To interpret such a function geometrically, we must think of it as a mapping, or transformation, from one plane to another." (Eli Maor, "e: The Story of a Number", 1994)

"By studying analytic functions using power series, the algebra of the Middle Ages was connected to infinite operations (various algebraic operations with infinite series). The relation of algebra with infinite operations was later merged with the newly developed differential and integral calculus. These developments gave impetus to early stages of the development of analysis. In a way, we can say that analyticity is the notion that first crossed the boundary from finite to infinite by passing from polynomials to infinite series. However, algebraic properties of polynomial functions still are strongly present in analytic functions." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996) 

"In fact the complex numbers form a field. [...] So however strange you may feel the very notion of a complex number to be, it does turn out to provide a 'normal' type of arithmetic. In fact it gives you a tremendous bonus not available with any of the other number systems. [...] The fundamental theorem of algebra is just one of several reasons why the complex-number system is such a 'nice' one. Another important reason is that the field of complex numbers supports the development of a powerful differential calculus, leading to the rich theory of functions of a complex variable." (Keith Devlin, "Mathematics: The New Golden Age", 1998)

"Thus, calculus proceeds in two phases: cutting and rebuilding. In mathematical terms, the cutting process always involves infinitely fine subtraction, which is used to quantify the differences between the parts. Accordingly, this half of the subject is called differential calculus. The reassembly process always involves infinite addition, which integrates the parts back into the original whole. This half of the subject is called integral calculus." (Steven H Strogatz, "Infinite Powers: The Story of Calculus - The Most Important Discovery in Mathematics", 2019)

"Nothing has afforded me so convincing a proof of the unity of the Deity as these purely mental conceptions of numerical and mathematical science which have been by slow degrees vouchsafed to man, and are still granted in these latter times by the Differential Calculus, now superseded by the Higher Algebra, all of which must have existed in that sublimely omniscient Mind from eternity." (Mary Somerville)

On Continuity XI (Thought II)

"The function of man’s highest faculty, his reason, consists precisely of the continuous limitation of infinity, the breaking up of infinity into convenient, easily digestible portions - differentials. This is precisely what lends my field, mathematics, its divine beauty." (Yevgeny Zamiatin, "We", 1924)

"Rationality consists [of] the continuous adaptation of our language to our continually expanding world, and metaphor is one of the chief means by which this is accomplished." (Mary B Hesse, "Models and Analogies in Science", 1966)

"Truth is a totality, the sum of many overlapping partial images. History, on the other hand, sacrifices totality in the interest of continuity." (Edmund Leach, "Brain-Twister", 1967)

"[…] the distinction between rigorous thinking and more vague ‘imaginings’; even in mathematics itself, all is not a question of rigor, but rather, at the start, of reasoned intuition and imagination, and, also, repeated guessing. After all, most thinking is a synthesis or juxtaposition of advances along a line of syllogisms - perhaps in a continuous and persistent 'forward' movement, with searching, so to speak ‘sideways’, in directions which are not necessarily present from the very beginning and which I describe as ‘sending out exploratory patrols’ and trying alternative routes." (Stanislaw M Ulam, "Adventures of a Mathematician", 1976)

"I shall here present the view that numbers, even whole numbers, are words, parts of speech, and that mathematics is their grammar. Numbers were therefore invented by people in the same sense that language, both written and spoken, was invented. Grammar is also an invention. Words and numbers have no existence separate from the people who use them. Knowledge of mathematics is transmitted from one generation to another, and it changes in the same slow way that language changes. Continuity is provided by the process of oral or written transmission." (Carl Eckart, "Our Modern Idol: Mathematical Science", 1984)

"To form a mental picture of the event, the knowledge developer attempts to integrate his or her perception of the situation with the expert’s perception. That mental picture is then recorded. What happens is a continuous shuttle process; the knowledge developer mentally moves back and forth from the initial impression of the event to the later evaluation of the event. What is finally recorded is the evaluation made during this retrospective period. Because a time lapse can make details of a situation less clear, the information is not always valid." (Elias M Awad, "Knowledge Management", 2003)

"It is from this continuousness of thought and perception that the scientist, like the writer, receives the crucial flash of insight out of which a piece of work is conceived and executed. And the scientist (again like the writer) is grateful when the insight comes, because insight is the necessary catalyst through which the abstract is made concrete, intuition be given language, language provides specificity, and real work can go forward." (Vivian Gornick, "Women in Science: Then and Now", 2009)

02 June 2021

On Continuity XVI (The Beginnings)

"Since [...] nature is a principle of motion and mutation [...] it is necessary that we should not be ignorant of what motion is [...] But motion appears to belong to things continuous; and the infinite first presents itself to the view in that which is continuous. [..] frequently [...] those who define the continuous, employ the nature or the infinite, as if that which is divisible to infinity is continuous." (Aristotle, "Physics", cca. 350 BC)

"Things are called continuous when the touching limits of each become one and the same and are contained in each other. Continuity is impossible if these extremities are two. […] Continuity belongs to things that naturally in virtue of their mutual contact form a unity. And in whatever way that which holds them together is one, so too will the whole be one."(Aristotle, "Physics", cca. 350 BC)

"When what surrounds, then, is not separate from the thing, but is in continuity with it, the thing is said to be in what surrounds it, not in the sense of in place, but as a part in a whole. But when the thing is separate or in contact, it is immediately ‘in’ the inner surface of the surrounding body, and this surface is neither a part of what is in it nor yet greater than its extension, but equal to it; for the extremities of things which touch are coincident." (Aristotle, "Physics", cca. 350 BC)

"Things [...] are some of them continuous [...] which are properly and peculiarly called 'magnitudes'; others are discontinuous, in a side-by-side arrangement, and, as it were, in heaps, which are called 'multitudes,' a flock, for instance, a people, a heap, a chorus, and the like. Wisdom, then, must be considered to be the knowledge of these two forms. Since, however, all multitude and magnitude are by their own nature of necessity infinite - for multitude starts from a definite root and never ceases increasing; and magnitude, when division beginning with a limited whole is carried on, cannot bring the dividing process to an end [...] and since sciences are always sciences of limited things, and never of infinites, it is accordingly evident that a science dealing with magnitude [...] or with multitude [...] could never be formulated. […] A science, however, would arise to deal with something separated from each of them, with quantity, set off from multitude, and size, set off from magnitude." (Nicomachus, cca. 100 AD) 

"But every continuum is actually existent. Therefore any of its parts is really existent in nature. But the parts of the continuum are infinite because there are not so many that there are not more, and therefore the infinite parts are actually existent." (William of Ockham, cca. 1320)

"It is established that every continuum has further parts, and not so many parts finite in number that there are not further parts, and has all its parts actually and simultaneously, and therefore every continuum has simultaneously and actually infinitely many parts." (Gregory of Rimini [Gregorii Ariminensis], "Lectura super primum et secundum sententiarum", cca. 1350)

On Continuity XIV (Progress)

"Nothing is accomplished all at once, and it is one of my great maxims, and one of the most completely verified, that Nature makes no leaps: a maxim which I have called the law of continuity." (Gottfried W Leibniz, "New Essays Concerning Human Understanding with an Appealing", 1704)

"Harmonious order governing eternally continuous progress - the web and woof of matter and force interweaving by slow degrees, without a broken thread, that veil which lies between us and the Infinite - that universe which alone we know or can know; such is the picture which science draws of the world, and in proportion as any part of that picture is in unison with the rest, so may we feel sure that it is rightly painted." (Thomas H Huxley, "Darwiniana", 1893–94)

"Mathematics is not a world empire where one man can exert a dominating influence over work along all the lines, but it is continually splitting up into self-determining republics." (Geroge A Miller, "Felix Klein and the History of Modern Mathematics", 1927)

"The steady progress of physics requires for its theoretical formulation a mathematics which get continually more advanced. […] it was expected that mathematics would get more and more complicated, but would rest on a permanent basis of axioms and definitions, while actually the modern physical developments have required a mathematics that continually shifts its foundation and gets more abstract. Non-Euclidean geometry and noncommutative algebra, which were at one time were considered to be purely fictions of the mind and pastimes of logical thinkers, have now been found to be very necessary for the description of general facts of the physical world. It seems likely that this process of increasing abstraction will continue in the future and the advance in physics is to be associated with continual modification and generalisation of the axioms at the base of mathematics rather than with a logical development of any one mathematical scheme on a fixed foundation." (Paul A M Dirac, "Quantities singularities in the electromagnetic field", Proceedings of the Royal Society of London, 1931)

"For it is true, generally speaking, that mathematics is not a popular subject, even though its importance may be generally conceded. The reason for this is to be found in the common superstition that mathematics is but a continuation, a further development, of the fine art of arithmetic, of juggling with numbers." (David Hilbert, "Anschauliche Geometrie", 1932)

"Science does not mean an idle resting upon a body of certain knowledge; it means unresting endeavor and continually progressing development toward an end which the poetic intuition may apprehend, but which the intellect can never fully grasp." (Max Planck, "The Philosophy of Physics", 1936)

"And yet, on looking into the history of science, one is overwhelmed by evidence that all too often there is no regular procedure, no logical system of discovery, no simple, continuous development. The process of discovery has been as varied as the temperament of the scientist." (Gerald Holton, "Thematic Origins of Scientific Thought: Kepler to Einstein", 1973)

15 May 2021

David Berlinski - Collected Quotes

"The body of mathematics to which the calculus gives rise embodies a certain swashbuckling style of thinking, at once bold and dramatic, given over to large intellectual gestures and indifferent, in large measure, to any very detailed description of the world. It is a style that has shaped the physical but not the biological sciences, and its success in Newtonian mechanics, general relativity and quantum mechanics is among the miracles of mankind. But the era in thought that the calculus made possible is coming to an end. Everyone feels this is so and everyone is right." (David Berlinski, "A Tour of the Calculus", 1995)

"Yet everything has a beginning, everything comes to an end, and if the universe actually began in some dense explosion, thus creating time and space, so time and space are themselves destined to disappear, the measure vanishing with the measured, until with another ripple running through the primordial quantum field, something new arises from nothingness once again." (David Berlinski, "A Tour of the Calculus", 1995)

"The motion of the mind is conveyed along a cloud of meaning. There is this paradox that we get to meaning only when we strip the meaning from symbols." (David Berlinski, "The Advent of the Algorithm: The Idea that Rules the World", 2000)

"A definition in mathematics is an exercise in uncovering the essence of things, one reason that good definitions are so hard to pull off, since a definition brings the essence to light, and the light brings the definition to life." (David Berlinski, "Infinite Ascent: A short history of mathematics", 2005)

"A five-dimensional space is not a strange deformation of ordinary space, one that only mathematicians can see, but a place where numbers are collected in ordered sets. When string theorists talk of the eleven dimensions required by their latest theory, they are not encouraging one another to search for eight otherwise familiar spatial dimensions that have somehow become lost. They are saying only that for their purposes, eleven numbers are needed to specify points. Where they are is no one’s business." (David Berlinski, "Infinite Ascent: A short history of mathematics", 2005) 

"A group is a collection of objects, one that is alive in the sense that some underlying principle of productivity is at work engendering new members from old. […] Like many other highly structured objects, groups have parts, and in particular they may well have subgroups as parts, one group nested within a large group, kangarette to kangaroo." (David Berlinski, "Infinite Ascent: A short history of mathematics", 2005)

"A proof in mathematics is an argument and so falls under the controlling power of logic itself. […] Within mathematics, a proof is an intellectual structure in which premises are conveyed to their conclusions by specific inferential steps. Assumptions in mathematics are called axioms, and conclusions theorems. This definition may be sharpened a little bit. A proof is a finite series of statements such that every statement is either an axiom or follows directly from an axiom by means of tight, narrowly defined rules. The mathematician’s business is to derive theorems from his axioms; if his system has been carefully constructed, a gross cascade of theorems will flow from a collection of carefully chosen axioms." (David Berlinski, "Infinite Ascent: A short history of mathematics", 2005)

"Beyond the theory of complex numbers, there is the much greater and grander theory of the functions of a complex variable, as when the complex plane is mapped to the complex plane, complex numbers linking themselves to other complex numbers. It is here that complex differentiation and integration are defined. Every mathematician in his education studies this theory and surrenders to it completely. The experience is like first love." (David Berlinski, "Infinite Ascent: A short history of mathematics", 2005)

"But like every profound mathematical idea, the concept of a group reveals something about the nature of the world that lies beyond the mathematician’s symbols. […] There is […] a royal road between group theory and the most fundamental processes in nature. Some groups represent- they are reflections of - continuous rotations, things that whiz around and around smoothly." (David Berlinski, "Infinite Ascent: A short history of mathematics", 2005)

"If the method of proof offers the mathematician the prospect of certainty, it is a form of certainty that is itself conditional. A proof, after all, conveys assumptions to conclusions, or axioms to theorems. If the hammer of certainty falls on the theorems, it cannot fall on the axioms with equal force." (David Berlinski, "Infinite Ascent: A short history of mathematics", 2005)

"Mathematics is insight and invention and the flash of something grasped at once, but it is also something salt-cleaned and stout as a Gothic cathedral." (David Berlinski, "Infinite Ascent: A short history of mathematics", 2005)

"Practical geometry is an empirical undertaking, living and breathing and sweating in the real world where measurements are always approximate and things are fudged or smeared or jumbled up. Within Euclidean geometry points are concentrated, lines straightened, angles narrowed; idealizations are made, and some parts of experience discarded and other parts embraced." (David Berlinski, "Infinite Ascent: A short history of mathematics", 2005)

"Set theory is unusual in that it deals with remarkably simple but apparently ineffable objects. A set is a collection, a class, an ensemble, a batch, a bunch, a lot, a troop, a tribe. To anyone incapable of grasping the concept of a set, these verbal digressions are apt to be of little help. […] A set may contain finitely many or infinitely many members. For that matter, a set such as {} may contain no members whatsoever, its parentheses vibrating around a mathematical black hole. To the empty set is reserved the symbol Ø, the figure now in use in daily life to signify access denied or don’t go, symbolic spillovers, I suppose, from its original suggestion of a canceled eye." (David Berlinski, "Infinite Ascent: A short history of mathematics", 2005)

"The calculus is a theory of continuous change - processes that move smoothly and that do not stop, jerk, interrupt themselves, or hurtle over gaps in space and time. The supreme example of a continuous process in nature is represented by the motion of the planets in the night sky as without pause they sweep around the sun in elliptical orbits; but human consciousness is also continuous, the division of experience into separate aspects always coordinated by some underlying form of unity, one that we can barely identify and that we can describe only by calling it continuous." (David Berlinski, "Infinite Ascent: A short history of mathematics", 2005)

"There is weirdness in non-Euclidean geometry, but not because of anything that geometers might say about the ordinary fond familiar world in which space is flat, angles sharp, and only curves are curved. Non-Euclidean geometry is an instrument in the enlargement of the mathematician’s self-consciousness, and so comprises an episode in a long, difficult, and extended exercise in which the human mind attempts to catch sight of itself catching sight of itself, and so without end." (David Berlinski, "Infinite Ascent: A short history of mathematics", 2005)

"What a wealth of insight Euler’s formula reveals and what delicacy and precision of reasoning it exhibits. It provides a definition of complex exponentiation: It is a definition of complex exponentiation, but the definition proceeds in the most natural way, like a trained singer’s breath. It closes the complex circle once again by guaranteeing that in taking complex numbers to complex powers the mathematician always returns with complex numbers. It justifies the method of infinite series and sums. And it exposes that profound and unsuspected connection between exponential and trigonometric functions; with Euler’s formula the very distinction between trigonometric and exponential functions acquires the shimmer of a desert illusion." (David Berlinski, "Infinite Ascent: A short history of mathematics", 2005)

"Mathematicians are like pilots who maneuver their great lumbering planes into the sky without ever asking how the damn things stay aloft. […] The computer has in turn changed the very nature of mathematical experience, suggesting for the first time that mathematics, like physics, may yet become an empirical discipline, a place where things are discovered because they are seen. [...] The existence and nature of mathematics is a more compelling and far deeper problem than any of the problems raised by mathematics itself." (David Berlinski)

20 April 2021

On Coincidence I

"It is no great wonder if in long process of time, while fortune takes her course hither and thither, numerous coincidences should spontaneously occur. If the number and variety of subjects to be wrought upon be infinite, it is all the more easy for fortune, with such an abundance of material, to effect this similarity of results." (Plutarch, Life of Sertorius, 1st century BC)

"We have here spoken of the prediction of facts of the same kind as those from which our rule was collected. But the evidence in favour of our induction is of a much higher and more forcible character when it enables us to explain and determine cases of a kind different from those which were contemplated in the formation of our hypothesis. The instances in which this has occurred, indeed, impress us with a conviction that the truth of our hypothesis is certain. No accident could give rise to such an extraordinary coincidence. No false supposition could, after being adjusted to one class of phenomena, so exactly represent a different class, when the agreement was unforeseen and contemplated. That rules springing from remote and unconnected quarters should thus leap to the same point, can only arise from that being where truth resides." (William Whewell, "The Philosophy of the Inductive Sciences" Vol. 2, 1840)

"Coincidences, in general, are great stumbling blocks in the way of that class of thinkers who have been educated to know nothing of the theory of probabilities - that theory to which the most glorious objects of human research are indebted for the most glorious of illustrations." (Edgar A Poe, "The Murders in the Rue Morgue", 1841)

"We produce these representations in and from ourselves with the same necessity with which the spider spins. If we are forced to comprehend all things only under these forms, then it ceases to be amazing that in all things we actually comprehend nothing but these forms. For they must all bear within themselves the laws of number, and it is precisely number which is most astonishing in things. All that conformity to law, which impresses us so much in the movement of the stars and in chemical processes, coincides at bottom with those properties which we bring to things. Thus it is we who impress ourselves in this way." (Friedrich Nietzsche, "On Truth and Lie in an Extra-Moral Sense", 1873)

"Nothing is more certain in scientific method than that approximate coincidence alone can be expected. In the measurement of continuous quantity perfect correspondence must be accidental, and should give rise to suspicion rather than to satisfaction." (William S Jevons, "The Principles of Science: A Treatise on Logic and Scientific Method", 1874)

"Before we can completely explain a phenomenon we require not only to find its true cause, its chief relations to other causes, and all the conditions which determine how the cause operates, and what its effect and amount of effect are, but also all the coincidences." (George Gore, "The Art of Scientific Discovery", 1878)

"As science progress, it becomes more and more difficult to fit in the new facts when they will not fit in spontaneously. The older theories depend upon the coincidences of so many numerical results which can not be attributed to chance. We should not separate what has been joined together." (Henri Poincaré, "The Ether and Matter", 1912)

"By the laws of statistics we could probably approximate just how unlikely it is that it would happen. But people forget - especially those who ought to know better, such as yourself - that while the laws of statistics tell you how unlikely a particular coincidence is, they state just as firmly that coincidences do happen." (Robert A Heinlein, "The Door Into Summer", 1957)

"It seems to me that it would be either a miracle or an unbelievable coincidence if all the major scientific theories […] somehow managed to co-operate with each other so as to conceal time’s arrow from us. There would be neither a miracle nor an unbelievable coincidence in the concealment of time’s arrow from us only if there were nothing to conceal - that is, if time had no arrows." (Henry Mehlberg) 

"Such properties seem to run through the fabric of the natural world like a thread of happy coincidences. But there are so many odd coincidences essential to life that some explanation seems required to account for them." (Sir Fred Hoyle)

10 April 2021

On Generalization (1920-1929)

"If we are not content with the dull accumulation of experimental facts, if we make any deductions or generalizations, if we seek for any theory to guide us, some degree of speculation cannot be avoided. Some will prefer to take the interpretation which seems to be most immediately indicated and at once adopted as an hypothesis; others will rather seek to explore and classify the widest possibilities which are not definitely inconsistent with the facts. Either choice has its dangers: the first may be too narrow a view and lead progress into a cul-de-sac; the second may be so broad that it is useless as a guide and diverge indefinitely from experimental knowledge." (Sir Arthur S Eddington, "The Internal Constitution of the Stars Observatory", Vol. 43, 1920)

"It is well to be explicit when a positive generalization is made from negative experimental evidence." (Arthur Eddington, "Space, Time and Gravitation: An Outline of the General Relativity", 1920)

"Generalization is the golden thread which binds many facts into one simple description." (Joseph W Mellor, "A Comprehensive Treatise on Inorganic and Theoretical Chemistry", 1922)

"[…] a history of mathematics is largely a history of discoveries which no longer exist as separate items, but are merged into some more modern generalization, these discoveries have not been forgotten or made valueless. They are not dead, but transmuted." (John W N Sullivan, "The History of Mathematics in Europe", 1925)

"Number knows no limitations, either from the side of the infinitely great or from the side of the infinitely small, and the facility it offers for generalization is too great for us not to be tempted by it." (Émile Borel, "Space and Time", 1926)

"[…] the statistical prediction of the future from the past cannot be generally valid, because whatever is future to any given past, is in tum past for some future. That is, whoever continually revises his judgment of the probability of a statistical generalization by its successively observed verifications and failures, cannot fail to make more successful predictions than if he should disregard the past in his anticipation of the future. This might be called the ‘Principle of statistical accumulation’." (Clarence I Lewis, "Mind and the World-Order: Outline of a Theory of Knowledge", 1929)

"The true method of discovery is like the flight of an aeroplane. It starts from the ground of particular observation; it makes a flight in the thin air of imaginative generalization; and it again lands for renewed observation rendered acute by rational interpretation." (Alfred N Whitehead, "Process and Reality", 1929)

"Without doubt, if we are to go back to that ultimate, integral experience, unwarped by the sophistications of theory, that experience whose elucidation is the final aim of philosophy, the flux of things is one ultimate generalization around which we must weave our philosophical system." (Alfred N Whitehead, "Process and Reality: An Essay in Cosmology", 1929)

On Generalization (1930-1949)

"The steady progress of physics requires for its theoretical formulation a mathematics which get continually more advanced. […] it was expected that mathematics would get more and more complicated, but would rest on a permanent basis of axioms and definitions, while actually the modern physical developments have required a mathematics that continually shifts its foundation and gets more abstract. Non-Euclidean geometry and noncommutative algebra, which were at one time were considered to be purely fictions of the mind and pastimes of logical thinkers, have now been found to be very necessary for the description of general facts of the physical world. It seems likely that this process of increasing abstraction will continue in the future and the advance in physics is to be associated with continual modification and generalisation of the axioms at the base of mathematics rather than with a logical development of any one mathematical scheme on a fixed foundation." (Paul A M Dirac, "Quantities singularities in the electromagnetic field", Proceedings of the Royal Society of London, 1931)

"It is time, therefore, to abandon the superstition that natural science cannot be regarded as logically respectable until philosophers have solved the problem of induction. The problem of induction is, roughly speaking, the problem of finding a way to prove that certain empirical generalizations which are derived from past experience will hold good also in the future." (Alfred J Ayer, "Language, Truth and Logic", 1936)

"The problem of induction is, roughly speaking, the problem of finding a way to prove that certain empirical generalizations which are derived from past experience will hold good also in the future. There are only two ways of approaching this problem on the assumption that it is a genuine problem, and it is easy to see that neither of them can lead to its solution." (Alfred J Ayer, "Language, Truth, and Logic", 1936)

"The ethos of science involves the functionally necessary demand that theories or generalizations be evaluated in [terms of] their logical consistency and consonance with facts." (Robert K Merton, "Science and the Social Order", Philosophy of Science Vol 5 (3), 1938)

"The former distrust of specialization has been supplanted by its opposite, a distrust of generalization. Not only has man become a specialist in practice, he is being taught that special facts represent the highest form of knowledge." (Richard Weaver, "Ideas have Consequences", 1948)

22 February 2021

Steven H Strogatz - Collected Quotes

"An equilibrium is defined to be stable if all sufficiently small disturbances away from it damp out in time. Thus stable equilibria are represented geometrically by stable fixed points. Conversely, unstable equilibria, in which disturbances grow in time, are represented by unstable fixed points." (Steven H Strogatz, "Non-Linear Dynamics and Chaos, 1994)

"[…] chaos and fractals are part of an even grander subject known as dynamics. This is the subject that deals with change, with systems that evolve in time. Whether the system in question settles down to equilibrium, keeps repeating in cycles, or does something more complicated, it is dynamics that we use to analyze the behavior." (Steven H Strogatz, "Non-Linear Dynamics and Chaos, 1994)

"The qualitative structure of the flow can change as parameters are varied. In particular, fixed points can be created or destroyed, or their stability can change. These qualitative changes in the dynamics are called bifurcations , and the parameter values at which they occur are called bifurcation points." (Steven H Strogatz, "Non-Linear Dynamics and Chaos, 1994)

"Why are nonlinear systems so much harder to analyze than linear ones? The essential difference is that linear systems can be broken down into parts. Then each part can be solved separately and finally recombined to get the answer. This idea allows a fantastic simplification of complex problems, and underlies such methods as normal modes, Laplace transforms, superposition arguments, and Fourier analysis. In this sense, a linear system is precisely equal to the sum of its parts." (Steven H Strogatz, "Non-Linear Dynamics and Chaos, 1994)

"A depressing corollary of the butterfly effect (or so it was widely believed) was that two chaotic systems could never synchronize with each other. Even if you took great pains to start them the same way, there would always be some infinitesimal difference in their initial states. Normally that small discrepancy would remain small for a long time, but in a chaotic system, the error cascades and feeds on itself so swiftly that the systems diverge almost immediately, destroying the synchronization. Unfortunately, it seemed, two of the most vibrant branches of nonlinear science - chaos and sync - could never be married. They were fundamentally incompatible." (Steven Strogatz, "Sync: The Emerging Science of Spontaneous Order", 2003)

"[…] all human beings - professional mathematicians included - are easily muddled when it comes to estimating the probabilities of rare events. Even figuring out the right question to ask can be confusing." (Steven Strogatz, "Sync: The Emerging Science of Spontaneous Order", 2003)

"Although the shape of chaos is nightmarish, its voice is oddly soothing. When played through a loudspeaker, chaos sounds like white noise, like the soft static that helps insomniacs fall asleep." (Steven Strogatz, "Sync: The Emerging Science of Spontaneous Order", 2003)

"At an anatomical level - the level of pure, abstract connectivity - we seem to have stumbled upon a universal pattern of complexity. Disparate networks show the same three tendencies: short chains, high clustering, and scale-free link distributions. The coincidences are eerie, and baffling to interpret." (Steven Strogatz, "Sync: The Emerging Science of Spontaneous Order", 2003)

"Average path length reflects the global structure; it depends on the way the entire network is connected, and cannot be inferred from any local measurement. Clustering reflects the local structure; it depends only on the interconnectedness of a typical neighborhood, the inbreeding among nodes tied to a common center. Roughly speaking, path length measures how big the network is. Clustering measures how incestuous it is." (Steven Strogatz, "Sync: The Emerging Science of Spontaneous Order", 2003)

"But linearity is often an approximation to a more complicated reality. Most systems behave linearly only when they are close to equilibrium, and only when we don't push them too hard." (Steven Strogatz, "Sync: The Emerging Science of Spontaneous Order", 2003)

"By its very nature, the mathematical study of networks transcends the usual boundaries between disciplines. Network theory is concerned with the relationships between individuals, the patterns of interactions. The precise nature of the individuals is downplayed, or even suppressed, in hopes of uncovering deeper laws. A network theorist will look at any system of interlinked components and see an abstract pattern of dots connected by lines. It's the pattern that matters, the architecture of relationships, not the identities of the dots themselves. Viewed from these lofty heights, many networks, seemingly unrelated, begin to look the same." (Steven Strogatz, "Sync: The Emerging Science of Spontaneous Order", 2003)

"Chaos theory revealed that simple nonlinear systems could behave in extremely complicated ways, and showed us how to understand them with pictures instead of equations. Complexity theory taught us that many simple units interacting according to simple rules could generate unexpected order. But where complexity theory has largely failed is in explaining where the order comes from, in a deep mathematical sense, and in tying the theory to real phenomena in a convincing way. For these reasons, it has had little impact on the thinking of most mathematicians and scientists." (Steven Strogatz, "Sync: The Emerging Science of Spontaneous Order", 2003)

"[…] equilibrium means nothing changes; stability means slight disturbances die out." (Steven Strogatz, "Sync: The Emerging Science of Spontaneous Order", 2003)

"From a purely mathematical perspective, a power law signifies nothing in particular - it's just one of many possible kinds of algebraic relationship. But when a physicist sees a power law, his eyes light up. For power laws hint that a system may be organizing itself. They arise at phase transitions, when a system is poised at the brink, teetering between order and chaos. They arise in fractals, when an arbitrarily small piece of a complex shape is a microcosm of the whole. They arise in the statistics of natural hazards - avalanches and earthquakes, floods and forest fires - whose sizes fluctuate so erratically from one event to the next that the average cannot adequately stand in for the distribution as a whole." (Steven Strogatz, "Sync: The Emerging Science of Spontaneous Order", 2003)

"In colloquial usage, chaos means a state of total disorder. In its technical sense, however, chaos refers to a state that only appears random, but is actually generated by nonrandom laws. As such, it occupies an unfamiliar middle ground between order and disorder. It looks erratic superficially, yet it contains cryptic patterns and is governed by rigid rules. It's predictable in the short run but unpredictable in the long run. And it never repeats itself: Its behavior is nonperiodic." (Steven Strogatz, "Sync: The Emerging Science of Spontaneous Order", 2003)

"Just as a circle is the shape of periodicity, a strange attractor is the shape of chaos. It lives in an abstract mathematical space called state space, whose axes represent all the different variables in a physical system." (Steven Strogatz, "Sync: The Emerging Science of Spontaneous Order", 2003)

"Like regular networks, random ones are seductive idealizations. Theorists find them beguiling, not because of their verisimilitude, but because they're the easiest ones to analyze. [...] Random networks are small and poorly clustered; regular ones are big and highly clustered." (Steven Strogatz, "Sync: The Emerging Science of Spontaneous Order", 2003)

"One of the most wonderful things about curiosity-driven research - aside from the pleasure it brings - is that it often has unexpected spin-offs." (Steven Strogatz, "Sync: The Emerging Science of Spontaneous Order", 2003)

"Scientists have long been baffled by the existence of spontaneous order in the universe. The laws of thermodynamics seem to dictate the opposite, that nature should inexorably degenerate to - ward a state of greater disorder, greater entropy." (Steven Strogatz, "Sync: The Emerging Science of Spontaneous Order", 2003)

"Structure always affects function. The structure of social networks affects the spread of information and disease; the structure of the power grid affects the stability of power transmission. The same must be true for species in an ecosystem, companies in the global marketplace, cascades of enzyme reactions in living cells. The layout of the web must profoundly shape its dynamics." (Steven Strogatz, "Sync: The Emerging Science of Spontaneous Order", 2003)

"The best case that can be made for human sync to the environment (outside of circadian entrainment) has to do with the possibility that electrical rhythms in our brains can be influenced by external signals." (Steven Strogatz, "Sync: The Emerging Science of Spontaneous Order", 2003)

"The butterfly effect came to be the most familiar icon of the new science, and appropriately so, for it is the signature of chaos. […] The idea is that in a chaotic system, small disturbances grow exponentially fast, rendering long-term prediction impossible." (Steven Strogatz, "Sync: The Emerging Science of Spontaneous Order", 2003)

"The nonlinear dynamics of systems with that many variables is still beyond us. Even with the help of supercomputers, the collective behavior of gigantic systems of oscillators remains a forbidding terra incognita." (Steven Strogatz, "Sync: The Emerging Science of Spontaneous Order", 2003)

"[...] the transition to a small world is essentially undetectable at a local level. If you were living through the morph, nothing about your immediate neighborhood would tell you that the world had become small." (Steven Strogatz, "Sync: The Emerging Science of Spontaneous Order", 2003)

"The uncertainty principle expresses a seesaw relationship between the fluctuations of certain pairs of variables, such as an electron's position and its speed. Anything that lowers the uncertainty of one must necessarily raise the uncertainty of the other; you can't push both down at the same time. For example, the more tightly you confine an electron, the more wildly it thrashes. By lowering the position end of the seesaw, you force the velocity end to lift up. On the other hand, if you try to constrain the electron's velocity instead, its position becomes fuzzier and fuzzier; the electron can turn up almost anywhere.(Steven Strogatz, "Sync: The Emerging Science of Spontaneous Order", 2003)

"These, then, are the defining features of chaos: erratic, seemingly random behavior in an otherwise deterministic system; predictability in the short run, because of the deterministic laws; and unpredictability in the long run, because of the butterfly effect." (Steven Strogatz, "Sync: The Emerging Science of Spontaneous Order", 2003)

"This synergistic character of nonlinear systems is precisely what makes them so difficult to analyze. They can't be taken apart. The whole system has to be examined all at once, as a coherent entity. As we've seen earlier, this necessity for global thinking is the greatest challenge in understanding how large systems of oscillators can spontaneously synchronize themselves. More generally, all problems about self-organization are fundamentally nonlinear. So the study of sync has always been entwined with the study of nonlinearity." (Steven Strogatz, "Sync: The Emerging Science of Spontaneous Order", 2003)

"[…] topology, the study of continuous shape, a kind of generalized geometry where rigidity is replaced by elasticity. It's as if everything is made of rubber. Shapes can be continuously deformed, bent, or twisted, but not cut - that's never allowed. A square is topologically equivalent to a circle, because you can round off the corners. On the other hand, a circle is different from a figure eight, because there's no way to get rid of the crossing point without resorting to scissors. In that sense, topology is ideal for sorting shapes into broad classes, based on their pure connectivity." (Steven Strogatz, "Sync: The Emerging Science of Spontaneous Order", 2003)

"Unanticipated forms of collective behavior emerge that are not obvious from the properties of the individuals themselves. All the models are extremely simplified, of course, but that's the point. If even their idealized behavior can surprise us, we may find clues about what to expect in the real thing. […] the collective dynamics of a crowd can be exquisitely sensitive to its composition, which may be one reason why mobs are so unpredictable, which may be one reason why mobs are so unpredictable." (Steven Strogatz, "Sync: The Emerging Science of Spontaneous Order", 2003)

"We’re accustomed to  in terms of centralized control, clear chains of command, the straightforward logic of cause and effect. But in huge, interconnected systems, where every player ultimately affects every other, our standard ways of thinking fall apart. Simple pictures and verbal arguments are too feeble, too myopic." (Steven Strogatz, "Sync: The Emerging Science of Spontaneous Order", 2003)

"When you’re trying to prove something, it helps to know it’s true. That gives you the confidence you need to keep searching for a rigorous proof." (Steven Strogatz, "Sync: The Emerging Science of Spontaneous Order", 2003)

"Change is most sluggish at the extremes precisely because the derivative is zero there." (Steven Strogatz, "The Joy of X: A Guided Tour of Mathematics, from One to Infinity", 2012)

"In mathematics, our freedom lies in the questions we ask - and in how we pursue them - but not in the answers awaiting us." (Steven Strogatz, "The Joy of X: A Guided Tour of Mathematics, from One to Infinity", 2012)

"Proofs can cause dizziness or excessive drowsiness. Side effects of prolonged exposure may include night sweats, panic attacks, and, in rare cases, euphoria. Ask your doctor if proofs are right for you." (Steven Strogatz, "The Joy of X: A Guided Tour of Mathematics, from One to Infinity", 2012)

"[...] things that seem hopelessly random and unpredictable when viewed in isolation often turn out to be lawful and predictable when viewed in aggregate." (Steven Strogatz, "The Joy of X: A Guided Tour of Mathematics, from One to Infinity", 2012)

"A limit cycle is an isolated closed trajectory. Isolated means that neighboring trajectories are not closed; they spiral either toward or away from the limit cycle. If all neighboring trajectories approach the limit cycle, we say the limit cycle is stable or attracting. Otherwise the limit cycle is unstable, or in exceptional cases, half-stable. Stable limit cycles are very important scientifically - they model systems that exhibit self-sustained oscillations. In other words, these systems oscillate even in the absence of external periodic forcing." (Steven H Strogatz, "Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering", 2015)

"An equilibrium is defined to be stable if all sufficiently small disturbances away from it damp out in time. Thus stable equilibria are represented geometrically by stable fixed points. Conversely, unstable equilibria, in which disturbances grow in time, are represented by unstable fixed points." (Steven H Strogatz, "Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering", 2015)

"[…] chaos and fractals are part of an even grander subject known as dynamics. This is the subject that deals with change, with systems that evolve in time. Whether the system in question settles down to equilibrium, keeps repeating in cycles, or does something more complicated, it is dynamics that we use to analyze the behavior." (Steven H Strogatz, "Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering", 2015)

"The qualitative structure of the flow can change as parameters are varied. In particular, fixed points can be created or destroyed, or their stability can change. These qualitative changes in the dynamics are called bifurcations, and the parameter values at which they occur are called bifurcation points. Bifurcations are important scientifically - they provide models of transitions and instabilities as some control parameter is varied." (Steven H Strogatz, "Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering", 2015)

"[…] what exactly do we mean by a bifurcation? The usual definition involves the concept of 'topological equivalence': if the phase portrait changes its topological structure as a parameter is varied, we say that a bifurcation has occurred. Examples include changes in the number or stability of fixed points, closed orbits, or saddle connections as a parameter is varied." (Steven H Strogatz, "Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering", 2015)

"Why do mathematicians care so much about π? Is it some kind of weird circle fixation? Hardly. The beauty of π, in part, is that it puts infinity within reach. Even young children get this. The digits of π never end and never show a pattern. They go on forever, seemingly at random - except that they can’t possibly be random, because they embody the order inherent in a perfect circle. This tension between order and randomness is one of the most tantalizing aspects of π." (Steven Strogatz, "Why π Matters" 2015)

"Although base e is uniquely distinguished, other exponential functions obey a similar principle of growth. The only difference is that the rate of exponential growth is proportional to the function’s current level, not strictly equal to it. Still, that proportionality is sufficient to generate the explosiveness we associate with exponential growth." (Steven H Strogatz, "Infinite Powers: The Story of Calculus - The Most Important Discovery in Mathematics", 2019)

"An infinitesimal is a hazy thing. It is supposed to be the tiniest number you can possibly imagine that isn’t actually zero. More succinctly, an infinitesimal is smaller than everything but greater than nothing. Even more paradoxically, infinitesimals come in different sizes. An infinitesimal part of an infinitesimal is incomparably smaller still. We could call it a second-order infinitesimal." (Steven H Strogatz, "Infinite Powers: The Story of Calculus - The Most Important Discovery in Mathematics", 2019)

"Because of its intimate connection to the backward problem, the area problem is not just about area. It’s not just about shape or the relationship between distance and speed or anything that narrow. It’s completely general. From a modern perspective, the area problem is about predicting the relationship between anything that changes at a changing rate and how much that thing builds up over time." (Steven H Strogatz, "Infinite Powers: The Story of Calculus - The Most Important Discovery in Mathematics", 2019)

"Because of the geometry of a circle, there’s always a quarter-cycle off set between any sine wave and the wave derived from it as its derivative, its rate of change. In this analogy, the point’s direction of travel is like its rate of change. It determines where the point will go next and hence how it changes its location. Moreover, this compass heading of the arrow itself rotates in a circular fashion at a constant speed as the point goes around the circle, so the compass heading of the arrow follows a sine-wave pattern in time. And since the compass heading is like the rate of change, voilà! The rate of change follows a sine-wave pattern too." (Steven H Strogatz, "Infinite Powers: The Story of Calculus - The Most Important Discovery in Mathematics", 2019)

"Calculus succeeds by breaking complicated problems down into simpler parts. That strategy, of course, is not unique to calculus. All good problem-solvers know that hard problems become easier when they’re split into chunks. The truly radical and distinctive move of calculus is that it takes this divide-and-conquer strategy to its utmost extreme - all the way out to infinity." (Steven H Strogatz, "Infinite Powers: The Story of Calculus - The Most Important Discovery in Mathematics", 2019)

"Chaotic systems are finicky. A little change in how they’re started can make a big difference in where they end up. That’s because small changes in their initial conditions get magnified exponentially fast. Any tiny error or disturbance snowballs so rapidly that in the long term, the system becomes unpredictable. Chaotic systems are not random - they’re deterministic and hence predictable in the short run - but in the long run, they’re so sensitive to tiny disturbances that they look effectively random in many respects." (Steven H Strogatz, "Infinite Powers: The Story of Calculus - The Most Important Discovery in Mathematics", 2019)

"Generally speaking, things can change in one of three ways: they can go up, they can go down, or they can go up and down. In other words, they can grow, decay, or fluctuate. Different functions are suitable for different occasions." (Steven H Strogatz, "Infinite Powers: The Story of Calculus - The Most Important Discovery in Mathematics", 2019)

"In analysis, one solves a problem by starting at the end, as if the answer had already been obtained, and then works back wishfully toward the beginning, hoping to find a path to the given assumptions. [….] Synthesis goes in the other direction. It starts with the givens, and then, by stabbing in the dark, trying things, you are somehow supposed to move forward to a solution, step by logical step, and eventually arrive at the desired result. Synthesis tends to be much harder than analysis because you don’t ever know how you’re going to get to the solution until you do." (Steven H Strogatz, "Infinite Powers: The Story of Calculus - The Most Important Discovery in Mathematics", 2019)

"In mathematical modeling, as in all of science, we always have to make choices about what to stress and what to ignore. The art of abstraction lies in knowing what is essential and what is minutia, what is signal and what is noise, what is trend and what is wiggle. It’s an art because such choices always involve an element of danger; they come close to wishful thinking and intellectual dishonesty." (Steven H Strogatz, "Infinite Powers: The Story of Calculus - The Most Important Discovery in Mathematics", 2019)

"In mathematics, pendulums stimulated the development of calculus through the riddles they posed. In physics and engineering, pendulums became paradigms of oscillation. […] In some cases, the connections between pendulums and other phenomena are so exact that the same equations can be recycled without change. Only the symbols need to be reinterpreted; the syntax stays the same. It’s as if nature keeps returning to the same motif again and again, a pendular repetition of a pendular theme. For example, the equations for the swinging of a pendulum carry over without change to those for the spinning of generators that produce alternating current and send it to our homes and offices. In honor of that pedigree, electrical engineers refer to their generator equations as swing equations." (Steven H Strogatz, "Infinite Powers: The Story of Calculus - The Most Important Discovery in Mathematics", 2019)

"If real numbers are not real, why do mathematicians love them so much? And why are schoolchildren forced to learn about them? Because calculus needs them. From the beginning, calculus has stubbornly insisted that everything - space and time, matter and energy, all objects that ever have been or will be - should be regarded as continuous. Accordingly, everything can and should be quantified by real numbers. In this idealized, imaginary world, we pretend that everything can be split finer and finer without end. The whole theory of calculus is built on that assumption. Without it, we couldn’t compute limits, and without limits, calculus would come to a clanking halt." (Steven H Strogatz, "Infinite Powers: The Story of Calculus - The Most Important Discovery in Mathematics", 2019)

"Mathematically, circles embody change without change. A point moving around the circumference of a circle changes direction without ever changing its distance from a center. It’s a minimal form of change, a way to change and curve in the slightest way possible. And, of course, circles are symmetrical. If you rotate a circle about its center, it looks unchanged. That rotational symmetry may be why circles are so ubiquitous. Whenever some aspect of nature doesn’t care about direction, circles are bound to appear. Consider what happens when a raindrop hits a puddle: tiny ripples expand outward from the point of impact. Because they spread equally fast in all directions and because they started at a single point, the ripples have to be circles. Symmetry demands it." (Steven H Strogatz, "Infinite Powers: The Story of Calculus - The Most Important Discovery in Mathematics", 2019)

"Mathematicians don’t come up with the proofs first. First comes intuition. Rigor comes later. This essential role of in- tuition and imagination is often left out of high-school geometry courses, but it is essential to all creative mathematics." (Steven H Strogatz, "Infinite Powers: The Story of Calculus - The Most Important Discovery in Mathematics", 2019)

"Nonlinearity is responsible for the richness in the world, for its beauty and complexity and, often, its inscrutability. […] When a system is nonlinear, its behavior can be impossible to forecast with formulas, even though that behavior is completely determined. In other words, determinism does not imply predictability. […] Chaotic systems can be predicted perfectly well up to a time known as the predictability horizon. Before that, the determinism of the system makes it predictable." (Steven H Strogatz, "Infinite Powers: The Story of Calculus - The Most Important Discovery in Mathematics", 2019)

"On a linear system like a scale, the whole is equal to the sum of the parts. That’s the first key property of linearity. The second is that causes are proportional to effects. […] These two properties - the proportionality between cause and effect, and the equality of the whole to the sum of the parts - are the essence of what it means to be linear. […] The great advantage of linearity is that it allows for reductionist thinking. To solve a linear problem, we can break it down to its simplest parts, solve each part separately, and put the parts back together to get the answer." (Steven H Strogatz, "Infinite Powers: The Story of Calculus - The Most Important Discovery in Mathematics", 2019)

"Pi is fundamentally a child of calculus. It is defined as the unattainable limit of a never-ending process. But unlike a sequence of polygons steadfastly approaching a circle or a hapless walker stepping halfway to a wall, there is no end in sight for pi, no limit we can ever know. And yet pi exists. There it is, defined so crisply as the ratio of two lengths we can see right before us, the circumference of a circle and its diameter. That ratio defines pi, pinpoints it as clearly as can be, and yet the number itself slips through our fingers." (Steven H Strogatz, "Infinite Powers: The Story of Calculus - The Most Important Discovery in Mathematics", 2019)

"So there is a lot to be said for following one’s curiosity in mathematics. It often has scientific and practical payoff s that can’t be foreseen. It also gives mathematicians great pleasure for its own sake and reveals hidden connections between different parts of mathematics." (Steven H Strogatz, "Infinite Powers: The Story of Calculus - The Most Important Discovery in Mathematics", 2019)

"Somewhere in the dark recesses of prehistory, somebody realized that numbers never end. And with that thought, infinity was born. It’s the numerical counterpart of something deep in our psyches, in our nightmares of bottomless pits, and in our hopes for eternal life. Infinity lies at the heart of so many of our dreams and fears and unanswerable questions: How big is the universe? How long is forever? How powerful is God? In every branch of human thought, from religion and philosophy to science and mathematics, infinity has befuddled the world’s finest minds for thousands of years."(Steven H Strogatz, "Infinite Powers: The Story of Calculus - The Most Important Discovery in Mathematics", 2019)

"[…] the derivative of a sine wave is another sine wave, shifted by a quarter cycle. That’s a remarkable property. It’s not true of other kinds of waves. Typically, when we take the derivative of a curve of any kind, that curve will become distorted by being differentiated. It won’t have the same shape before and after. Being differentiated is a traumatic experience for most curves. But not for a sine wave. After its derivative is taken, it dusts itself of f and appears unfazed, as sinusoidal as ever. The only injury it suffers - and it isn’t even an injury, really - is that the sine wave shifts in time. It peaks a quarter of a cycle earlier than it used to." (Steven H Strogatz, "Infinite Powers: The Story of Calculus - The Most Important Discovery in Mathematics", 2019)

"The great advantage of infinitesimals in general and differentials in particular is that they make calculations easier. They provide shortcuts. They free the mind for more imaginative thought, just as algebra did for geometry in an earlier era. […] The only thing wrong with infinitesimals is that they don’t exist, at least not within the system of real numbers." (Steven H Strogatz, "Infinite Powers: The Story of Calculus - The Most Important Discovery in Mathematics", 2019)

"The important point about e is that an exponential function with this base grows at a rate precisely equal to the function itself. Let me say that again. The rate of growth of ex is ex itself. This marvelous property simplifies all calculations about exponential functions when they are expressed in base e. No other base enjoys this simplicity. Whether we are working with derivatives, integrals, differential equations, or any of the other tools of calculus, exponential functions expressed in base e are always the cleanest, most elegant, and most beautiful." (Steven H Strogatz, "Infinite Powers: The Story of Calculus - The Most Important Discovery in Mathematics", 2019)

"The reason why integration is so much harder than differentiation has to do with the distinction between local and global. Local problems are easy. Global problems are hard. Differentiation is a local operation. [...] when we are calculating a derivative, it’s like we’re looking under a microscope. We zoom in on a curve or a function, repeatedly magnifying the field of view. As we zoom in on that little local patch, the curve appears to become less and less curved. […] Integration is a global operation. Instead of a microscope, we are now using a telescope. We are trying to peer far of f into the distance - or far ahead into the future, although in that case we need a crystal ball. Naturally, these problems are a lot harder. All the intervening events matter and cannot be discarded. Or so it would seem." (Steven H Strogatz, "Infinite Powers: The Story of Calculus - The Most Important Discovery in Mathematics", 2019)

"There’s something so paradoxical about pi. On the one hand, it represents order, as embodied by the shape of a circle, long held to be a symbol of perfection and eternity. On the other hand, pi is unruly, disheveled in appearance, its digits obeying no obvious rule, or at least none that we can perceive. Pi is elusive and mysterious, forever beyond reach. Its mix of order and disorder is what makes it so bewitching." (Steven H Strogatz, "Infinite Powers: The Story of Calculus - The Most Important Discovery in Mathematics", 2019)

"Thus, calculus proceeds in two phases: cutting and rebuilding. In mathematical terms, the cutting process always involves infinitely fine subtraction, which is used to quantify the differences between the parts. Accordingly, this half of the subject is called differential calculus. The reassembly process always involves infinite addition, which integrates the parts back into the original whole. This half of the subject is called integral calculus." (Steven H Strogatz, "Infinite Powers: The Story of Calculus - The Most Important Discovery in Mathematics", 2019)

"To shed light on any continuous shape, object, motion, process, or phenomenon - no matter how wild and complicated it may appear - reimagine it as an infinite series of simpler parts, analyze those, and then add the results back together to make sense of the original whole." (Steven H Strogatz, "Infinite Powers: The Story of Calculus - The Most Important Discovery in Mathematics", 2019)

"We feel we are discovering mathematics. The results are there, waiting for us. They have been inherent in the figures all along. We are not inventing them. […] we are discovering facts that already exist, that are inherent in the objects we study. Although we have creative freedom to invent the objects themselves - to create idealizations like perfect spheres and circles and cylinders - once we do, they take on lives of their own." (Steven H Strogatz, "Infinite Powers: The Story of Calculus - The Most Important Discovery in Mathematics", 2019)

"[…] when a curve does look increasingly straight when we zoom in on it sufficiently at any point, that curve is said to be smooth. […] In modern calculus, however, we have learned how to cope with curves that are not smooth. The inconveniences and pathologies of non-smooth curves sometimes arise in applications due to sudden jumps or other discontinuities in the behavior of a physical system." (Steven H Strogatz, "Infinite Powers: The Story of Calculus - The Most Important Discovery in Mathematics", 2019)

"With a linear growth of errors, improving the measurements could always keep pace with the desire for longer prediction. But when errors grow exponentially fast, a system is said to have sensitive dependence on its initial conditions. Then long-term prediction becomes impossible. This is the philosophically disturbing message of chaos." (Steven H Strogatz, "Infinite Powers: The Story of Calculus - The Most Important Discovery in Mathematics", 2019)

"With its yin and yang binaries, pi is like all of calculus in miniature. Pi is a portal between the round and the straight, a single number yet infinitely complex, a balance of order and chaos. Calculus, for its part, uses the infinite to study the finite, the unlimited to study the limited, and the straight to study the curved. The Infinity Principle is the key to unlocking the mystery of curves, and it arose here first, in the mystery of pi." (Steven H Strogatz, "Infinite Powers: The Story of Calculus - The Most Important Discovery in Mathematics", 2019)

Related Posts Plugin for WordPress, Blogger...

On Leonhard Euler

"I have been able to solve a few problems of mathematical physics on which the greatest mathematicians since Euler have struggled in va...