Showing posts with label prime numbers. Show all posts
Showing posts with label prime numbers. Show all posts

30 September 2024

On Hypotheses: The Riemann Hypothesis

"Whoever proves or disproves [the Riemann Hypothesis] will cover himself in glory..." (Eric T Bell, 1937)

"[...] the Riemann hypothesis remains one of the outstanding challenges of mathematics, a prize which has tantalized and eluded some of the most brilliant mathematicians of this century...Hilbert is reputed to have said that the first comment he would make after waking at the end of a thousand year sleep would be, 'Is the Riemann hypothesis established yet?'" (Richard E  Bellman, A Brief Introduction of Theta Functions, 1961)

"At this point, it is not possible to remain silent on what is probably the most intriguing unsolved problem in the theory of the zeta function and actually in all of number theory - and most likely even one of the most important unsolved problems in contemporary mathematics, namely the famous Riemann hypothesis. [...] Still, the problem is open and fascinates and teases the best contemporary minds." (Emil Grosswald, "Topics in the Theory of Numbers", 1966)

"The failure of the Riemann hypothesis would create havoc in the distribution of prime numbers. This fact alone singles out the Riemann hypothesis as the main open question of prime number theory." (Enrico Bombieri,  "Prime Territory", The Sciences,  1992)

"The Riemann hypothesis [...] is still widely considered to be one of the greatest unsolved problems in mathematics, sure to wreath its conqueror with glory." (Bruce Schechter, "143-year-old problem still has mathematicians guessing", 2002)

"The dependence of so many results on Riemann's challenge is why mathematicians refer to it as a hypothesis rather than a conjecture. The word 'hypothesis' has the much stronger connotation of a necessary assumption that a mathematician makes in order to build a theory. 'Conjecture', in contrast, represents simply a prediction of how mathematicians believe their world behaves. Many have had to accept their inability to solve Riemann's riddle and have simply adopted his prediction as a working hypothesis. If someone can turn the hypothesis into a theorem, all those unproven results would be validated." (Marcus du Sautoy, "The Music of the Primes", 2003)

"Solving any of the great unsolved problems in mathematics is akin to the first ascent of Everest. It is a formidable achievement, but after the conquest there is sometimes nowhere to go but down. Some of the great problems have proven to be isolated mountain peaks, disconnected from their neighbors. The Riemann hypothesis is quite different in this regard. There is a large body of mathematical speculation that becomes fact if the Riemann hypothesis is solved. We know many statements of the form “if the Riemann hypothesis, then the following interesting mathematical statement”, and this is rather different from the solution of problems such as the Fermat problem."  (Peter Borwein et al, "The Riemann Hypothesis: A Resource for the Afficionado and Virtuoso Alike", 2007) 

"Why is the Riemann hypothesis so important? Why is it the problem that many mathematicians would sell their souls to solve? There are a number of great old unsolved problems in mathematics, but none of them has quite the stature of the Riemann hypothesis. This stature can be attributed to a variety of causes ranging from mathematical to cultural. As with the other old great unsolved problems, the Riemann hypothesis is clearly very difficult. It has resisted solution for 150 years and has been attempted by many of the greatest minds in mathematics." (Peter Borwein et al, "The Riemann Hypothesis: A Resource for the Afficionado and Virtuoso Alike", 2007) 

"The result has caught the imagination of most mathematicians because it is so unexpected, connecting two seemingly unrelated areas in mathematics; namely, number theory, which is the study of the discrete, and complex analysis, which deals with continuous processes." (David M Burton, "Elementary Number Theory", 2006)

"Just as music is not about reaching the final chord, mathematics is about more than just the result. It is the journey that excites the mathematician. I read and reread proofs in much the same way as I listen to a piece of music: understanding how themes are established, mutated, interwoven and transformed. What people don't realise about mathematics is that it involves a lot of choice: not about what is true or false (I can't make the Riemann hypothesis false if it's true), but from deciding what piece of mathematics is worth ‘listening to’." (Marcus du Sautoy, "Listen by numbers: music and maths", 2011)

"If [the Riemann Hypothesis is] not true, then the world is a very different place. The whole structure of integers and prime numbers would be very different to what we could imagine. In a way, it would be more interesting if it were false, but it would be a disaster because we've built so much round assuming its truth." (P  Sarnak)

"The Riemann Hypothesis is a precise statement, and in one sense what it means is clear, but what it's connected with, what it implies, where it comes from, can be very unobvious." (M Huxley)

"[...] the Riemann Hypothesis will be settled without any fundamental changes in our mathematical thoughts, namely, all tools are ready to attack it but just a penetrating idea is missing." (Y Motohashi)

"The consequences [of the Riemann Hypothesis] are fantastic: the distribution of primes, these elementary objects of arithmetic. And to have tools to study the distribution of these of objects." (H Iwaniec)

30 April 2021

Statistical Tools II: Dices

"God's dice always have a lucky roll." (Sophocles, 5th century BC)

"[...] to repeat the same throw ten thousand times with the dice would be impossible, whereas to make it once or twice is comparatively easy." (Aristotle, "On the Heavens", cca. 350 BC)

"Four dice are cast and a Venus throw results-that is chance; but do you think it would be chance, too, if in one hundred casts you made one hundred Venus throws? It is possible for paints flung at rando mon a canvas to form the outline of a face; but do you imagine that an accidental scattering of pigments could produce the beautiful portrait of Venus of Cos? Suppose that a hog should form a letter 'A' on the ground with its snout; is that a reason for believing that it could write out Ennius's poem The Andromche?" (Marcus Tullius Cicero, cca. 44 BC)

"Is it possible, then, for any man to apprehend in advance occurrences for which no cause or reason can be assigned? What do we mean when we employ such terms as luck, fortune, accident, turn of the die, except that we are seeking to describe events which happened and came to pass in such a way that they either might not have happened and come to pass at all or might have happened and come to pass under quite different circumstances? How then can an event be anticipated and predicted which occurs fortuitously and as a result of blind chance and of the spinning of Fortune's wheel?" (Marcus Tullius Cicero, "De Divinatione", 44 BC)

"The law of large numbers is noted in events which are attributed to pure chance since we do not know their causes or because they are too complicated. Thus, games, in which the circumstances determining the occurrence of a certain card or certain number of points on a die infinitely vary, can not be subjected to any calculus. If the series of trials is continued for a long time, the different outcomes nevertheless appear in constant ratios. Then, if calculations according to the rules of a game are possible, the respective probabilities of eventual outcomes conform to the known Jakob Bernoulli theorem. However, in most problems of contingency a prior determination of chances of the various events is impossible and, on the contrary, they are calculated from the observed result." (Siméon-Denis Poisson, "Researches into the Probabilities of Judgements in Criminal and Civil Cases", 1837)

"A perfect equity adjusts its balance in all parts of life. The dice of God are always loaded. The world looks like a multiplication-table, or a mathematical equation, which, turn it how you will, balances itself." (Ralph W Emerson, "Compensation", 1841)

"Without doubt, matter is unlimited in extent, and, in this sense, infinite; and the forces of Nature mould it into an innumerable number of worlds. Would it be at all astonishing if, from the universal dice-box, out of an innumberable number of throws, there should be thrown out one world infinitely perfect? Nay, does not the calculus of probabilities prove to us that one such world out of an infinite number, must be produced of necessity?" (Philippe Buchez & William B Greene, "Remarks on the Science of History: Followed by an a priori autobiography", 1849)

"As an instrument for selecting at random, I have found nothing superior to dice. It is most tedious to shuffle cards thoroughly be- tween each successive draw, and the method of mixing and stirring up marked balls in a bag is more tedious still. A teetotum or some form of roulette is preferable to these, but dice are better than all. When they are shaken and tossed in a basket, they hurtle so variously against one another and against the ribs of the basket-work that they tumble wildly about, and their positions at the outset afford no perceptible clue to what they will be after even a single good shake and toss." (Francis Galton, Nature vol. 42, 1890) 

"A throw of the dice will never abolish chance." (Stéphane Mallarmé, 1897)

"If the world may be thought of as a certain definite quantity of force and as a certain definite number of centers of force—and every other representation remains indefinite and therefore useless—it follows that, in the great dice game of existence, it must pass through calculable number of combinations. In infinite time, every possible combination would at some time or another be realized; more: it would be realized an infinite number of times. And since between every combination and its next recurrence all other possible combinations would have to take place, and each of these combination conditions of the entire sequence of combinations in the same series, a circular movement of absolutely identical series is thus demonstrated: the world as a circular movement that has already repeated itself infinitely often and plays its game in infinitum. This conception is not simply a mechanistic conception; for if it were that, it would not condition an infinite recurrence of identical cases, but a final state. Because the world has not reached this, mechanistic theory must be considered an imperfect and merely provisional hypothesis." (Friedrich Nietzsche, "The Will to Power", [notes written 1883-1888] 1901)

"Quantum mechanics is certainly imposing. But an inner voice tells me that it is not yet the real thing. The theory says a lot, but does not really bring us any closer to the secret of the "old one." I, at any rate, am convinced that He does not throw dice." (Albert Einstein, [Letter to Max Born] 1926)

"It seems hard to sneak a look at God's cards. But that He plays dice and uses 'telepathic' methods [...] is something that I cannot believe for a single moment." (Albert Einstein, [Letter to Cornel Lanczos] 1942)

"You believe in the God who plays dice, and I in complete law and order in a world that objectively exists, and which I, in a wildly speculative way, am trying to capture. [...] Even the great initial success of the quantum theory does not make me believe in the fundamental dice-game, although I am well aware that our younger colleagues interpret this as a consequence of senility. No doubt the day will come when we will see whose instinctive attitude was the correct one." (Albert Einstein, [Letter to Max Born] 1944)

"If God has made the world a perfect mechanism, He has at least conceded so much to our imperfect intellect that in order to predict little parts of it, we need not solve innumerable differential equations, but can use dice with fair success." (Max Born, "Albert Einstein: Philosopher-Scientist", 1949)

"In the game of heads and tails, if head comes up a hundred times in a row then this appears to us extraordinary, because after dividing the nearly infinite number of combinations that can arise in a hundred throws into regular sequences, or those in which we observe a rule that is easy to grasp, and into irregular sequences, the latter are incomparably more numerous." (Pierre-Simon Laplace, "A Philosophical Essay on Probability Theories", 1951)

"The picture of scientific method drafted by modern philosophy is very different from traditional conceptions. Gone is the ideal of a universe whose course follows strict rules, a predetermined cosmos that unwinds itself like an unwinding clock. Gone is the ideal of the scientist who knows the absolute truth. The happenings of nature are like rolling dice rather than like revolving stars; they are controlled by probability laws, not by causality, and the scientist resembles a gambler more than a prophet. He can tell you only his best posits - he never knows beforehand whether they will come true. He is a better gambler, though, than the man at the green table, because his statistical methods are superior. And his goal is staked higher - the goal of foretelling the rolling dice of the cosmos. If he is asked why he follows his methods, with what title he makes his predictions, he cannot answer that he has an irrefutable knowledge of the future; he can only lay his best bets. But he can prove that they are best bets, that making them is the best he can do - and if a man does his best, what else can you ask of him?" (Hans Reichenbach, "The Rise of Scientific Philosophy", 1951)

"We must emphasize that such terms as 'select at random', 'choose at random', and the like, always mean that some mechanical device, such as coins, cards, dice, or tables of random numbers, is used." (Frederick Mosteller et al, "Principles of Sampling", Journal of the American Statistical Association Vol. 49 (265), 1954)

"Consideration of particle emission from black holes would seem to suggest that God not only plays dice, but also sometimes throws them where they cannot be seen." (Stephen Hawking, "The Quantum Mechanics of Black Holes", Scientific American, 1977)

"Not only does God play dice with the world - He does not let us see what He has rolled." (Stanisław Lem, "Imaginary Magnitude", 1981)

"Specialists [...] are slowly coming to the realization that the universe is biased and leans to the left. [...] Many scientists have come to believe that this odd state of affairs has somethittg to do with the weak nuclear force. It seems that the weak force tends to impart a left-handed spin to electrons, and this effect may bias some kinds of molecular synthesis to the left. [...] But scientific speculation of this ilk leads to a deeper question. Was it purely a matter of chance that left-handedness became the preferred direction in our universe, or is there some reason behind it? Did the sinister bent of existence that scientists have observed stem from a roll of the dice, or is God a semiambidextrous southpaw?" (Malcolm W Browne, 1986)

"[In statistics] you have the fact that the concepts are not very clean. The idea of probability, of randomness, is not a clean mathematical idea. You cannot produce random numbers mathematically. They can only be produced by things like tossing dice or spinning a roulette wheel. With a formula, any formula, the number you get would be predictable and therefore not random. So as a statistician you have to rely on some conception of a world where things happen in some way at random, a conception which mathematicians don’t have." (Lucien LeCam, [interview] 1988)

"Combinatorics, a sort of glorified dice-throwing." (Robert Kanigel, "The Man Who Knew Infinity: A Life of the Genius Ramanujan", 1991)

"Nature is never perfectly symmetric. Nature's circles always have tiny dents and bumps. There are always tiny fluctuations, such as the thermal vibration of molecules. These tiny imperfections load Nature's dice in favour of one or other of the set of possible effects that the mathematics of perfect symmetry considers to be equally possible." (Ian Stewart & Martin Golubitsky, "Fearful Symmetry: Is God a Geometer?", 1992)

"It is true that every aspect of the roll of dice may be suspect: the dice themselves, the form and texture of the surface, the person throwing them. If we push the analysis to its extreme, we may even wonder what chance has to do with it at all. Neither the course of the dice nor their rebounds rely on chance; they are governed by the strict determinism of rational mechanics. Billiards is based on the same principles, and it has never been considered a game of chance. So in the final analysis, chance lies in the clumsiness, the inexperience, or the naiveté of the thrower - or in the eye of the observer." (Ivar Ekeland, "The Broken Dice, and Other Mathematical Tales of Chance", 1993)

"Whether we shuffle cards or roll dice, chance is only a result of our human lack of deftness: we don't have enough control to immobilize a die at will or to individually direct the cards in a deck. The comparison is an important one nonetheless, and highlights the limits of this method of creating chance - it doesn't matter who rolls the dice, but we wouldn't let just anyone shuffle the cards." (Ivar Ekeland, "The Broken Dice, and Other Mathematical Tales of Chance", 1993)

"So Einstein was wrong when he said, 'God does not play dice'. Consideration of black holes suggests, not only that God does play dice, but that he sometimes confuses us by throwing them where they can't be seen." (Stephen Hawking, 1994)

"Yet, Einstein's theories are also not the last word: quantum theory and relativity are inconsistent, and Einstein himself, proclaiming that 'God does not play dice!', rejected the basic reliance of quantum theory on chance events, and looked forward to a theory which would be deterministic. Recent experiments suggest that this view of Einstein's conflicts with his other deeply held beliefs about the nature of the physical universe. Certain it is that somewhere, beyond physicists' current horizons, are even more powerful theories of how the world is." (David Wells, "You Are a Mathematician: A wise and witty introduction to the joy of numbers", 1995)

"In systems such as contemporary society, evolution is always a promise and devolution is always a threat. No system comes with a guarantee of ongoing evolution. The challenge is real. To ignore it is to play dice with all we have. To accept it is not to play God - it is to become an instrument of whatever divine purpose infuses the universe." (Ervin László, "The systems view of the world", 1996)

"[...] an apparently random universe could be obeying every whim of a deterministic deity who chooses how the dice roll; a universe that has obeyed perfect mathematical laws for the last ten billion years could suddenly start to play truly random dice. So the distinction is about how we model the system, and what point of view seems most useful, rather than about any inherent feature of the system itself." (Ian Stewart, "Does God Play Dice: The New Mathematics of Chaos", 1997)

"Chaos teaches us that anybody, God or cat, can play dice deterministically, while the naïve onlooker imagines that something random is going on." (Ian Stewart, "Does God Play Dice: The New Mathematics of Chaos", 1997)

"Indeed a deterministic die behaves very much as if it has six attractors, the steady states corresponding to its six faces, all of whose basins are intertwined. For technical reasons that can't quite be true, but it is true that deterministic systems with intertwined basins are wonderful substitutes for dice; in fact they're super-dice, behaving even more ‘randomly’ - apparently - than ordinary dice. Super-dice are so chaotic that they are uncomputable. Even if you know the equations for the system perfectly, then given an initial state, you cannot calculate which attractor it will end up on. The tiniest error of approximation – and there will always be such an error - will change the answer completely." (Ian Stewart, "Does God Play Dice: The New Mathematics of Chaos", 1997)

"Perhaps God can play dice, and create a universe of complete law and order, in the same breath." (Ian Stewart, "Does God Play Dice: The New Mathematics of Chaos", 1997)

"Simple laws may not produce simple behaviour. Deterministic laws can produce behaviour that appears random. Order can breed its own kind of chaos. The question is not so much whether God plays dice, but how God plays dice.", 1997)

"The chance events due to deterministic chaos, on the other hand, occur even within a closed system determined by immutable laws. Our most cherished examples of chance - dice, roulette, coin-tossing - seem closer to chaos than to the whims of outside events. So, in this revised sense, dice are a good metaphor for chance after all. It's just that we've refined our concept of randomness. Indeed, the deterministic but possibly chaotic stripes of phase space may be the true source of probability." (Ian Stewart, "Does God Play Dice: The New Mathematics of Chaos", 1997)

"From the moment we first roll a die in a children’s board game, or pick a card (any card), we start to learn what probability is. But even as adults, it is not easy to tell what it is, in the general way." (David Stirzaker, "Probability and Random Variables: A Beginner’s Guide", 1999)

"[...] the chance of a head (or a double six) is just a chance. The whole point of probability is to discuss uncertain eventualities before they occur. After this event, things are completely different. As the simplest illustration of this, note that even though we agree that if we ¯ip a coin and roll two dice then the chance of a head is greater than the chance of a double six, nevertheless it may turn out that the coin shows a tail when the dice show a double six." (David Stirzaker, "Probability and Random Variables: A Beginner’s Guide", 1999)

"[…] we would like to observe that the butterfly effect lies at the root of many events which we call random. The final result of throwing a dice depends on the position of the hand throwing it, on the air resistance, on the base that the die falls on, and on many other factors. The result appears random because we are not able to take into account all of these factors with sufficient accuracy. Even the tiniest bump on the table and the most imperceptible move of the wrist affect the position in which the die finally lands. It would be reasonable to assume that chaos lies at the root of all random phenomena." (Iwo Bialynicki-Birula & Iwona Bialynicka-Birula, "Modeling Reality: How Computers Mirror Life", 2004)

"Random number generators do not always need to be symmetrical. This misconception of assuming equal likelihood for each outcome is fostered in a restricted learning environment, where learners see only such situations (that is, dice, coins and spinners). It is therefore very important for learners to be aware of situations where the different outcomes are not equally likely (as with the drawing-pins example)." (Alan Graham, "Developing Thinking in Statistics", 2006)

"There is no such thing as randomness. No one who could detect every force operating on a pair of dice would ever play dice games, because there would never be any doubt about the outcome. The randomness, such as it is, applies to our ignorance of the possible outcomes. It doesn’t apply to the outcomes themselves. They are 100% determined and are not random in the slightest. Scientists have become so confused by this that they now imagine that things really do happen randomly, i.e. for no reason at all." (Thomas Stark, "God Is Mathematics: The Proofs of the Eternal Existence of Mathematics", 2018)

"God may not play dice with the universe, but something strange is going on with the prime numbers." (Paul Erdos)

"God plays dice with the universe, but they’re loaded dice. And the main objective of physics now is to find out by what rules were they loaded and how can we use them for our own ends." (Joseph Ford)

"I shall never believe that God plays dice with the world." (Albert Einstein)

"The perfect die does not lose its usefulness or justification by the fact that real dice fail to live up to it." (William Feller)

20 January 2021

Marcus du Sautoy - Collected Quotes

"Rather mathematicians like to look for patterns, and the primes probably offer the ultimate challenge. When you look at a list of them stretching off to infinity, they look chaotic, like weeds growing through an expanse of grass representing all numbers. For centuries mathematicians have striven to find rhyme and reason amongst this jumble. Is there any music that we can hear in this random noise? Is there a fast way to spot that a particular number is prime? Once you have one prime, how much further must you count before you find the next one on the list? These are the sort of questions that have tantalized generations." (Marcus du Sautoy, "The Music of the Primes", 1998)

"[…] despite their apparent simplicity and fundamental character, prime numbers remain the most mysterious objects studied by mathematicians. In a subject dedicated to finding patterns and order, the primes offer the ultimate challenge." (Marcus du Sautoy, "The Music of the Primes", 2003)

"Despite the unworldly nature of mathematics, mathematicians still have egos that need massaging. Nothing acts as a better drive to the creative process than the thought of the immortality bestowed by having your name attached to a theorem." (Marcus du Sautoy, "The Music of the Primes", 2003)

"The primes have been a constant companion in our exploration of the mathematical world yet they remain the most enigmatic of all numbers. Despite the best efforts of the greatest mathematical minds to explain the modulation and transformation of this mystical music, the primes remain an unanswered riddle." (Marcus du Sautoy, "The Music of the Primes", 2003)

"The concept of proof perhaps marks the true beginning of mathematics as the art of deduction rather than just numerological observation, the point at which mathematical alchemy gave way to mathematical chemistry." (Marcus du Sautoy, "The Music of the Primes", 2004)

"A proof is like a piece of theatre or music, with moments of high drama where some major shift takes the audience into a new realm." (Marcus du Sautoy, "Symmetry: A Journey into the Patterns of Nature", 2008)

"As mathematicians had gradually got to grips with what symmetry actually meant, they seemed to be gazing upon an endless world filled with a chaotic and infinitely varied range of symmetrical objects." (Marcus du Sautoy, "Symmetry: A Journey into the Patterns of Nature", 2008)

"For both primes and symmetries, zeta functions act as black boxes. They are built from a formula which binds together the numbers you are trying to understand. The hope is that the zeta function will reveal new insights into the numbers of symmetries. It provides a way of getting from part of the mathematical world where chaos seems to reign to a completely different region where one can start to pick out patterns." (Marcus du Sautoy, "Symmetry: A Journey into the Patterns of Nature", 2008)

"For the mathematician, the pattern searcher, understanding symmetry is one of the principal themes in the quest to chart the mathematical world." (Marcus du Sautoy, "Symmetry: A Journey into the Patterns of Nature", 2008)

"Science is about discovery, but it is also about communication. An idea can hardly be said to exist if you do not awaken that same idea in someone else." (Marcus du Sautoy, "Symmetry: A Journey into the Patterns of Nature", 2008)

"Symmetry continues to inform the way we craft words in songs and poetry. From the first cave paintings to modern art, from primitive drumbeats to contemporary music, artists have continually pushed symmetry to the extremes."(Marcus du Sautoy, "Symmetry: A Journey into the Patterns of Nature", 2008) 

"The word ‘symmetry’ conjures to mind objects which are well balanced, with perfect proportions. Such objects capture a sense of beauty and form. The human mind is constantly drawn to anything that embodies some aspect of symmetry. Our brain seems programmed to notice and search for order and structure. Artwork, architecture and music from ancient times to the present day play on the idea of things which mirror each other in interesting ways. Symmetry is about connections between different parts of the same object. It sets up a natural internal dialogue in the shape." (Marcus du Sautoy, "Symmetry: A Journey into the Patterns of Nature", 2008)

"Why, though, is symmetry so pervasive in nature? It is not just a matter of aesthetics. Just as it is for me and mathematics, symmetry in nature is about language. It provides a way for animals and plants to convey a multitude of messages, from genetic superiority to nutritional information. Symmetry is often a sign of meaning, and can therefore be interpreted as a very basic, almost primeval form of communication." (Marcus du Sautoy, "Symmetry: A Journey into the Patterns of Nature", 2008) 

"Just as music is not about reaching the final chord, mathematics is about more than just the result. It is the journey that excites the mathematician. I read and reread proofs in much the same way as I listen to a piece of music: understanding how themes are established, mutated, interwoven and transformed. What people don't realise about mathematics is that it involves a lot of choice: not about what is true or false (I can't make the Riemann hypothesis false if it's true), but from deciding what piece of mathematics is worth ‘listening to’." (Marcus du Sautoy, "Listen by Numbers: Music and Maths", 2011)

"Mathematics has beauty and romance. It's not a boring place to be, the mathematical world. It's an extraordinary place; it's worth spending time there." (Marcus Du Sautoy)

"The reason why we do maths is because it's like poetry. It's about patterns, and that really turned me on. It made me feel that maths was in tune with the other things I liked doing." (Marcus du Sautoy)

11 December 2019

Carl B Pomerance - Collected Quotes

"Factoring big numbers is a strange kind of mathematics that closely resembles the experimental sciences, where nature has the last and definitive word. […] as with the experimental sciences, both rigorous and heuristic analyses can be valuable in understanding the subject and moving it forward. And, as with the experimental sciences, there is sometimes a tension between pure and applied practitioners." (Carl B Pomerance, "A Tale of Two Sieves", The Notices of the American Mathematical Society 43, 1996)

"Maybe so, but something is going on with the primes." (Carl B Pomerance, [lecture] 1997) [response to Albert Einstein's "God doesn't play dice"]

"With randomness it is very unlikely to be embarrassed, but even if you get embarrassed, you can't replicate it'' (Carl B Pomerance, [lecture] 1997)

"Theorems are fun especially when you are the prover, but then the pleasure fades. What keeps us going are the unsolved problems." (Carl B Pomerance, 2000)


"Prime numbers belong to an exclusive world of intellectual conceptions. We speak of those marvelous notions that enjoy simple, elegant description, yet lead to extreme - one might say unthinkable - complexity in the details. The basic notion of primality can be accessible to a child, yet no human mind harbors anything like a complete picture. In modern times, while theoreticians continue to grapple with the profundity of the prime numbers, vast toil and resources have been directed toward the computational aspect, the task of finding, characterizing, and applying the primes in other domains." (Richard Crandall & Carl B Pomerance, "Prime Numbers: A Computational Perspective", 2001)

"You can ask the question about these ancient topics, such as perfect numbers and amicable numbers [...] and ask, are these good problems [...] studying them helped us develop all of elementary number theory and from elementary number theory we developed the rest of number theory, and also you can argue that from elementary number theory came algebra." (Carl B Pomerance, "Paul Erdős and the Rise of Statistical Thinking in Elementary Number Theory", [lecture] 2013)

27 July 2019

Martin Gardner - Collected Quotes

"Chess combines the beauty of mathematical structure with the recreational delights of a competitive game." (Martin Gardner, "Mathematics, Magic, and Mystery", 1956)

"No branch of number theory is more saturated with mystery than the study of prime numbers: those exasperating, unruly integers that refuse to be divided evenly by any integers except themselves and 1. Some problems concerning primes are so simple that a child can understand them and yet so deep and far from solved that many mathematicians now suspect they have no solution. Perhaps they are 'undecideable'. Perhaps number theory, like quantum mechanics, has its own uncertainty principle that makes it necessary, in certain areas, to abandon exactness for probabilistic formulations." (Martin Gardner, "The remarkable lore of the prime numbers", Scientific American, 1964)

"In many cases a dull proof can be supplemented by a geometric analogue so simple and beautiful that the truth of a theorem is almost seen at a glance." (Martin Gardner, "Mathematical Games", Scientific American, 1973)

"Surreal numbers are an astonishing feat of legerdemain. An empty hat rests on a table made of a few axioms of standard set theory. Conway waves two simple rules in the air, then reaches into almost nothing and pulls out an infinitely rich tapestry of numbers that form a real and closed field. Every real number is surrounded by a host of new numbers that lie closer to it than any other 'real' value does. The system is truly 'surreal.'" (Martin Gardner, "Mathematical Magic Show", 1977)

“All mathematical problems are solved by reasoning within a deductive system in which basic laws of logic are embedded.” (Martin Gardner, “Aha! Insight”, 1978)

"At the heart of mathematics is a constant search for simpler and simpler ways to prove theorems  and solve problems. [...] The sudden hunch, the creative leap of the mind that ‘sees’ in a flash how to solve a problem in a simple way, is something quite different from general intelligence." (Martin Gardner, "Aha! Insight", 1978)

“Combinatorial analysis, or combinatorics, is the study of how things can be arranged. In slightly less general terms, combinatorial analysis embodies the study of the ways in which elements can be grouped into sets subject to various specified rules, and the properties of those groupings. […] Combinatorial analysis often asks for the total number of different ways that certain things can be combined according to certain rules.” (Martin Gardner, "Aha! Insight", 1978)

"Every branch of mathematics has its combinatorial aspects […] There is combinatorial arithmetic, combinatorial topology, combinatorial logic, combinatorial set theory-even combinatorial linguistics, as we shall see in the section on word play. Combinatorics is particularly important in probability theory where it is essential to enumerate all possible combinations of things before a probability formula can be found." (Martin Gardner, "Aha! Insight", 1978)

"Every branch of geometry can be defined as the study of properties that are unaltered when a specified figure is given specified symmetry transformations. Euclidian plane geometry, for instance, concerns the study of properties that are 'invariant' when a figure is moved about on the plane, rotated, mirror reflected, or uniformly expanded and contracted. Affine geometry studies properties that are invariant when a figure is 'stretched' in a certain way. Projective geometry studies properties invariant under projection. Topology deals with properties that remain unchanged even when a figure is radically distorted in a manner similar to the deformation of a figure made of rubber." (Martin Gardner, "Aha! Insight", 1978)

“Geometry is the study of shapes. Although true, this definition is so broad that it is almost meaningless. The judge of a beauty contest is, in a sense, a geometrician because he is judging […] shapes, but this is not quite what we want the word to mean. It has been said that a curved line is the most beautiful distance between two points. Even though this statement is about curves, a proper element of geometry, the assertion seems more to be in the domain of aesthetics rather than mathematics.” (Martin Gardner, "Aha! Insight", 1978)

“Graph theory is the study of sets of points that are joined by lines.” (Martin Gardner, “Aha! Insight”, 1978)

“The great revolutions in science are almost always the result of unexpected intuitive leaps. After all, what is science if not the posing of difficult puzzles by the universe? Mother Nature does something interesting, and challenges the scientist to figure out how she does it. In many cases the solution is not found by exhaustive trial and error […] or even by a deduction based on the relevant knowledge.”  (Martin Gardner, "Aha! Insight", 1978)

“The word ‘induction’ has two essentially different meanings. Scientific induction is a process by which scientists make observations of particular cases, such as noticing that some crows are black, then leap to the universal conclusion that all crows are black. The conclusion is never certain. There is always the possibility that at least one unobserved crow is not black." (Martin Gardner, “Aha! Insight”, 1978)

"Mathematical induction […] is an entirely different procedure. Although it, too, leaps from the knowledge of particular cases to knowledge about an infinite sequence of cases, the leap is purely deductive. It is as certain as any proof in mathematics, and an indispensable tool in almost every branch of mathematics.” (Martin Gardner, “Aha! Insight”, 1978)

"The external world exists; the structure of the world is ordered; we know little about the nature of the order, nothing at all about why it should exist." (Martin Gardner, "Order and Surprise", 1983)

"People who have a casual interest in mathematics may get the idea that a topologist is a mathematical playboy who spends his time making Möbius bands and other diverting topological models. If they were to open any recent textbook in topology, they would be surprised. They would find page after page of symbols, seldom relieved by a picture or diagram." (Martin Gardner, "Hexaflexagons and Other Mathematical Diversions", 1988)

"Besides being essential in modern physics, the complex-number field provides pure mathematics with a multitude of brain-boggling theorems. It is worth keeping in mind that complex numbers, although they include the reals.as a subset, differ from real numbers in startling ways. One cannot, for example, speak of a complex number as being either positive or negative: those properties apply only to the reals and the pure imaginaries. It is equally meaningless to say that one complex number is larger or smaller than another." (Martin Gardner, "Fractal Music, Hypercards and More... Mathematical Recreations from Scientific American Magazine", 1992)

"The seemingly preposterous assumption that there is a square root of -1 was justified on pragmatic grounds: it simplified certain calculations and so could be used as long as 'real' values were obtained at the end. The parallel with the rules for using negative numbers is striking. If you are trying to determine how many cows there are in a field (that is, if you are working in the domain of positive integers), you may find negative numbers useful in the calculation, but of course the final answer must be in terms of positive numbers because there is no such thing as a negative cow." (Martin Gardner, "Fractal Music, Hypercards and More... Mathematical Recreations from Scientific American Magazine", 1992)

"I enjoy mathematics so much because it has a strange kind of unearthly beauty. There is a strong feeling of pleasure, hard to describe, in thinking through an elegant proof, and even greater pleasure in discovering a proof not previously known." (Martin Gardner, 2008)

"[…] if all sentient beings in the universe disappeared, there would remain a sense in which mathematical objects and theorems would continue to exist even though there would be no one around to write or talk about them. Huge prime numbers would continue to be prime, even if no one had proved them prime." (Martin Gardner, "When You Were a Tadpole and I Was a Fish", 2009)

"A surprising proportion of mathematicians are accomplished musicians. Is it because music and mathematics share patterns that are beautiful?" (Martin Gardner, The Dover Math and Science Newsletter, 2011)

"All mathematicians share […] a sense of amazement over the infinite depth and the mysterious beauty and usefulness of mathematics." (Martin Gardner)

"Mathematics is not only real, but it is the only reality. [The] entire universe is made of matter, obviously. And matter is made of particles. It's made of electrons and neutrons and protons. So the entire universe is made out of particles. Now what are the particles made out of? They're not made out of anything. The only thing you can say about the reality of an electron is to cite its mathematical properties. So there's a sense in which matter has completely dissolved and what is left is just a mathematical structure." (Martin Gardner)

"One would be hard put to find a set of whole numbers with a more fascinating history and more elegant properties surrounded by greater depths of mystery - and more totally useless - than the perfect numbers." (Martin Gardner)

"There are some traits all mathematicians share. An obvious one is a sense of amazement over the infinite depth and the mysterious beauty and usefulness of mathematics." (Martin Gardner)

04 July 2019

James J Sylvester - Collected Quotes

“Arithmetic has for its object the properties of number in the abstract. In algebra, viewed as a science of operations, order is the predominating idea. The business of geometry is with the evolution of the properties of space, or of bodies viewed as existing in space.” (James J Sylvester, “A Probationary Lecture on Geometry”, 1844)

"Partitions constitute the sphere in which analysis lives, moves, and has its being; and no power of language can exaggerate or paint too forcibly the importance of this till recently almost neglected, but vast, subtle, and universally permeating, element of algebraical thought and expression." (James J Sylvester, "On the Partition of Numbers", 1857)

“The world of ideas which it discloses or illuminates, the contemplation of divine beauty and order which it induces, the harmonious connexion of its parts, the infinite hierarchy and absolute evidence of the truths with which it is concerned, these, and such like, are the surest grounds of the title of mathematics to human regard, and would remain unimpeached and unimpaired were the plan of the universe unrolled like a map at our feet, and the mind of man qualified to take in the whole scheme of creation at a glance.” (James J Sylvester, “The Study That Knows Nothing of Observation”, 1869) 

"I think it would be desirable that this form of word [mathematics] should be reserved for the applications of the science, and that we should use mathematic in the singular to denote the science itself, in the same way as we speak of logic, rhetoric, or (own sister to algebra) music.” (James J Sylvester, Collected Mathematical Papers, 1869)

“It is the constant aim of the mathematician to reduce all his expressions to their lowest terms, to retrench every superfluous word and phrase, and to condense the Maximum of meaning into the Minimum of language.” (James J Sylvester, 1877)

“’Divide et impera’ is as true in algebra as in statecraft; but no less true and even more fertile is the maxim ‘auge et impera’. The more to do or to prove, the easier the doing or the proof.” (James J Sylvester, “Proof of the Fundamental Theorem of Invariants”, Philosophic Magazine, 1878)

“It always seems to me absurd to speak of a complete proof, or of a theorem being rigorously demonstrated. An incomplete proof is no proof, and a mathematical truth not rigorously demonstrated is not demonstrated at all.” (James J Sylvester, "On certain inequalities related to prime numbers", Nature Vol. 38, 1888)


"The world of ideas which it [mathematics] discloses or illuminates, the contemplation of divine beauty and order which it induces, the harmonious connection of its parts, the infinite hierarchy and absolute evidence of the truths with which mathematical science is concerned, these, and such like, are the surest groimds of its title of human regard, and would remain unimpaired were the plan of the universe unrolled like a map at our feet, and the mind of man qualified to take in the whole scheme of creation at a glance.” (James J Sylvester, "A Plea for the Mathematician", Nature, 1908)

"May not Music be described as the Mathematics of sense, and Mathematics as the Music of reason?” (James J Sylvester)

“No mathematician nowadays sets any store on the discovery of isolated theorems, except as affording hints of an unsuspected new sphere of thought, like meteorites detached from some undiscovered planetary orb of speculation.” (James J Sylvester)

“The existence of an odd perfect number – its escape, so to say, from the complex web of conditions which hem it in on all sides – would be little short of a miracle.” (James J Sylvester)

22 December 2018

On Numbers: Perfect Numbers I

“A perfect number is that which is equal to the sum of its own parts.” (Euclid, “Elements”, cca. 300 BC)

If as many numbers as we please beginning from a unit be set out continuously in double proportion, until the sum of all becomes a prime, and if the sum multiplied into the last make some number, the product will be perfect.” (Euclid, “Elements”, cca 300 BC)

Among simple even numbers, some are superabundant, others are deficient: these two classes are as two extremes opposed to one another; as for those that occupy the middle position between the two, they are said to be perfect. And those which are said to be opposite to each other, the superabundant and the deficient, are divided in their condition, which is inequality, into the too much and the too little.” (Nicomachus of Gerasa, “Introductio Arithmetica”, cca. 100 AD)

"There exists an elegant and sure method of generating these numbers, which does not leave out any perfect numbers and which does not include any that are not; and which is done in the following way. First set out in order the powers of two in a line, starting from unity, and proceeding as far as you wish: 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096; and then they must be totalled each time there is a new term, and at each totaling examine the result, if you find that it is prime and non-composite, you must multiply it by the quantity of the last term that you added to the line, and the product will always be perfect. If, otherwise, it is composite and not prime, do not multiply it, but add on the next term, and again examine the result, and if it is composite leave it aside, without multiplying it, and add on the next term. If, on the other hand, it is prime, and non-composite, you must multiply it by the last term taken for its composition, and the number that results will be perfect, and so on as far as infinity." (Nicomachus of Gerasa, “Introductio Arithmetica”, cca. 100 AD)

"Six is a number perfect in itself, and not because God created all things in six days; rather, the converse is true. God created all things in six days because the number is perfect." (Saint Augustine, "The City of God", 426 AD)

“We should not leave unmentioned the principal numbers […] those which are called ‘perfect numbers’. These have parts which are neither larger nor smaller than the number itself, such as the number six, whose parts, three, two, and one, add up to exactly the same sum as the number itself. For the same reason twenty-eight, four hundred ninety-six, and eight thousand one hundred twenty-eight are called perfect numbers.” (Hrotsvit of Gandersheim, “Sapientia”, 10th century)

"[…] I think I am able to prove that there are no even numbers which are perfect apart from those of Euclid; and that there are no odd perfect numbers, unless they are composed of a single prime number, multiplied by a square whose root is composed of several other prime number. But I can see nothing which would prevent one from finding numbers of this sort. For example, if 22021 were prime, in multiplying it by 9018009 which is a square whose root is composed of the prime numbers 3, 7, 11, 13, one would have 198585576189, which would be a perfect number. But, whatever method one might use, it would require a great deal of time to look for these numbers […]" (René Descartes, [a letter to Marin Mersenne] 1638)

“The existence of an odd perfect number – its escape, so to say, from the complex web of conditions which hem it in on all sides – would be little short of a miracle.” (James J Sylvester)

Previous Post <<||>> Next Post

Resources:
Wikipedia (2018) List of perfect numbers [Online] Available from: https://en.wikipedia.org/wiki/List_of_perfect_numbers

On Numbers: Odd and Even Numbers

“I can show you that the art of computation has to do with odd and even numbers in their numerical relations to themselves and to each other.” (Plato, “Charmides”, cca. 5 century BC)

“Uneven numbers are the god’s delight” (Virgil, “The Eclogues”, cca. 40 BC)

“Why do we believe that in all matters the odd numbers are more powerful […]?” (Pliny the Elder, “Natural History”, cca. 77-79 AD)

“Numbers are called prime which can be divided by no number; they are seen to be not ‘divisible’ by the monad but ‘composed’ of it: take, for example, the numbers live, seven, eleven, thirteen, seventeen, and others like them. No number can divide these numbers into integers. So, they are called `prime,' since they arise from no number and are not divisible into equal proportions. Arising in themselves, they beget other numbers from themselves, since even numbers are begotten from odd numbers, but an odd number cannot be begotten from even numbers. Therefore, prime numbers must of necessity be regarded as beautiful.” (Martianus Capella, cca. 400 AD)

“Number is divided into even and odd. Even number is divided into the following: evenly even, evenly uneven, and unevenly uneven. Odd number is divided into the following: prime and incomposite, composite, and a third intermediate class (mediocris) which in a certain way is prime and incomposite but in another way secondary and composite.” (Isidore of Seville, Etymologies, Book III, cca. 600)

“There is divinity in odd numbers, either in nativity, chance, or death.” (William Shakespeare, “The Merry Wives of Windsor”, 1602)

"For any number there exists a corresponding even number which is its double. Hence the number of all numbers is not greater than the number of even numbers, that is, the whole is not greater than the part." (Gottfried W Leibniz, “De Arte Combinatoria”, 1666)

“We know that there is an infinite, and we know not its nature. As we know it to be false that numbers are finite, it is therefore true that there is a numerical infinity. But we know not of what kind; it is untrue that it is even, untrue that it is odd; for the addition of a unit does not change its nature; yet it is a number, and every number is odd or even (this certainly holds of every finite number). Thus, we may quite well know that there is a God without knowing what He is.” (Blaise Pascal, “Pensées”, 1670)

03 November 2018

On Numbers: Prime Numbers V

“Since primes are the basic building blocks of the number universe from which all the other natural numbers are composed, each in its own unique combination, the perceived lack of order among them looked like a perplexing discrepancy in the otherwise so rigorously organized structure of the mathematical world.” (H Peter Aleff, “Prime Passages to Paradise”)

"The seeming absence of any ascertained organizing principle in the distribution or the succession of the primes had bedeviled mathematicians for centuries and given Number Theory much of its fascination. Here was a great mystery indeed, worthy of the most exalted intelligence: since the primes are the building blocks of the integers and the integers the basis of our logical understanding of the cosmos, how is it possible that their form is not determined by law? Why isn't 'divine geometry' apparent in their case?" (Apostolos Doxiadis, “Uncle Petros and Goldbach's Conjecture”, 2000)

“As archetypes of our representation of the world, numbers form, in the strongest sense, part of ourselves, to such an extent that it can legitimately be asked whether the subject of study of arithmetic is not the human mind itself. From this a strange fascination arises: how can it be that these numbers, which lie so deeply within ourselves, also give rise to such formidable enigmas? Among all these mysteries, that of the prime numbers is undoubtedly the most ancient and most resistant." (Gerald Tenenbaum & Michael M France, “The Prime Numbers and Their Distribution”, 2000)

“Prime numbers belong to an exclusive world of intellectual conceptions. We speak of those marvelous notions that enjoy simple, elegant description, yet lead to extreme - one might say unthinkable - complexity in the details. The basic notion of primality can be accessible to a child, yet no human mind harbors anything like a complete picture. In modern times, while theoreticians continue to grapple with the profundity of the prime numbers, vast toil and resources have been directed toward the computational aspect, the task of finding, characterizing, and applying the primes in other domains." (Richard Crandall & Carl Pomerance, “Prime Numbers: A Computational Perspective”, 2001)

"[Primes] are full of surprises and very mysterious […]. They are like things you can touch […] In mathematics most things are abstract, but I have some feeling that I can touch the primes, as if they are made of a really physical material. To me, the integers as a whole are like physical particles." (Yoichi Motohashi, “The Riemann Hypothesis: The Greatest Unsolved Problem in Mathematics”, 2002)

“The primes have tantalized mathematicians since the Greeks, because they appear to be somewhat randomly distributed but not completely so. […] Although the prime numbers are rigidly determined, they somehow feel like experimental data." (Timothy Gowers, “Mathematics: A Very Short Introduction”, 2002)

“Our world resonates with patterns. The waxing and waning of the moon. The changing of the seasons. The microscopic cell structure of all living things have patterns. Perhaps that explains our fascination with prime numbers which are uniquely without pattern. Prime numbers are among the most mysterious phenomena in mathematics.” (Manindra Agrawal, 2003)

“The beauty of mathematics is that clever arguments give answers to problems for which brute force is hopeless, but there is no guarantee that a clever argument always exists! We just saw a clever argument to prove that there are infinitely many primes, but we don't know any argument to prove that there are infinitely many pairs of twin primes.” (David Ruelle, “The Mathematician's Brain”, 2007)

 “Mathematicians call them twin primes: pairs of prime numbers that are close to each other, almost neighbors, but between them there is always an even number that prevents them from truly touching. […] If you go on counting, you discover that these pairs gradually become rarer, lost in that silent, measured space made only of ciphers. You develop a distressing presentiment that the pairs encountered up until that point were accidental, that solitude is the true destiny. Then, just when you’re about to surrender, you come across another pair of twins, clutching each other tightly.” (Paolo Giordano, “The Solitude of prime numbers”, 2008)

“[…] if all sentient beings in the universe disappeared, there would remain a sense in which mathematical objects and theorems would continue to exist even though there would be no one around to write or talk about them. Huge prime numbers would continue to be prime, even if no one had proved them prime.” (Martin Gardner, “When You Were a Tadpole and I Was a Fish”, 2009)

On Numbers: Prime Numbers IV

"The prime numbers are useful in analyzing problems concerning divisibility, and also are interesting in themselves because of some of the special properties which they possess as a class. These properties have fascinated mathematicians and others since ancient times, and the richness and beauty of the results of research in this field have been astonishing." (Carl H Denbow & Victor Goedicke, “Foundations of Mathematics”, 1959)

 “No branch of number theory is more saturated with mystery than the study of prime numbers: those exasperating, unruly integers that refuse to be divided evenly by any integers except themselves and 1. Some problems concerning primes are so simple that a child can understand them and yet so deep and far from solved that many mathematicians now suspect they have no solution. Perhaps they are 'undecideable'. Perhaps number theory, like quantum mechanics, has its own uncertainty principle that makes it necessary, in certain areas, to abandon exactness for probabilistic formulations." (Martin Gardner, "The remarkable lore of the prime numbers", Scientific American, 1964)

“There are two facts about the distribution of prime numbers of which I hope to convince you so overwhelmingly that they will be permanently engraved in your hearts. The first is that, despite their simple definition and role as the building blocks of the natural numbers, the prime numbers belong to the most arbitrary and ornery objects studied by mathematicians: they grow like weeds among the natural numbers, seeming to obey no other law than that of chance, and nobody can predict where the next one will sprout. The second fact is even more astonishing, for it states just the opposite: that the prime numbers exhibit stunning regularity, that there are laws governing their behaviour, and that they obey these laws with almost military precision.” (Don Zagier, “The First 50 Million Prime Numbers”, The Mathematical Intelligencer Vol. 0, 1977)


"Prime numbers have always fascinated mathematicians, professional and amateur alike. They appear among the integers, seemingly at random, and yet not quite: there seems to be some order or pattern, just a little below the surface, just a little out of reach." (Underwood Dudley, “Elementary Number Theory”, 1978)

“Prime numbers. It was all so neat and elegant. Numbers that refuse to cooperate, that don’t change or divide, numbers that remain themselves for all eternity.” (Paul Auster, “The Music of Chance”, 1990)

“If we imagine mathematics as a grand orchestra, the system of whole numbers could be likened to a bass drum: simple, direct, repetitive, providing the underlying rhythm for all the other instruments. There surely are more sophisticated concepts - the oboes and French horns and cellos of mathematics - and we examine some of these in later chapters. But whole numbers are always at the foundation.” (William Dunham, “The Mathematical Universe”, 1994)

"Prime numbers are the most basic objects in mathematics. They also are among the most mysterious, for after centuries of study, the structure of the set of prime numbers is still not well understood […]" (Andrew Granville, 1997)

"To some extent the beauty of number theory seems to be related to the contradiction between the simplicity of the integers and the complicated structure of the primes, their building blocks. This has always attracted people." (Andreas Knauf, "Number Theory, Dynamical Systems and Statistical Mechanics", 1998)

“Rather mathematicians like to look for patterns, and the primes probably offer the ultimate challenge. When you look at a list of them stretching off to infinity, they look chaotic, like weeds growing through an expanse of grass representing all numbers. For centuries mathematicians have striven to find rhyme and reason amongst this jumble. Is there any music that we can hear in this random noise? Is there a fast way to spot that a particular number is prime? Once you have one prime, how much further must you count before you find the next one on the list? These are the sort of questions that have tantalized generations.” (Marcus du Sautoy, “The Music of the Primes”, 1998)

Previous Post <<||>> Next Post

08 September 2018

On Numbers: Prime Numbers II

"The prime numbers are useful in analyzing problems concerning divisibility, and also are interesting in themselves because of some of the special properties which they possess as a class. These properties have fascinated mathematicians and others since ancient times, and the richness and beauty of the results of research in this field have been astonishing." (C H Denbow & V Goedicke, “Foundations of Mathematics”, 1959)

 “No branch of number theory is more saturated with mystery than the study of prime numbers: those exasperating, unruly integerst hat refuse to be divided evenly by any integers except themselves and 1. Some problems concerning primes are so simple that a child can understand them and yet so deep and far from solved that many mathematicians now suspect they have no solution. Perhaps they are ‘undecidable’. Perhaps number theory, like quantum mechanics, has its own uncertainty principle that makes it necessary, in certain areas, to abandon exactness for probabilistic formulations." (Martin Gardner, "The remarkable lore of the prime numbers", Scientific American, 1964)

“[…] there is no apparent reason why one number is prime and another not. To the contrary, upon looking at these numbers one has the feeling of being in the presence of one of the inexplicable secrets of creation.” (Don Zagier, “The First 50 Million Prime Numbers”, The Mathematical Intelligencer, Volume 0, 1977)

"Prime numbers have always fascinated mathematicians, professional and amateur alike. They appear among the integers, seemingly at random, and yet not quite: there seems to be some order or pattern, just a little below the surface, just a little out of reach." (Underwood Dudley, “Elementary Number Theory”, 1978)

"Some order begins to emerge from this chaos when the primes are considered not in their individuality but in the aggregate; one considers the social statistics of the primes and not the eccentricities of the individuals." (Philip J Davis & Reuben Hersh, “The Mathematical Experience”, 1981)

“Prime numbers. It was all so neat and elegant. Numbers that refuse to cooperate, that don’t change or divide, numbers that remain themselves for all eternity.” (Paul Auster, “The Music of Chance”, 1990) "It is evident that the primes are randomly distributed but, unfortunately, we don't know what 'random' means.'' (Rob C Vaughan, 1990)

“To me, that the distribution of prime numbers can be so accurately represented in a harmonic analysis is absolutely amazing and incredibly beautiful. It tells of an arcane music and a secret harmony composed by the prime numbers.” (Enrico Bombieri, ”PrimeTerritory", The Sciences, 1992)

"Prime numbers are the most basic objects in mathematics. They also are among the most mysterious, for after centuries of study, the structure of the set of prime numbers is still not well understood […]" (Andrew Granville, 1997)

"To some extent the beauty of number theory seems to be related to the contradiction between the simplicity of the integers and the complicated structure of the primes, their building blocks. This has always attracted people." (Andreas Knauf, "Number Theory, Dynamical Systems and Statistical Mechanics", 1998)

"Since they represent so natural a sequence, it is almost irresistible to search for patterns among the primes. There are however no genuinely useful formulas for prime numbers. That is to say there is no rule that allows you to generate all prime numbers or even to calculate a sequence that consists entirely of different primes." (Peter M Higgins, "Number Story: From Counting to Cryptography", 2008)

On Numbers: Prime Numbers III

“One of the remarkable aspects of the distribution of prime numbers is their tendency to exhibit global regularity and local irregularity. The prime numbers behave like the ‘ideal gases”’which physicists are so fond of. Considered from an external point of view, the distribution is - in broad terms - deterministic, but as soon as we try to describe the situation at a given point, statistical fluctuations occur as in a game of chance where it is known that on average the heads will match the tail but where, at any one moment, the next throw cannot be predicted.” (Gerald Tenenbaum & Michael M France, “The Prime Numbers and Their Distribution”, 2000)

“"As archetypes of our representation of the world, numbers form, in the strongest sense, part of ourselves, to such an extent that it can legitimately be asked whether the subject of study of arithmetic is not the human mind itself. From this a strange fascination arises: how can it be that these numbers, which lie so deeply within ourselves, also give rise to such formidable enigmas? Among all these mysteries, that of the prime numbers is undoubtedly the most ancient and most resistant." (Gerald Tenenbaum & Michael M France, “The Prime Numbers and Their Distribution”, 2000)

“Prime numbers belong to an exclusive world of intellectual conceptions. We speak of those marvelous notions that enjoy simple, elegant description, yet lead to extreme - one might say unthinkable - complexity in the details. The basic notion of primality can be accessible to a child, yet no human mind harbors anything like a complete picture. In modern times, while theoreticians continue to grapple with the profundity of the prime numbers, vast toil and resources have been directed toward the computational aspect, the task of finding, characterizing, and applying the primes in other domains." (Richard Crandall and Carl Pomerance, “PrimeNumbers: A Computational Perspective”, 2001)

“The primes have tantalized mathematicians since the Greeks, because they appear to be somewhat randomly distributed but not completely so."(Timothy Gowers, “Mathematics: A Very Short Introduction”, 2002)

“The beauty of mathematics is that clever arguments give answers to problems for which brute force is hopeless, but there is no guarantee that a clever argument always exists! We just saw a clever argument to prove that there are infinitely many primes, but we don't know any argument to prove that there are infinitely many pairs of twin primes.”  (David Ruelle, “The Mathematician's Brain”, 2007)

“Although the prime numbers are rigidly determined, they somehow feel like experimental data." Timothy Gowers, “Mathematics: A Very Short Introduction”, 2002)

“[Primes] are full of surprises and very mysterious […] They are like things you can touch. […][ In mathematics most things are abstract, but I have some feeling that I can touch the primes, as if they are made of a really physical material. To me, the integers as a whole are like physical particles.” (Yoichi Motohashi, “The Riemann Hypothesis: The Greatest Unsolved Problem in Mathematics”, 2002)

“[…] despite their apparent simplicity and fundamental character, prime numbers remain the most mysterious objects studied by mathematicians. In a subject dedicated to finding patterns and order, the primes offer the ultimate challenge.” (Marcus du Sautoy, “The Music of the Primes”, 2003)

“The primes have been a constant companion in our exploration of the mathematical world yet they remain the most enigmatic of all numbers. Despite the best efforts of the greatest mathematical minds to explain the modulation and transformation of this mystical music, the primes remain an unanswered riddle.” (Marcus du Sautoy, “The Music of the Primes”, 2003)
Related Posts Plugin for WordPress, Blogger...

On Leonhard Euler

"I have been able to solve a few problems of mathematical physics on which the greatest mathematicians since Euler have struggled in va...