Showing posts with label simplicity. Show all posts
Showing posts with label simplicity. Show all posts

11 November 2023

On Simplicity: Simple Rules

"Of course we have still to face the question why these analogies between different mechanisms - these similarities of relation-structure - should exist. To see common principles and simple rules running through such complexity is at first perplexing though intriguing. When, however, we find that the apparently complex objects around us are combinations of a few almost indestructible units, such as electrons, it becomes less perplexing." (Kenneth Craik, "The Nature of Explanation", 1943)

"Simple rules can have complex consequences. This simple rule has such a wealth of implications that it is worth examining in detail. It is the far from self-evident guiding principle of reductionism and of most modern investigations into cosmic complexity. Reductionism will not be truly successful until physicists and cosmologists demonstrate that the large-scale phenomena of the world arise from fundamental physics alone. This lofty goal is still out of reach. There is uncertainty not only in how physics generates the structures of our world but also in what the truly fundamental rules of physics are. (William Poundstone, "The Recursive Universe", 1985)

"As glimpsed by physicists, Nature's rules are simple, but also intricate: Different rules are subtly related to each other. The intricate relations between the rules produce interesting effects in many physical situations. [...] Nature's design is not only simple, but minimally so, in the sense that were the design any simpler, the universe would be a much duller place." (Anthony Zee, "Fearful Symmetry: The Search for Beauty in Modern Physics", 1986)

"All reality is a game. Physics at its most fundamental, the very fabric of our universe, results directly from the interaction of certain fairly simple rules, and chance; the same description may be applied to the best, most elegant and both intellectually and aesthetically satisfying games. By being unknowable, by resulting from events which, at the sub-atomic level, cannot be fully predicted, the future remains malleable, and retains the possibility of change, the hope of coming to prevail; victory, to use an unfashionable word. In this, the future is a game; time is one of its rules." (Iain Banks, "The Player of Games", 1988)

"One reason nature pleases us is its endless use of a few simple principles: the cube-square law; fractals; spirals; the way that waves, wheels, trig functions, and harmonic oscillators are alike; the importance of ratios between small primes; bilateral symmetry; Fibonacci series, golden sections, quantization, strange attractors, path-dependency, all the things that show up in places where you don’t expect them [...] these rules work with and against each other ceaselessly at all levels, so that out of their intrinsic simplicity comes the rich complexity of the world around us. That tension - between the simple rules that describe the world and the complex world we see - is itself both simple in execution and immensely complex in effect. Thus exactly the levels, mixtures, and relations of complexity that seem to be hardwired into the pleasure centers of the human brain - or are they, perhaps, intrinsic to intelligence and perception, pleasant to anything that can see, think, create? - are the ones found in the world around us." (John Barnes, "Mother of Storms", 1994)

"With the growing interest in complex adaptive systems, artificial life, swarms and simulated societies, the concept of 'collective intelligence' is coming more and more to the fore. The basic idea is that a group of individuals (e. g. people, insects, robots, or software agents) can be smart in a way that none of its members is. Complex, apparently intelligent behavior may emerge from the synergy created by simple interactions between individuals that follow simple rules." (Francis Heylighen, "Collective Intelligence and its Implementation on the Web", 1999)

"Through self-organization, the behavior of the group emerges from the collective interactions of all the individuals. In fact, a major recurring theme in swarm intelligence (and of complexity science in general) is that even if individuals follow simple rules, the resulting group behavior can be surprisingly complex - and remarkably effective. And, to a large extent, flexibility and robustness result from self-organization." (Eric Bonabeau & Christopher Meyer, "Swarm Intelligence: A Whole New Way to Think About Business", Harvard Business Review, 2001)

"Chaos theory revealed that simple nonlinear systems could behave in extremely complicated ways, and showed us how to understand them with pictures instead of equations. Complexity theory taught us that many simple units interacting according to simple rules could generate unexpected order. But where complexity theory has largely failed is in explaining where the order comes from, in a deep mathematical sense, and in tying the theory to real phenomena in a convincing way. For these reasons, it has had little impact on the thinking of most mathematicians and scientists." (Steven Strogatz, "Sync: The Emerging Science of Spontaneous Order", 2003)

"[a complex system is] a system in which large networks of components with no central control and simple rules of operation give rise to complex collective behavior, sophisticated information processing, and adaptation via learning or evolution." (Melanie Mitchell, "Complexity: A Guided Tour", 2009)

"[...] the Game of Life, in which a few simple rules executed repeatedly can generate a surprising degree of complexity. Recall that the game treats squares, or pixels, as simply on or off (filled or blank) and the update rules are given in terms of the state of the nearest neighbours. The theory of networks is closely analogous. An electrical network, for example, consists of a collection of switches with wires connecting them. Switches can be on or off, and simple rules determine whether a given switch is flipped, according to the signals coming down the wires from the neighbouring switches. The whole network, which is easy to model on a computer, can be put in a specific starting state and then updated step by step, just like a cellular automaton. The ensuing patterns of activity depend both on the wiring diagram (the topology of the network) and the starting state. The theory of networks can be developed quite generally as a mathematical exercise: the switches are called ‘nodes’ and the wires are called ‘edges’. From very simple network rules, rich and complex activity can follow." (Paul Davies, "The Demon in the Machine: How Hidden Webs of Information Are Solving the Mystery of Life", 2019)

28 February 2022

On Puzzles (Unsourced)

"It is an outcome of faith that nature - as she is perceptible to our five senses - takes the character of such a well formulated puzzle." (Albert Einstein)

"Mathematics began to seem too much like puzzle solving. Physics is puzzle solving, too, but of puzzles created by nature, not by the mind of man." (Maria Goeppert-Mayer)

"Science is a game - but a game with reality, a game with sharpened knives [..] If a man cuts a picture carefully into 1000 pieces, you solve the puzzle when you reassemble the pieces into a picture; in the success or failure, both your intelligences compete. In the presentation of a scientific problem, the other player is the good Lord. He has not only set the problem but also has devised the rules of the game - but they are not completely known, half of them are left for you to discover or to deduce. The experiment is the tempered blade which you wield with success against the spirits of darkness - or which defeats you shamefully. The uncertainty is how many of the rules God himself has permanently ordained, and how many apparently are caused by your own mental inertia, while the solution generally becomes possible only through freedom from its limitations." (Erwin Schrödinger)

"The art of simplicity is a puzzle of complexity." (Douglas Horton)

"Throughout science there is a constant alternation between periods when a particular subject is in a state of order, with all known data falling neatly into their places, and a state of puzzlement and confusion, when new observations throw all neatly arranged ideas into disarray." (Sir Hermann Bondi)

"While the individual man is an insoluble puzzle, in the aggregate he becomes a mathematical certainty. You can, for example, never foretell what anyone man will be up to, but you can say with precision what an average number will be up to. Individuals vary, but percentages remain constant. So says the statistician." (Sir Arthur C Doyle)

16 June 2021

On Knowledge (1970-1979)

"Inductive inference is the only process known to us by which essential new knowledge comes into the world." (Sir Ronald A Fisher, "The Design of Experiments", 1971)

"A discovery must be, by definition, at variance with existing knowledge." (Albert Szent-Gyorgyi, "Dionysians and Apollonians", Science 176, 1972)

"Nature is a network of happenings that do not unroll like a red carpet into time, but are intertwined between every part of the world; and we are among those parts. In this nexus, we cannot reach certainty because it is not there to be reached; it goes with the wrong model, and the certain answers ironically are the wrong answers. Certainty is a demand that is made by philosophers who contemplate the world from outside; and scientific knowledge is knowledge for action, not contemplation. There is no God’s eye view of nature, in relativity, or in any science: only a man’s eye view." (Jacob Bronowski, "The Identity of Man", 1972)

"The human condition can almost be summed up in the observation that, whereas all experiences are of the past, all decisions are about the future. It is the great task of human knowledge to bridge this gap and to find those patterns in the past which can be projected into the future as realistic images." (Kenneth E Boulding, [foreword] 1972)

"Human knowledge is personal and responsible, an unending adventure at the edge of uncertainty." (Jacob Bronowski, "The Ascent of Man", 1973)

"In moving from conjecture to experimental data, (D), experiments must be designed which make best use of the experimenter's current state of knowledge and which best illuminate his conjecture. In moving from data to modified conjecture, (A), data must be analyzed so as to accurately present information in a manner which is readily understood by the experimenter." (George E P Box & George C Tjao, "Bayesian Inference in Statistical Analysis", 1973)

"Discoveries are made by pursuing possibilities suggested by existing knowledge." (Michael Polanyi, "Meaning", 1975)

"Knowledge is not a series of self-consistent theories that converges toward an ideal view; it is rather an ever increasing ocean of mutually incompatible (and perhaps even incommensurable) alternatives, each single theory, each fairy tale, each myth that is part of the collection forcing the others into greater articulation and all of them contributing, via this process of competition, to the development of our consciousness." (Paul K Feyerabend, "Against Method: Outline of an Anarchistic Theory of Knowledge", 1975)

"Every judgment teeters on the brink of error. To claim absolute knowledge is to become monstrous. Knowledge is an unending adventure at the edge of uncertainty." (Frank Herbert, "Children of Dune", 1976)

"Owing to his lack of knowledge, the ordinary man cannot attempt to resolve conflicting theories of conflicting advice into a single organized structure. He is likely to assume the information available to him is on the order of what we might think of as a few pieces of an enormous jigsaw puzzle. If a given piece fails to fit, it is not because it is fraudulent; more likely the contradictions and inconsistencies within his information are due to his lack of understanding and to the fact that he possesses only a few pieces of the puzzle. Differing statements about the nature of things […] are to be collected eagerly and be made a part of the individual's collection of puzzle pieces. Ultimately, after many lifetimes, the pieces will fit together and the individual will attain clear and certain knowledge." (Alan R Beals, "Strategies of Resort to Curers in South India" [contributed in Charles M. Leslie (ed.), "Asian Medical Systems: A Comparative Study", 1976]) 

"Concepts form the basis for any science. These are ideas, usually somewhat vague (especially when first encountered), which often defy really adequate definition. The meaning of a new concept can seldom be grasped from reading a one-paragraph discussion. There must be time to become accustomed to the concept, to investigate it with prior knowledge, and to associate it with personal experience. Inability to work with details of a new subject can often be traced to inadequate understanding of its basic concepts." (William C Reynolds & Harry C Perkins, "Engineering Thermodynamics", 1977)

"Because of mathematical indeterminancy and the uncertainty principle, it may be a law of nature that no nervous system is capable of acquiring enough knowledge to significantly predict the future of any other intelligent system in detail. Nor can intelligent minds gain enough self-knowledge to know their own future, capture fate, and in this sense eliminate free will." (Edward O Wilson, "On Human Nature", 1978) 

"Certainty, simplicity, vividness originate in popular knowledge. That is where the expert obtains his faith in this triad as the ideal of knowledge. Therein lies the general epistemological significance of popular science." (Ludwik Fleck, "Genesis and Development of a Scientific Fact", 1979)

"It is hard for us today to assimilate all the new ideas that are being suggested in response to the new information we have. We must remember that our picture of the universe is based not only on our scientific knowledge but also on our culture and our philosophy. What new discoveries lie ahead no one can say. There may well be civilizations in other parts of our galaxy or in other galaxies that have already accomplished much of what lies ahead for mankind. Others may just be beginning. The universe clearly presents an unending challenge." (Necia H Apfel & J Allen Hynek, "Architecture of the Universe", 1979)

On Knowledge (Unsourced)

"All knowledge that is not the real product of observation, or of consequences deduced from observation, is entirely groundless and illusory." (Jean-Baptiste Lamarck)

"By observation, facts are distinctly and minutely impressed in the mind; by analogy, similar facts are connected ; by experiment, new facts are discovered ; and, in the progression of knowledge, observation, guided by analogy, leads to experiment, and analogy, confirmed by experiment, becomes scientific truth." (Sir Humphry Davy)

"Generalization is necessary to the advancement of knowledge; but particularity is indispensable to the creations of the imagination." (Thomas B Macaulay)

"In imaginative thought there is no real knowledge of anything but similarities (ultimately identities): knowledge of differences is merely a transition to a new knowledge of similarities."  (Northrop Frye)

"No one sees further into a generalization than his own knowledge of detail extends." (William James)

"Real wisdom is not the knowledge of everything, but the knowledge of which things in life are necessary, which are less necessary, and which are completely unnecessary to know." (Lev N Tolstoy)

"The goal of education is not to increase the amount of knowledge but to create the possibilities for a child to invent and discover, to create men who are capable of doing new things." (Jean Piaget)

"The Information Age offers much to mankind, and I would like to think that we will rise to the challenges it presents. But it is vital to remember that information - in the sense of raw data - is not knowledge, that knowledge is not wisdom, and that wisdom is not foresight. But information is the first essential step to all of these." (Arthur C Clark)

"We call it 'explanation', but it is 'description' which distinguishes us from earlier stages of knowledge and science. We describe better - we explain just as little who came before us [...] We operate with nothing but things which do not exist, with lines, planes, bodies, atoms, divisible time, divisible space - how should explanation even be possible when we first make everything into an image, into our image!" (Friedrich W Nietzsche)

"You know how the divine Simplicity enfolds all things. Mind is the image of this enfolding Simplicity. If, then, you called this divine Simplicity infinite Mind, it will be the exemplar of our mind. If you called the divine mind the totality of the truth of things, you will call our mind the totality of the assimilation of things, so that it may be a totality of ideas. In the divine Mind conception is the production of things; in our mind conception is the knowledge of things. If the divine Mind is absolute Being, then its conception is the creation of beings; and conception in the human mind is the assimilation of beings." (Nicholas of Cusa)

07 June 2021

On Abstraction (1970-1979)

"Mathematics is much more than a language for dealing with the physical world. It is a source of models and abstractions which will enable us to obtain amazing new insights into the way in which nature operates. Indeed, the beauty and elegance of the physical laws themselves are only apparent when expressed in the appropriate mathematical framework." (Melvin Schwartz, "Principles of Electrodynamics", 1972)

"Science uses the senses but does not enjoy them; finally buries them under theory, abstraction, mathematical generalization." (Theodore Roszak, "Where the Wasteland Ends", 1972)
 
"The beauty of physics lies in the extent which seemingly complex and unrelated phenomena can be explained and correlated through a high level of abstraction by a set of laws which are amazing in their simplicity." (Melvin Schwartz, "Principles of Electrodynamics", 1972)

"A model is an abstract description of the real world. It is a simple representation of more complex forms, processes and functions of physical phenomena and ideas." (Moshe F Rubinstein & Iris R Firstenberg, "Patterns of Problem Solving", 1975)

"The physicist who states a law of nature with the aid of a mathematical formula is abstracting a real feature of a real material world, even if he has to speak of numbers, vectors, tensors, state-functions, or whatever to make the abstraction." (Hilary Putnam, "Mathematics, Matter, and Method", 1975)

"Every word is an abstraction or category, not a particular." (Robert Pinsky, "The Situation of Poetry - Contemporary Poetry and its Traditions", 1976)

"For the mathematician, the physical way of thinking is merely the  starting point in a process of abstraction or idealization. Instead of being a dot on a piece of paper or a particle of dust suspended in space, a point becomes, in the mathematician's ideal way of thinking, a set of numbers or coordinates. In applied mathematics we must go much further with this process because the physical problems under consideration are more complex. We first view a phenomenon in the physical way, of course, but we must then go through a process of idealization to arrive at a more abstract representation of the phenomenon which will be amenable to mathematical analysis." (Peter Lancaster, "Mathematics: Models of the Real World", 1976)

"Mathematics has two cutting edges: one in its formal abstractions, the pure manipulation of ideas, and one in its applications to the real world." (Alexander Woodcock & Monte Davis, "Catastrophe Theory", 1978)

"The most widely used mathematical tools in the social sciences are statistical, and the prevalence of statistical methods has given rise to theories so abstract and so hugely complicated that they seem a discipline in themselves, divorced from the world outside learned journals. Statistical theories usually assume that the behavior of large numbers of people is a smooth, average 'summing-up' of behavior over a long period of time. It is difficult for them to take into account the sudden, critical points of important qualitative change. The statistical approach leads to models that emphasize the quantitative conditions needed for equilibrium-a balance of wages and prices, say, or of imports and exports. These models are ill suited to describe qualitative change and social discontinuity, and it is here that catastrophe theory may be especially helpful." (Alexander Woodcock & Monte Davis, "Catastrophe Theory", 1978)

04 February 2021

On Symbols (1860-1869)

"Observe this: the abstraction of the philosopher is meant to keep the object itself, with its perturbing suggestions, out of sight, allowing only one quality to fill the field of vision; whereas the abstraction of the poet is meant to bring the object itself into more vivid relief, to make it visible by means of the selected qualities. In other words, the one aims at abstract symbols, the other at picturesque effects. The one can carry on his deductions by the aid of colourless signs, X or Y. The other appeals to the emotions through the symbols which will most vividly express the real objects in their relations to our sensibilities." (George H Lewes, "The Principles of Success in Literature", 1865)

"Simplicity of structure means organic unity, whether the organism be simple or complex; and hence in all times the emphasis which critics have laid upon Simplicity, though they have not unfrequently confounded it with narrowness of range. In like manner, as we said just now, when treating of diction they have overlooked the fact that the simplest must be that which best expresses the thought. Simplicity of diction is integrity of speech; that which admits of least equivocation, that which by the clearest verbal symbols most readily calls up in the reader's mind the images and feelings which the writer wishes to call up. Such diction may be concrete or abstract, familiar or technical; its simplicity is determined by the nature of the thought. We shall often be simpler in using abstract and technical terms." (George H Lewes, "The Principles of Success in Literature", 1865)

"The degree in which each mind habitually substitutes signs for images will be, CETERIS PARIBUS [with other conditions remaining the same], the degree in which it is liable to error. This is not contradicted by the fact that mathematical, astronomical, and physical reasonings may, when complex, be carried on more successfully by the employment of signs; because in these cases the signs themselves accurately represent the abstractness of the relations. Such sciences deal only with relations, and not with objects; hence greater simplification ensures greater accuracy. But no sooner do we quit this sphere of abstractions to enter that of concrete things, than the use of symbols becomes a source of weakness. Vigorous and effective minds habitually deal with concrete images." (George H Lewes, "The Principles of Success in Literature", 1865)

"A symbol, however, should be something more than a convenient and compendious expression of facts. It is, in the strictest sense, an instrument for the discovery of facts, and is of value mainly with reference to this end, by its adaptation to which it is to be judged." (Benjamin C Brodie, "The Calculus of Chemical Observations", Philosophical Transactions of the Royal Society of London Vol. 156, 1866)

"I believe, therefore, that there can be no possible sense at all in speaking of any other truth for our representations except a practical [truth]. Our representations of things can be nothing else at all except symbols, naturally given signs for things, that we learn to use for the regulation of our motions and actions. When we have correctly learned to read such a symbol, we are then capable of so adjusting our actions with its help that they have the desired result, that is, the expected new sensations occur. Another comparison between representations and things not only fails to exist in actuality – here all schools agree – but any other kind of comparison is in no way thinkable and has no sense at all." (Hermann von Helmholtz, "Handbuch der Physologieschen Optik", 1867)

"If two forms expressed in the general symbols of universal arithmetic are equal to each other, then they will also remain equal when the symbols cease to represent simple magnitudes, and the operations also consequently have another meaning of any kind." (Hermann Hankel, "Theorie der Complexen Zahlensysteme", 1867)

"Nothing can be more fatal to progress than a too confident reliance on mathematical symbols; for the student is only too apt to take the easier course, and consider the formula not the fact as the physical reality." (William T Kelvin & Peter G Tait, "Treatise on Natural Philosophy", 1867)

"[...] there can be little doubt that the further science advances, the more extensively and consistently will all the phenomena of Nature be represented by materialistic formulae and symbols." (Thomas H Huxley, "On the Physical Basis of Life", 1869)

22 January 2021

Thermodynamics I

"The second fundamental theorem [the second law of thermodynamics], in the form which I have given to it, asserts that all transformations occurring in nature may take place in a certain direction, which I have assumed as positive, by themselves, that is, without compensation […] the entire condition of the universe must always continue to change in that first direction, and the universe must consequently approach incessantly a limiting condition. […] For every body two magnitudes have thereby presented themselves - the transformation value of its thermal content [the amount of inputted energy that is converted to 'work'], and its disgregation [separation or disintegration]; the sum of which constitutes its entropy." (Rudolf Clausius, "The Mechanical Theory of Heat", 1867)

"Since a given system can never of its own accord go over into another equally probable state but into a more probable one, it is likewise impossible to construct a system of bodies that after traversing various states returns periodically to its original state, that is a perpetual motion machine." (Ludwig E Boltzmann, "The Second Law of Thermodynamics", [Address to a Formal meeting of the Imperial Academy of Science], 1886)

"The second law of thermodynamics appears solely as a law of probability, entropy as a measure of the probability, and the increase of entropy is equivalent to a statement that more probable events follow less probable ones." (Max Planck, "A Survey of Physics", 1923)

"It was not easy for a person brought up in the ways of classical thermodynamics to come around to the idea that gain of entropy eventually is nothing more nor less than loss of information." (Gilbert N Lewis, [Letter to Irving Langmuir] 1930)

"True equilibria can occur only in closed systems and that, in open systems, disequilibria called ‘steady states’, or ‘flow equilibria’ are the predominant and characteristic feature. According to the second law of thermodynamics a closed system must eventually attain a time-independent equilibrium state, with maximum entropy and minimum free energy. An open system may, under certain conditions, attain a time-independent state where the system remains constant as a whole and in its phases, though there is a continuous flow of component materials. This is called a steady state. Steady states are irreversible as a whole. […] A closed system in equilibrium does not need energy for its preservation, nor can energy be obtained from it. In order to perform work, a system must be in disequilibrium, tending toward equilibrium and maintaining a steady state, Therefore the character of an open system is the necessary condition for the continuous working capacity of the organism." (Ludwig on Bertalanffy, "Theoretische Biologie: Band 1: Allgemeine Theorie, Physikochemie, Aufbau und Entwicklung des Organismus", 1932)

"When a transfer of matter to or from a system is also possible, the system may be called an open system." (Frank H MacDougall, "Thermodynamics and chemistry", ?1939)

"A theory is the more impressive the greater the simplicity of its premises is, the more different kinds of things it relates, and the more extended is its area of applicability. Therefore the deep impression which classical thermodynamics made upon me. It is the only physical theory of universal content concerning which I am convinced that, within the framework of the applicability of its basic concepts, it will never be overthrown (for the special attention of those who are skeptics on principle)." (Albert Einstein, "Autobiographical Notes", 1949)

"Reversible processes are not, in fact, processes at all, they are sequences of states of equilibrium. The processes which we encounter in real life are always irreversible processes." (Arnold Sommerfeld, "Thermodynamics and Statistical Mechanics", Lectures on Theoretical - Physics Vol. V, 1956)

21 January 2021

Complex Systems VI

"In short, complex adaptive systems are characterized by perpetual novelty." (M Mitchell Waldrop, "Complexity: The Emerging Science at the Edge of Order and Chaos", 1992)

"[...] it's essentially meaningless to talk about a complex adaptive system being in equilibrium: the system can never get there. It is always unfolding, always in transition. In fact, if the system ever does reach equilibrium, it isn't just stable. It's dead." (M Mitchell Waldrop, "Complexity: The Emerging Science at the Edge of Order and Chaos", 1992)

"If universality is one of the observed characteristics of complex dynamical systems in many fields of study, a second characteristic that flows from the study of these systems is that of emergence. As self-organizing systems go about their daily business, they are constantly exchanging matter and energy with their environment, and this allows them to remain in a state that is far from equilibrium. That allows spontaneous behavior to give rise to new patterns." (Terry Cooke-Davies et al, "Exploring the Complexity of Projects", 2009)

"The difference between complex adaptive systems and self-organizing systems is that the former have the capacity to learn from their experience, and thus to embody successful patterns into their repertoire, although there is actually quite a deep relationship between self-organizing systems and complex adaptive systems. Adaptive entities can emerge at high levels of description in simple self-organizing systems, i.e., adaptive systems are not necessarily self-organizing systems with something extra thrown in." (Terry Cooke-Davies et al, "Exploring the Complexity of Projects", 2009)

"Most systems in nature are inherently nonlinear and can only be described by nonlinear equations, which are difficult to solve in a closed form. Non-linear systems give rise to interesting phenomena such as chaos, complexity, emergence and self-organization. One of the characteristics of non-linear systems is that a small change in the initial conditions can give rise to complex and significant changes throughout the system. This property of a non-linear system such as the weather is known as the butterfly effect where it is purported that a butterfly flapping its wings in Japan can give rise to a tornado in Kansas. This unpredictable behaviour of nonlinear dynamical systems, i.e. its extreme sensitivity to initial conditions, seems to be random and is therefore referred to as chaos. This chaotic and seemingly random behaviour occurs for non-linear deterministic system in which effects can be linked to causes but cannot be predicted ahead of time." (Robert K Logan, "The Poetry of Physics and The Physics of Poetry", 2010)

"Complex systems seem to have this property, with large periods of apparent stasis marked by sudden and catastrophic failures. These processes may not literally be random, but they are so irreducibly complex (right down to the last grain of sand) that it just won’t be possible to predict them beyond a certain level. […] And yet complex processes produce order and beauty when you zoom out and look at them from enough distance." (Nate Silver, "The Signal and the Noise: Why So Many Predictions Fail-but Some Don't", 2012)

"We forget - or we willfully ignore - that our models are simplifications of the world. We figure that if we make a mistake, it will be at the margin. In complex systems, however, mistakes are not measured in degrees but in whole orders of magnitude." (Nate Silver, "The Signal and the Noise: Why So Many Predictions Fail-but Some Don't", 2012)

"If an emerging system is born complex, there is neither leeway to abandon it when it fails, nor the means to join another, successful one. Such a system would be caught in an immovable grip, congested at the top, and prevented, by a set of confusing but locked–in precepts, from changing." (Lawrence K Samuels, "Defense of Chaos: The Chaology of Politics, Economics and Human Action", 2013) 

"Simplicity in a system tends to increase that system’s efficiency. Because less can go wrong with fewer parts, less will. Complexity in a system tends to increase that system’s inefficiency; the greater the number of variables, the greater the probability of those variables clashing, and in turn, the greater the potential for conflict and disarray. Because more can go wrong, more will. That is why centralized systems are inclined to break down quickly and become enmeshed in greater unintended consequences." (Lawrence K Samuels,"Defense of Chaos: The Chaology of Politics, Economics and Human Action", 2013)

"One of the remarkable features of these complex systems created by replicator dynamics is that infinitesimal differences in starting positions create vastly different patterns. This sensitive dependence on initial conditions is often called the butterfly-effect aspect of complex systems - small changes in the replicator dynamics or in the starting point can lead to enormous differences in outcome, and they change one’s view of how robust the current reality is. If it is complex, one small change could have led to a reality that is quite different." (David Colander & Roland Kupers, "Complexity and the art of public policy : solving society’s problems from the bottom up", 2014)

13 December 2020

Complexity vs Mathematics II

"[Mathematics] guides our minds in an orderly way, and furnishes us simple and rational principles by means of which ambiguities are clarified, disorder is converted into order, and complexities are analyzed into their component parts." (Johann B Mencken, "The Charlatanry of the Learned", 1715)

"These sciences, Geometry, Theoretical Arithmetic and Algebra, have no principles besides definitions and axioms, and no process of proof but deduction; this process, however, assuming a most remarkable character; and exhibiting a combination of simplicity and complexity, of rigour and generality, quite unparalleled in other subjects." (William Whewell, "The Philosophy of the Inductive Sciences", 1840)

"The value of mathematical instruction as a preparation for those more difficult investigations, consists in the applicability not of its doctrines but of its methods. Mathematics will ever remain the past perfect type of the deductive method in general; and the applications of mathematics to the simpler branches of physics furnish the only school in which philosophers can effectually learn the most difficult and important of their art, the employment of the laws of simpler phenomena for explaining and predicting those of the more complex." (John S Mill, "System of Logic", 1843)

"It is certainly true that all physical phenomena are subject to strictly mathematical conditions, and mathematical processes are unassailable in themselves. The trouble arises from the data employed. Most phenomena are so highly complex that one can never be quite sure that he is dealing with all the factors until the experiment proves it. So that experiment is rather the criterion of mathematical conclusions and must lead the way." (Amos E Dolbear, "Matter, Ether, Motion", 1894)

"Mathematics, the science of the ideal, becomes the means of investigating, understanding and making known the world of the real. The complex is expressed in terms of the simple. From one point of view mathematics may be defined as the science of successive substitutions of simpler concepts for more complex [...]" (William F White, "A Scrap-book of Elementary Mathematics", 1908)

"A great department of thought must have its own inner life, however transcendent may be the importance of its relations to the outside. No department of science, least of all one requiring so high a degree of mental concentration as Mathematics, can be developed entirely, or even mainly, with a view to applications outside its own range. The increased complexity and specialisation of all branches of knowledge makes it true in the present, however it may have been in former times, that important advances in such a department as Mathematics can be expected only from men who are interested in the subject for its own sake, and who, whilst keeping an open mind for suggestions from outside, allow their thought to range freely in those lines of advance which are indicated by the present state of their subject, untrammelled by any preoccupation as to  applications to other departments of science." (Ernst W Hobson, Nature Vol. 84, [address] 1910)

"Elegance may produce the feeling of the unforeseen by the unexpected meeting of objects we are not accustomed to bring together; there again it is fruitful, since it thus unveils for us kinships before unrecognized. It is fruitful even when it results only from the contrast between the simplicity of the means and the complexity of the problem set; it makes us then think of the reason for this contrast and very often makes us see that chance is not the reason; that it is to be found in some unexpected law. In a word, the feeling of  mathematical elegance is only the satisfaction due to any adaptation of the solution to the needs of our mind, and it is because of this very adaptation that this solution can be for us an instrument. Consequently this esthetic satisfaction is bound up with the economy of thought." (Jules Henri Poincaré, "The Future of Mathematics", Monist Vol. 20, 1910)

"The mathematical laws presuppose a very complex elaboration. They are not known exclusively either a priori or a posteriori, but are a creation of the mind; and this creation is not an arbitrary one, but, owing to the mind’s resources, takes place with reference to experience and in view of it. Sometimes the mind starts with intuitions which it freely creates; sometimes, by a process of elimination, it gathers up the axioms it regards as most suitable for producing a harmonious development, one that is both simple and fertile. The mathematics is a voluntary and intelligent adaptation of thought to things, it represents the forms that will allow of qualitative diversity being surmounted, the moulds into which reality must enter in order to become as intelligible as possible." (Émile Boutroux, "Natural Law in Science and Philosophy", 1914)

"No equation, however impressive and complex, can arrive at the truth if the initial assumptions are incorrect." (Arthur C Clarke, "Profiles of the Future: An Inquiry into the Limits of the Possible", 1973)

"Economists are all too often preoccupied with petty mathematical problems of interest only to themselves. This obsession with mathematics is an easy way of acquiring the appearance of scientificity without having to answer the far more complex questions posed by the world we live in." (Thomas Piketty, Capital in the Twenty-First Century, 2013)

01 December 2020

On Engineering II

"Engineering is knowledge work. That is, although the goal of engineering may be to produce useful objects, engineers do not construct such object themselves. Rather they aim to generate knowledge that will allow such objects to be built." (Dorothy A Winsor, "Writing Like an Engineer: A Rhetorical Education", 1966)

"Engineering is a profession, an art of action and synthesis and not simply a body of knowledge. Its highest calling is to invent and innovate." (Daniel V DeSimone & Hardy Cross, "Education for Innovation", 1968)

"Technological invention and innovation are the business of engineering. They are embodied in engineering change." (Daniel V DeSimone & Hardy Cross, "Education for Innovation", 1968)

"[...] it is rather more difficult to recapture directness and simplicity than to advance in the direction of ever more sophistication and complexity. Any third-rate engineer or researcher can increase complexity; but it takes a certain flair of real insight to make things simple again." (Ernst F Schumacher, "Small Is Beautiful", 1973)

"Engineering is superficial only to those who view it superficially. At the heart of engineering lies existential joy." (Samuel C Florman, "The Existential Pleasures of Engineering", 1976)

"From the point of view of modern science, design is nothing, but from the point of view of engineering, design is everything. It represents the purposive adaptation of means to reach a preconceived end, the very essence of engineering." (Edwin T Layton Jr., "American Ideologies of Science and Engineering", Technology and Culture No. 4, 1976)

"Engineering or Technology is the making of things that did not previously exist, whereas science is the discovering of things that have long existed. Technological results are forms that exist only because people want to make them, whereas scientific results are formulations of what exists independently of human intentions." (David Billington, "The Tower and the Bridge: The New Art of Structural Engineering", 1983)

"As engineering becomes increasingly central to the shaping of society, it is ever more important that engineers become introspective. Rather than merely revel in our technical successes, we should intensify our efforts to explore, define, and improve the philosophical foundations of our professions." (Samuel C Florman, "The Civilized Engineer", 1985)

"Engineering is an art of simplification, and the rules - when and how to simplify - are a matter of experience and intuition." (Olle I Elgerd)

"Indeed, the most important part of engineering work - and also of other scientific work - is the determination of the method of attacking the problem, whatever it may be." (Charles P Steinmetz)

16 November 2020

Mental Models LV

"To imagine - to form an image - we must have the numerous relations of things present to the mind, and see the objects in their actual order. In this we are of course greatly aided by the mass of organised experience, which allows us rapidly to estimate the relations of gravity or affinity just as we remember that fire burns and that heated bodies expand. But be the aid great or small, and the result victorious or disastrous, the imaginative process is always the same." (George H Lewes, "The Principles of Success in Literature", 1865)

"The degree in which each mind habitually substitutes signs for images will be, CETERIS PARIBUS [with other conditions remaining the same], the degree in which it is liable to error. This is not contradicted by the fact that mathematical, astronomical, and physical reasonings may, when complex, be carried on more successfully by the employment of signs; because in these cases the signs themselves accurately represent the abstractness of the relations. Such sciences deal only with relations, and not with objects; hence greater simplification ensures greater accuracy. But no sooner do we quit this sphere of abstractions to enter that of concrete things, than the use of symbols becomes a source of weakness. Vigorous and effective minds habitually deal with concrete images." (George H Lewes, "The Principles of Success in Literature", 1865)

"The steps to scientific as well as other knowledge consist in a series of logical fictions which are as legitimate as they are indispensable in the operations of thought, but whose relations to the phenomena whereof they are the partial and not unfrequently merely symbolical representations must never be lost sight of." (John Stallo, "The Concepts and Theories of Modern Physics", 1884)

"Myths and science fulfil a similar function: they both provide human beings with a representation of the world and of the forces that are supposed to govern it. They both fix the limits of what is considered as possible." (François Jacob, "The Possible and the Actual", 1982)

"Many people would accept that we do not really have knowledge of the world; we have knowledge only of our representations of the world. Yet we seem condemned by our consitution to treat these representations as if they were the world, for our everyday experience feels as if it were of a given and immediate world." (Francisco Varela, "The Embodied Mind", 1991)

"The seemingly stable scene you normally see is really a mental model that you construct - the eyes are actually darting all around, producing a retinal image as jerky as an amateur video, and some of what you thought you saw was instead filled in from memory." (William H Calvin, "How Brains Think", 1996) 

"[…] the 'reality' that we perceive is based on mental models in which things don't usually change their shapes or disappear, despite their changing appearances. We mainly react to what we expect - and tend to represent the things that we see as though they remain the same as we move atomic." (Marvin Minsky, "The Emotion Machine: Commonsense thinking, artificial intelligence, and the future of the human mind", 2006)

"We all construct mental models that describe our various mental states, bodies of knowledge about our abilities, depictions of our acquaintances, and collections of stories about our pasts. Then, whenever we use our models of ourselves, we tend to use terms like conscious - when those reflections lead to choices we make, and we use unconscious or unintentional to describe those activities that we regard as beyond our control." (Marvin Minsky, "The Emotion Machine: Commonsense thinking, artificial intelligence, and the future of the human mind", 2006)

"We solve easy problems in routine ways, scarcely thinking about how we accomplish these - but when our usual methods don't work, we start to 'reflect' on what went wrong and find ourselves to be switching around in a network of 'models', each of which purports to represent some facet or aspect of ourselves, so that we end representing ourselves with a loosely connected collection of images, models, and anecdotes." (Marvin Minsky, "The Emotion Machine: Commonsense thinking, artificial intelligence, and the future of the human mind", 2006) 

"Why must those models be simplifications? Each model must help us to focus on only those aspects that matter in some particular context; that's what makes a map more useful to us than seeing the entire landscape that it depicts. The same applies to what we store in our minds. Consider how messy our minds would become if we filled them up with descriptions of things whose details had too little significance. So instead, we spend large parts of our lives at trying to tidy up our minds - selecting the portions we want to keep, suppressing others we'd like to forget, and refining the ones we're dissatisfied with." (Marvin Minsky, "The Emotion Machine: Commonsense thinking, artificial intelligence, and the future of the human mind", 2006)

24 February 2020

On Simplicity XIII (Complexity vs Simplicity V)

"Cultivate simplicity or rather should I say banish elaborateness, for simplicity springs spontaneous from the heart." (Charles Lamb, [Letter to Coleridge] 1790)

"In the original discovery of a proposition of practical utility, by deduction from general principles and from experimental data, a complex algebraical investigation is often not merely useful, but indispensable; but in expounding such a proposition as a part of practical science, and applying it to practical purposes, simplicity is of the importance: - and […] the more thoroughly a scientific man has studied higher mathematics, the more fully does he become aware of this truth – and […] the better qualified does he become to free the exposition and application of principles from mathematical intricacy." (William J M Rankine, "On the Harmony of Theory and Practice in Mechanics", 1856) 

"The first obligation of Simplicity is that of using the simplest means to secure the fullest effect. But although the mind instinctlvely rejects all needless complexity, we shall greatly err if we fail to recognise the fact, that what the mind recoils from is not the complexity, but the needlessness." (George H Lewes, "The Principles of Success in Literature", 1865)

"Expansion means complexity, and complexity decay." (C Northcote Parkinson, "In-laws and Outlaws", 1962)

"Theorems often tell us complex truths about the simple things, but only rarely tell us simple truths about the complex ones. To believe otherwise is wishful thinking or ‘mathematics envy’." (Marvin Minsky, "Music, Mind, and Meaning", 1981)

"All propaganda or popularization involves a putting of the complex into the simple, but such a move is instantly deconstructive. For if the complex can be put into the simple, then it cannot be as complex as it seemed in the first place; and if the simple can be an adequate medium of such complexity, then it cannot after all be as simple as all that." (Terry Eagleton, Against The Grain, 1986) 

"There is no over-arching theory of complexity that allows us to ignore the contingent aspects of complex systems. If something really is complex, it cannot by adequately described by means of a simple theory. Engaging with complexity entails engaging with specific complex systems. Despite this we can, at a very basic level, make general remarks concerning the conditions for complex behaviour and the dynamics of complex systems. Furthermore, I suggest that complex systems can be modelled." (Paul Cilliers," Complexity and Postmodernism", 1998) 

"People who pride themselves on their 'complexity' and deride others for being 'simplistic' should realize that the truth is often not very complicated. What gets complex is evading the truth." (Thomas Sowell, "Barbarians inside the Gates and Other Controversial Essays", 1999) 

"History, as well as life itself, is complicated; neither life nor history is an enterprise for those who seek simplicity and consistency." (Jared Diamond, "Collapse: How Societies Choose to Fail or Succeed", 2005)

"Simplicity in a system tends to increase that system’s efficiency. Because less can go wrong with fewer parts, less will. Complexity in a system tends to increase that system’s inefficiency; the greater the number of variables, the greater the probability of those variables clashing, and in turn, the greater the potential for conflict and disarray. Because more can go wrong, more will. That is why centralized systems are inclined to break down quickly and become enmeshed in greater unintended consequences." (Lawrence K Samuels,"Defense of Chaos: The Chaology of Politics, Economics and Human Action", 2013) 

On Simplicity XII (Complexity vs Simplicity IV)

"Simplicity of structure means organic unity, whether the organism be simple or complex; and hence in all times the emphasis which critics have laid upon Simplicity, though they have not unfrequently confounded it with narrowness of range." (George H Lewes, "The Principles of Success in Literature", 1865)

"The aim of science is to seek the simplest explanations of complex facts. We are apt to fall into the error of thinking that the facts are simple because simplicity is the goal of our quest. The guiding motto in the life of every natural philosopher should be, ‘Seek simplicity and distrust it’." (Alfred N Whitehead, "The Concept of Nature", 1919) 

"In products of the human mind, simplicity marks the end of a process of refining, while complexity marks a primitive stage." (Eric Hoffer, 1954)

"The machinery of the world is far too complex for the simplicity of men." (Jorge L Borges, "Dreamtigers", 1960)

"The ideas need not be complex. Most ideas that are successful are ludicrously simple. Successful ideas generally have the appearance of simplicity because they seem inevitable." (Sol LeWitt, "Paragraphs on Conceptual Art", 1967) 

"Simplicity does not precede complexity, but follows it." (Alan Perlis, "Epigrams on Programming", 1982)

"It is important to emphasize the value of simplicity and elegance, for complexity has a way of compounding difficulties and as we have seen, creating mistakes. My definition of elegance is the achievement of a given functionality with a minimum of mechanism and a maximum of clarity." (Fernando J Corbató, "On Building Systems That Will Fail", 1991)

"When a musical piece is too simple we tend not to like it, finding it trivial. When it is too complex, we tend not to like it, finding it unpredictable - we don't perceive it to be grounded in anything familiar. Music, or any art form […] has to strike the right balance between simplicity and complexity […]" (Daniel Levitin, "This is Your Brain on Music", 2006) 

"Most of the world is of great roughness and infinite complexity. However, the infinite sea of complexity includes two islands of simplicity: one of Euclidean simplicity and a second of relative simplicity in which roughness is present but is the same at all scales." (Benoît Mandelbrot, "The Fractalist", 2012)

"I think there is a profound and enduring beauty in simplicity; in clarity, in efficiency. True simplicity is derived from so much more than just the absence of clutter and ornamentation. It's about bringing order to complexity." (Jonathan Ive, 2013) 

On Simplicity XI (Complexity vs Simplicity III)

"I would not give a fig for the simplicity this side of complexity, but I would give my life for the simplicity on the other side of complexity." (Oliver W Holmes Jr)

"If this seems complex, the reason is because Tao [nature] is both simple and complex. It is complex when we try to understand it, and simple when we allow ourselves to experience it." (Stanley Rosenthal)

"It is the last lesson of modern science that the highest simplicity of structure is produced, not by few elements, but by the highest complexity." (Ralph W Emerson)

"It would be simple enough, if only simplicity were not the most difficult of all things." (Carl G Jung)

"Out of intense complexities, intense simplicities emerge." (Winston S Churchill) 

"Progress is man's ability to complicate simplicity." (Thor Heyerdahl) 

"Simplicity is complexity resolved." (Constantin Brancusi)


"The art of simplicity is a puzzle of complexity." (Douglas Horton)

"The beauty of simplicity is the complexity it attracts." (Tom Robbins)

"The only simplicity for which I would give a straw is that which is on the other side of the complex - not that which never has divined it." (Oliver W Holmes Jr.)

"[...] the only simplicity to be trusted is the simplicity to be found on the far side of complexity." (Alfred N Whitehead)

"The world is a thing of utter inordinate complexity and richness and strangeness that is absolutely awesome. I mean the idea that such complexity can arise not only out of such simplicity, but probably absolutely out of nothing, is the most fabulous extraordinary idea. And once you get some kind of inkling of how that might have happened, it's just wonderful." (Douglas N Adams)

On Invention (1800-1849)

"Discoveries are not generally made in the order of their scientific arrangement: their connexions and relations are made out gradually; and it is only when the fermentation of invention has subsided that the whole clears into simplicity and order. " (William Whewell, "An Elementary Treatise on Mechanics" Vol. I, 1819)

"To invent without scruple a new principle to every new phenomenon, instead of adapting it to the old; to overload our hypothesis with a variety of this kind, are certain proofs that none of these principles is the just one, and that we only desire, by a number of falsehoods, to cover our ignorance of the truth." (David Hume, "Of the passions", 1826)

"For one person who is blessed with the power of invention, many will always be found who have the capacity of applying principles." (Charles Babbage, "Reflections on the Decline of Science in England, and on Some of Its Causes", 1830)

"It is not easy to anatomize the constitution and the operations of a mind which makes such an advance in knowledge. Yet we may observe that there must exist in it, in an eminent degree, the elements which compose the mathematical talent. It must possess distinctness of intuition, tenacity and facility in tracing logical connection, fertility of invention, and a strong tendency to generalization." (William Whewell, "History of the Inductive Sciences" Vol. 1, 1837)

16 February 2020

From Parts to Wholes (Unsourced)

"By the word symmetry […] one thinks of an external relationship between pleasing parts of a whole; mostly the word is used to refer to parts arranged regularly against one another around a centre. We have […] observed [these parts] one after the other, not always like following like, but rather a raising up from below, a strength out of weakness, a beauty out of ordinariness." (Johann Wolfgang von Goethe)

"Every part is disposed to unite with the whole, that it may thereby escape from its own incompleteness." (Leonardo Da Vinci)

"If nature leads to mathematical forms of great simplicity and beauty - to forms that no one has previously encountered - we cannot help thinking that they are true and that they revealed genuine features of Nature." (Werner K Heisenberg)

"There is a fundamental error in separating the parts from the whole, the mistake of atomizing what should not be atomized. Unity and complementarity constitute reality." (Werner Heisenberg)

"The part always has a tendency to reunite with its whole in order to escape from its imperfection." (Leonardo Da Vinci)

"The whole is simpler than its parts." (Josiah W Gibbs)

"Whatever Nature undertakes, she can only accomplish it in a sequence. She never makes a leap. For example she could not produce a horse if it were not preceded by all the other animals on which she ascends to the horse’s structure as if on the rungs of a ladder. Thus every one thing exists for the sake of all things and all for the sake of one; for the one is of course the all as well. Nature, despite her seeming diversity, is always a unity, a whole; and thus, when she manifests herself in any part of that whole, the rest must serve as a basis for that particular manifestation, and the latter must have a relationship to the rest of the system." (Johann Wolfgang von Goethe)

04 February 2020

On Spacetime (1900-1924)

"The most ordinary things are to philosophy a source of insoluble puzzles. In order to explain our perceptions it constructs the concept of matter and then finds matter quite useless either for itself having or for causing perceptions in a mind. With infinite ingenuity it constructs a concept of space or time and then finds it absolutely impossible that there be objects in this space or that processes occur during this time [...] The source of this kind of logic lies in excessive confidence in the so-called laws of thought." (Ludwig E Boltzmann, "On Statistical Mechanics", 1904)

"Time and Space [...] It is not nature which imposes them upon us, it is we who impose them upon nature because we find them convenient." (Henri Poincaré, "The Value of Science", 1905)

"The most violent revolutions in an individual's beliefs leave most of his old order standing. Time and space, cause and effect, nature and history, and one's own biography remain untouched. New truth is always a go-between, a smoother-over of transitions. It marries old opinion to new fact so as ever to show a minimum of jolt, a maximum of continuity." (William James, "What Pragmatism Means", 1907)

"The objects of our perception invariably include places and times in combination. Nobody has ever noticed a place except at a time, or a time except at a place. But I still respect the dogma that both space and time have independent significance. A point of space at a point of time, that is a system of values x, y, z, t, I will call a world-point." (Hermann Minkowski, "Space and Time", [Address to the 80th Assembly of German Natural Scientists and Physicians] 1908)

"The views of space and time which I wish to lay before you have sprung from the soil of experimental physics, and therein lies their strength. They are radical. Henceforth, space by itself, and time by itself, are doomed to fade away into mere shadows, and only a kind of union of the two will preserve an independent reality." (Hermann Minkowski, "Space and Time", [Address to the 80th Assembly of German Natural Scientists and Physicians] 1908)

"The belief that mathematics, because it is abstract, because it is static and cold and gray, is detached from life, is a mistaken belief. Mathematics, even in its purest and most abstract estate, is not detached from life. It is just the ideal handling of the problems of life, as sculpture may idealize a human figure or as poetry or painting may idealize a figure or a scene. Mathematics is precisely the ideal handling of the problems of life, and the central ideas of the science, the great concepts about which its stately doctrines have been built up, are precisely the chief ideas with which life must always deal and which, as it tumbles and rolls about them through time and space, give it its interests and problems, and its order and rationality." (Cassius J Keyser,"The Humanization of the Teaching of Mathematics", 1912)

"The true scientific mind is not to be tied down by its own conditions of time and space. It builds itself an observatory erected upon the border line of present, which separates the infinite past from the infinite future. From this sure post it makes its sallies even to the beginning and to the end of all things." (Arthur C Doyle, "The Poison Belt", 1913)

"Science is simply setting out on a fishing expedition to see whether it cannot find some procedure which it can call measurement of space and some procedure which it can call the measurement of time, and something which it can call a system of forces, and something which it can call masses." (Alfred N Whitehead, "The Concept of Nature", 1920)

"The discovery of Minkowski […] is to be found […] in the fact of his recognition that the four-dimensional space-time continuum of the theory of relativity, in its most essential formal properties, shows a pronounced relationship to the three-dimensional continuum of Euclidean geometrical space. In order to give due prominence to this relationship, however, we must replace the usual time co-ordinate t by an imaginary magnitude, √-1*ct, proportional to it. Under these conditions, the natural laws satisfying the demands of the (special) theory of relativity assume mathematical forms, in which the time co-ordinate plays exactly the same role as the three space-coordinates. Formally, these four co-ordinates correspond exactly to the three space co-ordinates in Euclidean geometry." (Albert Einstein,"Relativity: The Special and General Theory", 1920)

"And now, in our time, there has been unloosed a cataclysm which has swept away space, time, and matter hitherto regarded as the firmest pillars of natural science, but only to make place for a view of things of wider scope, and entailing a deeper vision." (Hermann Weyl, "Space, Time, Matter", 1922) 

"The scene of action of reality is not a three-dimensional Euclidean space but rather a four-dimensional world, in which space and time are linked together indissolubly. However deep the chasm may be that separates the intuitive nature of space from that of time in our experience, nothing of this qualitative difference enters into the objective world which physics endeavors to crystallize out of direct experience. It is a four-dimensional continuum, which is neither 'time' nor 'space'. Only the consciousness that passes on in one portion of this world experiences the detached piece which comes to meet it and passes behind it as history, that is, as a process that is going forward in time and takes place in space." (Hermann Weyl, "Space, Time, Matter", 1922) 

"In the grandeur of its sweep in space and time, and the beauty and simplicity of the relations which it discloses between the greatest and the smallest things of which we know, it reveals as perhaps nothing else does, the majesty of the order about us which we call nature, and, as I believe, of that Power behind the order, of which it is but a passing shadow." (Henry N Russell, "Annual Report of the Board of Regents of the Smithsonian Institution", 1923)

26 January 2020

Mental Models XXXV

"Here I am at the limit which God and nature has assigned to my individuality. I am compelled to depend upon word, language and image in the most precise sense, and am wholly unable to operate in any manner whatever with symbols and numbers which are easily intelligible to the most highly gifted minds." (Johann Wolfgang von Goethe, [Letter to Naumann] 1826)

"It may sound quite strange, but for me, as for other scientists on whom these kinds of imaginative images have a greater effect than other poems do, no science is at its very heart more closely related to poetry, perhaps, than is chemistry." (Just Liebig, 1854)

"But I thoroughly believe myself, and hope to prove to you, that science is full of beautiful pictures, of real poetry, and of wonder-working fairies; and what is more […] though they themselves will always remain invisible, yet you will see their wonderful power at work everywhere around you. […] There is only one gift we must have before we can learn to know them - we must have imagination. I do not mean mere fancy, which creates unreal images and impossible monsters, but imagination, the power of making pictures or images in our mind, of that which is, though it is invisible to us." (Arabella Buckley, Fairyland, 1879)

"Ask your imagination if it will accept a vibrating multiple proportion - a numerical ratio in a state of oscillation? I do not think it will. You cannot crown the edifice with this abstraction. The scientific imagination, which is here authoritative, demands, as the origin and cause of a series of ether-waves, a particle of vibrating matter quite as definite, though it may be excessively minute, as that which gives origin to a musical sound. Such a particle we name an atom or a molecule. I think the intellect, when focused so as to give definition without penumbral haze, is sure to realize this image at the last." (John Tyndall, "Fragments of Science", 1892)

"The mathematical formula is the point through which all the light gained by science passes in order to be of use to practice; it is also the point in which all knowledge gained by practice, experiment, and observation must be concentrated before it can be scientifically grasped. The more distant and marked the point, the more concentrated will be the light coming from it, the more unmistakable the insight conveyed. All scientific thought, from the simple gravitation formula of Newton, through the more complicated formulae of physics and chemistry, the vaguer so called laws of organic and animated nature, down to the uncertain statements of psychology and the data of our social and historical knowledge, alike partakes of this characteristic, that it is an attempt to gather up the scattered rays of light, the different parts of knowledge, in a focus, from whence it can be again spread out and analyzed, according to the abstract processes of the thinking mind. But only when this can be done with a mathematical precision and accuracy is the image sharp and well-defined, and the deductions clear and unmistakable. As we descend from the mechanical, through the physical, chemical, and biological, to the mental, moral, and social sciences, the process of focalization becomes less and less perfect, - the sharp point, the focus, is replaced by a larger or smaller circle, the contours of the image become less and less distinct, and with the possible light which we gain there is mingled much darkness, the sources of many mistakes and errors. But the tendency of all scientific thought is toward clearer and clearer definition; it lies in the direction of a more and more extended use of mathematical measurements, of mathematical formulae." (John T Merz, "History of European Thought in the 19th Century" Vol. 1, 1904)

"Many people believe that reasoning, and therefore science, is a different activity from imagining. But this is a fallacy […] Reasoning is constructed with movable images just as certainly as poetry is." (Jacob Bronowski, "Visionary Eye", 1978)

"The thinking person goes over the same ground many times. He looks at it from varying points of view - his own, his arch-enemy’s, others’. He diagrams it, verbalizes it, formulates equations, constructs visual images of the whole problem, or of troublesome parts, or of what is clearly known. But he does not keep a detailed record of all this mental work, indeed could not. […] Deep understanding of a domain of knowledge requires knowing it in various ways. This multiplicity of perspectives grows slowly through hard work and sets the state for the re-cognition we experience as a new insight." (Howard E Gruber, "Darwin on Man", 1981)

"Mathematicians have always needed to ‘see’ the complex concepts they work with in order to reason with them effectively. In the past, they conjured up mental images as best they could, but the wonders of computer graphics provide them with far more detailed pictures to think with." (Richard Palais and Luc Bernard, "2006 Visualization Project", 2006)

"Time is to eternity as an image is to its exemplar, and those things which are temporal bear a resemblance to those things which are eternal." (Nicholas of Cusa)

"You know how the divine Simplicity enfolds all things. Mind is the image of this enfolding Simplicity. If, then, you called this divine Simplicity infinite Mind, it will be the exemplar of our mind. If you called the divine mind the totality of the truth of things, you will call our mind the totality of the assimilation of things, so that it may be a totality of ideas. In the divine Mind conception is the production of things; in our mind conception is the knowledge of things. If the divine Mind is absolute Being, then its conception is the creation of beings; and conception in the human mind is the assimilation of beings." (Nicholas of Cusa)

24 January 2020

On Abstraction (1900-1910)

"Our science, in contrast with others, is not founded on a single period of human history, but has accompanied the development of culture through all its stages. Mathematics is as much interwoven with Greek culture as with the most modern problems in Engineering. She not only lends a hand to the progressive natural sciences but participates at the same time in the abstract investigations of logicians and philosophers." (Felix Klein, "Klein und Riecke: Ueber angewandte Mathematik und Physik" 1900)

"The man of science deals with questions which commonly lie outside of the range of ordinary experience, which often have no immediately discernible relation to the affairs of everyday life, and which concentrate the mind upon apparent abstractions to an extraordinary degree." (Frank W Clarke, "The Man of Science in Practical Affairs", Appletons' Popular Science Monthly Vol. XLV, 1900)

"A mathematical theorem and its demonstration are prose. But if the mathematician is overwhelmed with the grandeur and wondrous harmony of geometrical forms, of the importance and universal application of mathematical maxims, or, of the mysterious simplicity of its manifold laws which are so self-evident and plain and at the same time so complicated and profound, he is touched by the poetry of his science; and if he but understands how to give expression to his feelings, the mathematician turns poet, drawing inspiration from the most abstract domain of scientific thought." (Paul Carus, „Friedrich Schiller: A Sketch of His Life and an Appreciation of His Poetry", 1905)

"But, once again, what the physical states as the result of an experiment is not the recital of observed facts, but the interpretation and the transposing of these facts into the ideal, abstract, symbolic world created by the theories he regards as established." (Pierre-Maurice-Marie Duhem, "The Aim and Structure of Physical Theory", 1908)

[…] theory of numbers lies remote from those who are indifferent; they show little interest in its development, indeed they positively avoid it. [..] the pure theory of numbers is an extremely abstract thing, and one does not often find the gift of ability to understand with pleasure anything so abstract."  (Felix Klein, "Elementary Mathematics from an Advanced Standpoint", 1908)

On Abstraction (2000-2009)

"Abstraction is itself an abstract word and has no single meaning. […] Every word in our language is abstract, because it represents something else." (Eric Maisel, "The Creativity Book: A Year's Worth of Inspiration and Guidance", 2000)

"What cognitive capabilities underlie our fundamental human achievements? Although a complete answer remains elusive, one basic component is a special kind of symbolic activity - the ability to pick out patterns, to identify recurrences of these patterns despite variation in the elements that compose them, to form concepts that abstract and reify these patterns, and to express these concepts in language. Analogy, in its most general sense, is this ability to think about relational patterns." (Keith Holyoak et al, "Introduction: The Place of Analogy in Cognition", 2001)

"[…] we underestimate the share of randomness in about everything […]  The degree of resistance to randomness in one’s life is an abstract idea, part of its logic counterintuitive, and, to confuse matters, its realizations nonobservable." (Nassim N Taleb, "Fooled by Randomness", 2001)

"A model isolates one or a few causal connections, mechanisms, or processes, to the exclusion of other contributing or interfering factors - while in the actual world, those other factors make their effects felt in what actually happens. Models may seem true in the abstract, and are false in the concrete. The key issue is about whether there is a bridge between the two, the abstract and the concrete, such that a simple model can be relied on as a source of relevantly truthful information about the complex reality." (Uskali Mäki, "Fact and Fiction in Economics: Models, Realism and Social Construction", 2002)

"[Primes] are full of surprises and very mysterious […]. They are like things you can touch […] In mathematics most things are abstract, but I have some feeling that I can touch the primes, as if they are made of a really physical material. To me, the integers as a whole are like physical particles." (Yoichi Motohashi, "The Riemann Hypothesis: The Greatest Unsolved Problem in Mathematics", 2002)

"To criticize mathematics for its abstraction is to miss the point entirely. Abstraction is what makes mathematics work. If you concentrate too closely on too limited an application of a mathematical idea, you rob the mathematician of his most important tools: analogy, generality, and simplicity. Mathematics is the ultimate in technology transfer." (Ian Stewart, "Does God Play Dice: The New Mathematics of Chaos", 2002)

"Do not be afraid of the word 'theory'. Yes, it can sound dauntingly abstract at times, and in the hands of some writers can appear to have precious little to do with the actual, visual world around us. Good theory however, is an awesome thing. [...] But unless we actually use it, it borders on the metaphysical and might as well not be used at all." (Richard Howells,  Visual Culture, 2003)

"Group theory is a branch of mathematics that describes the properties of an abstract model of phenomena that depend on symmetry. Despite its abstract tone, group theory provides practical techniques for making quantitative and verifiable predictions about the behavior of atoms, molecules and solids." (Arthur M Lesk, "Introduction to Symmetry and Group Theory for Chemists", 2004)

"Mathematics is not about abstract entities alone but is about relation of abstract entities with real entities. […] Adequacy relations between abstract and real entities provide space or opportunity where mathematical and logical thought operates parsimoniously."  (Navjyoti Singh, "Classical Indian Mathematical Thought", 2005)


"That is, the physicist likes to learn from particular illustrations of a general abstract concept. The mathematician, on the other hand, often eschews the particular in pursuit of the most abstract and general formulation possible. Although the mathematician may think from, or through, particular concrete examples in coming to appreciate the likely truth of very general statements, he will hide all those intuitive steps when he comes to present the conclusions of his thinking to outsiders. It presents the results of research as a hierarchy of definitions, theorems and proofs after the manner of Euclid; this minimizes unnecessary words but very effectively disguises the natural train of thought that led to the original results." (John D Barrow, "New Theories of Everything", 2007)

"Abstraction is a mental process we use when trying to discern what is essential or relevant to a problem; it does not require a belief in abstract entities." (Tom G Palmer, Realizing Freedom: Libertarian Theory, History, and Practice, 2009)

"In order to deal with these phenomena, we abstract from details and attempt to concentrate on the larger picture - a particular set of features of the real world or the structure that underlies the processes that lead to the observed outcomes. Models are such abstractions of reality. Models force us to face the results of the structural and dynamic assumptions that we have made in our abstractions." (Bruce Hannon and Matthias Ruth, "Dynamic Modeling of Diseases and Pests", 2009)

"It is from this continuousness of thought and perception that the scientist, like the writer, receives the crucial flash of insight out of which a piece of work is conceived and executed. And the scientist (again like the writer) is grateful when the insight comes, because insight is the necessary catalyst through which the abstract is made concrete, intuition be given language, language provides specificity, and real work can go forward." (Vivian Gornick, "Women in Science: Then and Now", 2009)
Related Posts Plugin for WordPress, Blogger...

On Leonhard Euler

"I have been able to solve a few problems of mathematical physics on which the greatest mathematicians since Euler have struggled in va...