Showing posts with label errors. Show all posts
Showing posts with label errors. Show all posts

27 June 2025

On Heuristics: Trial and Error in Mathematics

"It is common sense to take a method and try it. If it fails, admit it frankly and try another. But above all, try something." (Franklin D Roosevelt, Address at Oglethorpe University, 1932)

"The more difficult and novel the problem, the greater is likely to be the amount of trial and error required to find a solution. At the same time, the trial and error is not completely random or blind; it is, in fact, rather highly selective. The new expressions that are obtained by transforming given ones are examined to see whether they represent progress toward the goal. Indications of progress spur further search in the same direction; lack of progress signals the abandonment of a line of search. Problem solving requires selective trial and error." (Herbert A Simon, "The Sciences of the Artificial". 1969)

"We know the laws of trial and error, of large numbers and probabilities. We know that these laws are part of the mathematical and mechanical fabric of the universe, and that they are also at play in biological processes. But, in the name of the experimental method and out of our poor knowledge, are we really entitled to claim that everything happens by chance, to the exclusion of all other possibilities?" (Albert Claude, [Nobel Prize Lecture], 1974)

"Mathematics is not a deductive science - that’s a cliché. When you try to prove a theorem, you don’t just list the hypotheses, and then start to reason. What you do is trial and error, experimentation, guesswork." (Paul R Halmos, "I Want to Be A Mathematician", 1985)

"Heuristics are rules of thumb that help constrain the problem in certain ways (in other words they help you to avoid falling back on blind trial and error), but they don't guarantee that you will find a solution. Heuristics are often contrasted with algorithms that will guarantee that you find a solution - it may take forever, but if the problem is algorithmic you will get there. However, heuristics are also algorithms." (S Ian Robertson, "Problem Solving", 2001)

“Another feature of Bourbaki is that it rejects intuition of any kind. Bourbaki books tend not to contain explanations, examples, or heuristics. One of the main messages of the present book is that we record mathematics for posterity in a strictly rigorous, axiomatic fashion. This is the mathematician’s version of the reproducible experiment with control used by physicists and biologists and chemists. But we learn mathematics, we discover mathematics, we create mathematics using intuition and trial and error. We draw pictures. Certainly, we try things and twist things around and bend things to try to make them work. Unfortunately, Bourbaki does not teach any part of this latter process.” (Steven G Krantz, “The Proof is in the Pudding: The Changing Nature of Mathematical Proof”, 2010)

On Heuristics: Trial and Error in Technology

"Every detection of what is false directs us towards what is true: every trial exhausts some tempting form of error. Not only so; but scarcely any attempt is entirely a failure; scarcely any theory, the result of steady thought, is altogether false; no tempting form of error is without some latent charm derived from truth." (William Whewell, "Lectures on the History of Moral Philosophy in England", 1852)

"It is common sense to take a method and try it. If it fails, admit it frankly and try another. But above all, try something." (Franklin D Roosevelt, Address at Oglethorpe University, 1932)

"[...] human problem solving, from the most blundering to the most insightful, involves nothing more than varying mixtures of trial and error and selectivity."  (Herbert A Simon, "The Sciences of the Artificial". 1969)

"Whatever humans have learned had to be learned as a consequence only of trial and error experience. Humans have learned only through mistakes." (R Buckminster Fuller, "Intuition", 1983)

"The idea that no one really knew how to run a government led to the idea that we should arrange a system by which new ideas could be developed, tried out, and tossed out if necessary, with more new ideas brought in - a trial and error system." (Richard P Feynman, "What Do You Care What Other People Think". Book by Richard P. Feynman, 1988)

"Reinventing the wheel and getting it wrong is more valuable than nailing it first time. There are lessons learned from trial and error that have an emotional component to them that reading a technical book alone just cannot deliver!" (Jason P Sage, [in Kevlin Henney’s "97 Things Every Programmer Should Know", 2010])

"Technology is the result of antifragility, exploited by risk-takers in the form of tinkering and trial and error, with nerd-driven design confined to the backstage." (Nassim N Taleb, "Antifragile: Things that gain from disorder", 2012)

"Another crowning achievement of deep learning is its extension to the domain of reinforcement learning. In the context of reinforcement learning, an autonomous agent must learn to perform a task by trial and error, without any guidance from the human operator." (Ian Goodfellow et al, "Deep Learning", 2015)

26 June 2025

On Heuristics: Trial and Error in Biology

"Higher organisms are able to learn through trial and error how a certain problem should be solved. We may say that they too make testing movements - mental testings - and that to learn is essentially to tryout one testing movement after another until one is found that solves the problem. We might compare the animal's successful solution to an expectation and hence to a hypothesis or a theory. For the animal's behaviour shows us that it expects (perhaps unconsciously or dispositionally) that in a similar case the same testing movements will again solve the problem in question." (Karl R Popper, "The Logic and Evolution of Scientific Theory", [in "All Life is Problem Solving", 1999] 1972)

"The natural as well as the social sciences always start from problems, from the fact that something inspires amazement in us, as the Greek philosophers used to say. To solve these problems, the sciences use fundamentally the same method that common sense employs, the method of trial and error. To be more precise, it is the method of trying out solutions to our problem and then discarding the false ones as erroneous. This method assumes that we work with a large number of experimental solutions. One solution after another is put to the test and eliminated." (Karl R Popper, "The Logic and Evolution of Scientific Theory", [in "All Life is Problem Solving", 1999] 1972)

"Whatever the system, adaptive change depends upon feedback loops, be it those provided by natural selection or those of individual reinforcement. In all cases, then, there must be a process of trial and error and a mechanism of comparison. […] By superposing and interconnecting many feedback loops, we (and all other biological systems) not only solve particular problems but also form habits which we apply to the solution of classes of problems." (Gregory Bateson, "Steps to an Ecology of Mind", 1972)

"When we examine this suggestion, we see that it is no more than a formal acknowledgement of a problem, the problem of how (by what institutional arrangement, by what organization of affairs) the equilibrium prices are to be discovered. Repeated trial and error, while the market stands in suspense awaiting the outcome, is not a practical resort. The number of distinct trials, even if confined to discrete steps of price and quantity, would be so immense that the necessary 'market day' would extend beyond human life-times [... The] theoretical ideal applies to mutually isolated days or moments, each to be treated as perfectly self-contained and looking to no yesterday and no tomorrow. But the real market is dealing with goods inherited from yesterday, and in means of production whose products will not be ready till tomorrow. Meanwhile the non-economic circumstances are changing and rendering each successive equilibrium obsolete." (George L S Shackle, "Epistemics and Economics", 1972)

"We know the laws of trial and error, of large numbers and probabilities. We know that these laws are part of the mathematical and mechanical fabric of the universe, and that they are also at play in biological processes. But, in the name of the experimental method and out of our poor knowledge, are we really entitled to claim that everything happens by chance, to the exclusion of all other possibilities?" (Albert Claude, "The Coming Age of the Cell", Nobel Prize Lecture] 1974)

"Survival machines that can simulate the future are one jump ahead of survival machines that who can only learn of the basis of trial and error. The trouble with overt trial is that it takes time and energy. The trouble with overt error is that it is often fatal. [...] The evolution of the capacity to simulate seems to have culminated in subjective consciousness. Why this should have happened is, to me, the most profound mystery facing modern biology." (Richard Dawkins, "The Selfish Gene Source: The Selfish Gene", 1976)

"In the process of the evolution of life, as far as we know, the total mass of living matter has always been and is now increasing and growing more complex in its organization. To increase the complexity of the organization of biological forms, nature operates by trial and error. Existing forms are reproduced in many copies, but these are not identical to the original. Instead they differ from it by the presence of small random variations."  (Valentin F Turchin, "The Phenomenon of Science: A cybernetic approach to human evolution", 1977)

"I believe people can solve complex problems eventually. By repeated trial and error they will get there; but they need a long time. At this point I agree with Herbert Simon. People do not learn immediately, as those rational expectations models seem to imply. I don't believe that. The statement that assumptions do not matter is nonsense. It is funny. Yes, I assume people are consistent in their behavior. I assume that not because I believe everybody actually is, but because I believe, on the average, you do not get too far from it." (Franco Modigliani, "Conversations with Economists", 1983)

"Heuristics are rules of thumb that help constrain the problem in certain ways (in other words they help you to avoid falling back on blind trial and error), but they don't guarantee that you will find a solution. Heuristics are often contrasted with algorithms that will guarantee that you find a solution - it may take forever, but if the problem is algorithmic you will get there. However, heuristics are also algorithms." (S Ian Robertson, "Problem Solving", 2001)

25 June 2025

On Heuristics: Trial and Error in Science

"The one lesson that comes out of all our theorizing and experimenting is that there is only one really scientific progressive method; and that is the method of trial and error." (George B Shaw, "The Doctor's Dilemma: Preface on Doctors", 1909)

"There are many men now living who were in the habit of using the age-old expression: 'It is as impossible as flying.' The discoveries in physical science, the triumphs in invention, attest the value of the process of trial and error. In large measure, these advances have been due to experimentation." (Louis Brandeis, "Dissent, New State Ice Co. v. Liebmann, 285 U.S. 262", 1932)

"The discoveries in physical science, the triumphs in invention, attest the value of the process of trial and error. In large measure, these advances have been due to experimentation." (Louis Brandeis, "Judicial opinions", 1932)

"But I believe that there is no philosophical high-road in science, with epistemological signposts. No, we are in a jungle and find our way by trial and error, building our road behind us as we proceed. We do not find signposts at cross-roads, but our own scouts erect them, to help the rest." (Max Born, "Experiment and Theory in Physics", 1943)

"The method of learning by trial and error - of learning from our mistakes - seems to be fundamentally the same whether it is practised by lower or by higher animals, by chimpanzees or by men of science." (Karl Popper, "Conjectures and Refutations: The Growth of Scientific Knowledge", 1963)

"The difference between the amoeba and Einstein is that, although both make use of the method of trial and error elimination, the amoeba dislikes erring while Einstein is intrigued by it [...]" (Karl R Popper, "Objective Knowledge: An Evolutionary Approach", 1972) 

"Science progresses by trial and error, by conjectures and refutations. Only the fittest theories survive." (Alan Chalmers, "What Is This Thing Called Science?", 1976)

"The great revolutions in science are almost always the result of unexpected intuitive leaps. After all, what is science if not the posing of difficult puzzles by the universe? Mother Nature does something interesting, and challenges the scientist to figure out how she does it. In many cases the solution is not found by exhaustive trial and error […] or even by a deduction based on the relevant knowledge." (Martin Gardner, "Aha! Insight", 1978)

"I believe people can solve complex problems eventually. By repeated trial and error they will get there; but they need a long time. At this point I agree with Herbert Simon. People do not learn immediately, as those rational expectations models seem to imply. I don't believe that. The statement that assumptions do not matter is nonsense. It is funny. Yes, I assume people are consistent in their behavior. I assume that not because I believe everybody actually is, but because I believe, on the average, you do not get too far from it." (Franco Modigliani, "Conversations with Economists", 1983)

"Science usually amounts to a lot more than blind trial and error. Good statistics consists of much more than just significance tests; there are more sophisticated tools available for the analysis of results, such as confidence statements, multiple comparisons, and Bayesian analysis, to drop a few names. However, not all scientists are good statisticians, or want to be, and not all people who are called scientists by the media deserve to be so described." (Robert Hooke, "How to Tell the Liars from the Statisticians", 1983)

"Whatever humans have learned had to be learned as a consequence only of trial and error experience. Humans have learned only through mistakes." (R Buckminster Fuller, "Intuition", 1983)

"Growth is a process of experimentation, a series of trials, errors, and occasional victories. The failed experiments are as much as part of the process as the experiments that work." (Chérie Carter-Scott, "If Life Is a Game, These Are the Rules", 1998)

"The natural as well as the social sciences always start from problems, from the fact that something inspires amazement in us, as the Greek philosophers used to say. To solve these problems, the sciences use fundamentally the same method that common sense employs, the method of trial and error. To be more precise, it is the method of trying out solutions to our problem and then discarding the false ones as erroneous. This method assumes that we work with a large number of experimental solutions. One solution after another is put to the test and eliminated." (Karl R Popper, "All Life is Problem Solving", 1999)

"We can simplify the relationships between fragility, errors, and antifragility as follows. When you are fragile, you depend on things following the exact planned course, with as little deviation as possible - for deviations are more harmful than helpful. This is why the fragile needs to be very predictive in its approach, and, conversely, predictive systems cause fragility. When you want deviations, and you don’t care about the possible dispersion of outcomes that the future can bring, since most will be helpful, you are antifragile. Further, the random element in trial and error is not quite random, if it is carried out rationally, using error as a source of information. If every trial provides you with information about what does not work, you start zooming in on a solution - so every attempt becomes more valuable, more like an expense than an error. And of course you make discoveries along the way." (Nassim N Taleb, "Antifragile: Things that gain from disorder", 2012)

31 March 2025

On Mistakes, Blunders and Errors X: Data Science

"Measurement, we have seen, always has an element of error in it. The most exact description or prediction that a scientist can make is still only approximate." (Abraham Kaplan, "The Conduct of Inquiry: Methodology for Behavioral Science", 1964)

"[…] it is not enough to say: 'There's error in the data and therefore the study must be terribly dubious'. A good critic and data analyst must do more: he or she must also show how the error in the measurement or the analysis affects the inferences made on the basis of that data and analysis." (Edward R Tufte, "Data Analysis for Politics and Policy", 1974)

"Many scientists who work not just with noise but with probability make a common mistake: They assume that a bell curve is automatically Gauss's bell curve. Empirical tests with real data can often show that such an assumption is false. The result can be a noise model that grossly misrepresents the real noise pattern. It also favors a limited view of what counts as normal versus non-normal or abnormal behavior. This assumption is especially troubling when applied to human behavior. It can also lead one to dismiss extreme data as error when in fact the data is part of a pattern." (Bart Kosko, "Noise", 2006

"In bagging, generating complementary base-learners is left to chance and to the unstability of the learning method. In boosting, we actively try to generate complementary base-learners by training the next learner boosting on the mistakes of the previous learners." (Ethem Alpaydin, "Introduction to Machine Learning" 2nd Ed, 2010)

"When data is not normal, the reason the formulas are working is usually the central limit theorem. For large sample sizes, the formulas are producing parameter estimates that are approximately normal even when the data is not itself normal. The central limit theorem does make some assumptions and one is that the mean and variance of the population exist. Outliers in the data are evidence that these assumptions may not be true. Persistent outliers in the data, ones that are not errors and cannot be otherwise explained, suggest that the usual procedures based on the central limit theorem are not applicable." (DeWayne R Derryberry, "Basic data analysis for time series with R", 2014)

"There are two kinds of mistakes that an inappropriate inductive bias can lead to: underfitting and overfitting. Underfitting occurs when the prediction model selected by the algorithm is too simplistic to represent the underlying relationship in the dataset between the descriptive features and the target feature. Overfitting, by contrast, occurs when the prediction model selected by the algorithm is so complex that the model fits to the dataset too closely and becomes sensitive to noise in the data." (John D Kelleher et al, "Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies", 2015)

"[...] data often has some errors, outliers and other strange values, but these do not necessarily need to be individually identified and excluded. It also points to the benefits of using summary measures that are not unduly affected by odd observations [...] are known as robust measures, and include the median and the inter-quartile range." (David Spiegelhalter, "The Art of Statistics: Learning from Data", 2019)

"Statistical models have two main components. First, a mathematical formula that expresses a deterministic, predictable component, for example the fitted straight line that enables us to make a prediction [...]. But the deterministic part of a model is not going to be a perfect representation of the observed world [...] and the difference between what the model predicts, and what actually happens, is the second component of a model and is known as the residual error - although it is important to remember that in statistical modelling, ‘error’ does not refer to a mistake, but the inevitable inability of a model to exactly represent what we observe." (David Spiegelhalter, "The Art of Statistics: Learning from Data", 2019)

"There are many ways for error to creep into facts and figures that seem entirely straightforward. Quantities can be miscounted. Small samples can fail to accurately reflect the properties of the whole population. Procedures used to infer quantities from other information can be faulty. And then, of course, numbers can be total bullshit, fabricated out of whole cloth in an effort to confer credibility on an otherwise flimsy argument. We need to keep all of these things in mind when we look at quantitative claims. They say the data never lie - but we need to remember that the data often mislead." (Carl T Bergstrom & Jevin D West, "Calling Bullshit: The Art of Skepticism in a Data-Driven World", 2020)

On Mistakes, Blunders and Errors IX: Artificial Intelligence

"Because the subject matter of cybernetics is the propositional or informational aspect of the events and objects in the natural world, this science is forced to procedures rather different from those of the other sciences. The differentiation, for example, between map and territory, which the semanticists insist that scientists shall respect in their writings must, in cybernetics, be watched for in the very phenomena about which the scientist writes. Expectably, communicating organisms and badly programmed computers will mistake map for territory; and the language of the scientist must be able to cope with such anomalies." (Gregory Bateson, "Steps to an Ecology of Mind", 1972)

"To expect truth to come from thinking signifies that we mistake the need to think with the urge to know." (Hannah Arendt, "The Life of the Mind", 1977)

"There is a tendency to mistake data for wisdom, just as there has always been a tendency to confuse logic with values, intelligence with insight. Unobstructed access to facts can produce unlimited good only if it is matched by the desire and ability to find out what they mean and where they lead." (Norman Cousins, "Human Options : An Autobiographical Notebook", 1981)

"The other buzzword that epitomizes a bias toward substitution is 'big data'. Today’s companies have an insatiable appetite for data, mistakenly believing that more data always creates more value. But big data is usually dumb data. Computers can find patterns that elude humans, but they don’t know how to compare patterns from different sources or how to interpret complex behaviors. Actionable insights can only come from a human analyst (or the kind of generalized artificial intelligence that exists only in science fiction)." (Peter Thiel & Blake Masters, "Zero to One: Notes on Startups, or How to Build the Future", 2014)

"Artificial Intelligence is not just learning patterns from data, but understanding human emotions and its evolution from its depth and not just fulfilling the surface level human requirements, but sensitivity towards human pain, happiness, mistakes, sufferings and well-being of the society are the parts of the evolving new AI systems." (Amit Ray, "Compassionate Artificial Intelligence", 2018)

"There are two kinds of mistakes that an inappropriate inductive bias can lead to: underfitting and overfitting. Underfitting occurs when the prediction model selected by the algorithm is too simplistic to represent the underlying relationship in the dataset between the descriptive features and the target feature. Overfitting, by contrast, occurs when the prediction model selected by the algorithm is so complex that the model fits to the dataset too closely and becomes sensitive to noise in the data."(John D Kelleher et al, "Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies", 2015)

"The chief weakness of the machine is that it will not learn by its mistakes. The only way to improve its play is by improving the program. Some thought has been given to designing a program that would develop its own improvements in strategy with increasing experience in play. Although it appears to be theoretically possible, the methods thought of so far do not seem to be very practical. One possibility is to devise a program that would change the terms and coefficients involved in the evaluation function on the basis of the results of games the machine had already played. Small variations might be introduced in these terms, and the values would be selected to give the greatest percentage of wins." (Claude E Shannon)

On Mistakes, Blunders and Errors VIII: Physics

"In time they [physicists] hoped to devise a model which would reproduce all the phenomena of physics, and so make it possible to predict them all. […] To-day we not only have no perfect model, but we know that it is of no use to search for one - it could have no intelligible meaning for us. For we have found out that nature does not function in a way that can be made comprehensible to the human mind through models or pictures. […] Although we can never devise a pictorial representation which shall be both true to nature and intelligible to our minds, we may still be able to make partial aspects of the truth comprehensible through pictorial representations or parables. As the whole truth does not admit of intelligible representation, every such pictorial representation or parable must fail somewhere. The physicist of the last generation was continually making pictorial representations and parables, and also making the mistake of treating the half-truths of pictorial representations and parables as literal truths." (James H Jeans, "Physics and Philosophy" 3rd Ed., 1943)

"In physics it is usual to give alternative theoretical treatments of the same phenomenon. We construct different models for different purposes, with different equations to describe them. Which is the right model, which the 'true' set of equations? The question is a mistake. One model brings out some aspects of the phenomenon; a different model brings out others. Some equations give a rougher estimate for a quantity of interest, but are easier to solve. No single model serves all purposes best." (Nancy Cartwright, "How the Laws of Physics Lie", 1983)

"Our mistake is not that we take our theories too seriously, but that we do not take them seriously enough. It is always hard to realize that these numbers and equations we play with at our desks have something to do with the real world." (Steven Weinberg, "The First Three Minutes", 1977)

"In physics it is usual to give alternative theoretical treatments of the same phenomenon. We construct different models for different purposes, with different equations to describe them. Which is the right model, which the 'true' set of equations? The question is a mistake. One model brings out some aspects of the phenomenon; a different model brings out others. Some equations give a rougher estimate for a quantity of interest, but are easier to solve. No single model serves all purposes best." (Nancy Cartwright, "How the Laws of Physics Lie", 1983)

"It is a testimony to the power of education that classical mechanics could operate for so long under a mistaken conception. Teaching and research concentrated on integrable systems, each feeding the other, until in the end we had no longer the tools nor the interest for studying nonintegrable systems." (Ivar Ekeland, "The Best of All Possible Worlds", 2006)

“This is often the way it is in physics - our mistake is not that we take our theories too seriously, but that we do not take them seriously enough. It is always hard to realize that these numbers and equations we play with at our desks have something to do with the real world." (Heinrich Hertz)

"There is a fundamental error in separating the parts from the whole, the mistake of atomizing what should not be atomized. Unity and complementarity constitute reality." (Werner K Heisenberg)

30 March 2025

On Mistakes, Blunders and Errors VII: NLP

"Knowledge being to be had only of visible and certain truth, error is not a fault of our knowledge, but a mistake of our judgment, giving assent to that which is not true." (John Locke, "An Essay Concerning Human Understanding", 1689)

"Most mistakes in philosophy and logic occur because the human mind is apt to take the symbol for the reality." (Albert Einstein, "Cosmic Religion: With Other Opinions and Aphorisms", 1931)

"The most pervasive paradox of the human condition which we see is that the processes which allow us to survive, grow, change, and experience joy are the same processes which allow us to maintain an impoverished model of the world - our ability to manipulate symbols, that is, to create models. So the processes which allow us to accomplish the most extraordinary and unique human activities are the same processes which block our further growth if we commit the error of mistaking the model of the world for reality." (Richard Bandler & John Grinder, "The Structure of Magic", 1975)

"Since we have no systematic way to avoid all the inconsistencies of commonsense logic, each person must find his own way by building a private collection of 'cognitive censors' to suppress the kinds of mistakes he has discovered in the past." (Marvin Minsky, "Jokes and their Relation to the Cognitive Unconscious", 1980)

"All our language is composed of brief little dreams; and the wonderful thing is that we sometimes make of them strangely accurate and marvelously reasonable thoughts. […] What should we be without the help of that which does not exist? Very little. And our unoccupied minds would languish if fables, mistaken notions, abstractions, beliefs, and monsters, hypotheses, and the so-called problems of metaphysics did not people with beings and objectless images our natural depths and darkness. Myths are the souls of our actions and our loves. We cannot act without moving towards a phantom. We can love only what we create." (Paul Valéry, "The Outlook for Intelligence", 1962)

"To expect truth to come from thinking signifies that we mistake the need to think with the urge to know." (Hannah Arendt, "The Life of the Mind", 1977)

"To assume you know someone well enough that you can and do predict their behavior and mental perspective is a gross and often tragic mistake, for it eliminates that person's freedom to create his or her own opinion and drastically affects the emerging picture of the relationship." (Meredith L Young-Sowers, "Agartha: a journey to the stars", 1984) 

"Don't mistake a solution method for a problem definition - especially if it’s your own solution method." (Donald C Gause & Gerald M Weinberg, "Are Your Lights On?", 2011)

"Trust is fundamental to leading others into the dark, since trust enables fear to be 'actionable' as courage rather than actionable as anger. Since the bedrock of trust is faith that all will be OK within uncertainty, leaders’ fundamental role is to ultimately lead themselves. Research has found that successful leaders share three behavioral traits: they lead by example, admit their mistakes, and see positive qualities in others. All three are linked to spaces of play. Leading by example creates a space that is trusted - and without trust, there is no play. Admitting mistakes is to celebrate uncertainty. Seeing qualities in others is to encourage diversity." (Beau Lotto, "Deviate: The Science of Seeing Differently", 2017)

On Mistakes, Blunders and Errors VI: Mind

"Mathematical analysis is as extensive as nature itself; it defines all perceptible relations, measures times, spaces, forces, temperatures; this difficult science is formed slowly, but it preserves every principle which it has once acquired; it grows and strengthens itself incessantly in the midst of the many variations and errors of the human mind. It's chief attribute is clearness; it has no marks to express confused notations. It brings together phenomena the most diverse, and discovers the hidden analogies which unite them." (J B Joseph Fourier, "The Analytical Theory of Heat", 1822)

"It has often been said that, to make discoveries, one must be ignorant. This opinion, mistaken in itself, nevertheless conceals a truth. It means that it is better to know nothing than to keep in mind fixed ideas based on theories whose confirmation we constantly seek, neglecting meanwhile everything that fails to agree with them." (Claude Bernard, "An Introduction to the Study of Experimental Medicine", 1865)

"All experience attests the strength of the tendency to mistake mental abstractions, even negative ones, for substantive realities; and the Permanent Possibilities of sensation which experience guarantees arc so extremely unlike in many of their properties to actual sensations, that since we are capable of imagining something which transcends sensations, there is a great natural probability that we should suppose these to be it." (Hippolyte Taine, "On intelligence", 1871)

"Perfect readiness to reject a theory inconsistent with fact is a primary requisite of the philosophic mind. But it, would be a mistake to suppose that this candour has anything akin to fickleness; on the contrary, readiness to reject a false theory may be combined with a peculiar pertinacity and courage in maintaining an hypothesis as long as its falsity is not actually apparent. (William S Jevons, "The Principles of Science", 1874)

"Most mistakes in philosophy and logic occur because the human mind is apt to take the symbol for the reality." (Albert Einstein, "Cosmic Religion: With Other Opinions and Aphorisms", 1931)

"Since we have no systematic way to avoid all the inconsistencies of commonsense logic, each person must find his own way by building a private collection of 'cognitive censors' to suppress the kinds of mistakes he has discovered in the past." (Marvin Minsky, "Jokes and their Relation to the Cognitive Unconscious", 1980)

"There exists, if I am not mistaken, an entire world which is the totality of mathematical truths, to which we have access only with our mind, just as a world of physical reality exists, the one like the other independent of ourselves, both of divine creation." (Charles Hermite, The Mathematical Intelligencer, Vol. 5, No. 4, 1983)

"In specific cases, we think by applying mental rules, which are similar to rules in computer programs. In most of the cases, however, we reason by constructing, inspecting, and manipulating mental models. These models and the processes that manipulate them are the basis of our competence to reason. In general, it is believed that humans have the competence to perform such inferences error-free. Errors do occur, however, because reasoning performance is limited by capacities of the cognitive system, misunderstanding of the premises, ambiguity of problems, and motivational factors. Moreover, background knowledge can significantly influence our reasoning performance. This influence can either be facilitation or an impedance of the reasoning process." (Carsten Held et al, "Mental Models and the Mind", 2006)

"A border is a completely imaginary line on a paper or cybernetic map that has no genuine counterpart in the real world. Do not mistake it for a property line. It is possible, in some instances, for a border to be congruent with a property line, but they are not the same thing at all. One represents the geographical limit of a military and political claim to authority over a given territory. The other is part of the description of something - in this case, land - lawfully owned by an individual or a voluntary and contractual association of individuals." (L Neil Smith, "Only Nixon", 2010)

"The human mind delights in finding pattern - so much so that we often mistake coincidence or forced analogy for profound meaning. No other habit of thought lies so deeply within the soul of a small creature trying to make sense of a complex world not constructed for it." (Stephen J Gould, "The Flamingo's Smile: Reflections in Natural History", 2010)

"Mental models represent possibilities, and the theory of mental models postulates three systems of mental processes underlying inference: (0) the construction of an intensional representation of a premise’s meaning – a process guided by a parser; (1) the building of an initial mental model from the intension, and the drawing of a conclusion based on heuristics and the model; and (2) on some occasions, the search for alternative models, such as a counterexample in which the conclusion is false. System 0 is linguistic, and it may be autonomous. System 1 is rapid and prone to systematic errors, because it makes no use of a working memory for intermediate results. System 2 has access to working memory, and so it can carry out recursive processes, such as the construction of alternative models." (Sangeet Khemlania & P.N. Johnson-Laird, "The processes of inference", Argument and Computation, 2012)

On Mistakes, Blunders and Errors IV: Systems Thinking

"Because the subject matter of cybernetics is the propositional or informational aspect of the events and objects in the natural world, this science is forced to procedures rather different from those of the other sciences. The differentiation, for example, between map and territory, which the semanticists insist that scientists shall respect in their writings must, in cybernetics, be watched for in the very phenomena about which the scientist writes. Expectably, communicating organisms and badly programmed computers will mistake map for territory; and the language of the scientist must be able to cope with such anomalies." (Gregory Bateson, "Steps to an Ecology of Mind", 1972)

"However, and conversely, our models fall far short of representing the world fully. That is why we make mistakes and why we are regularly surprised. In our heads, we can keep track of only a few variables at one time. We often draw illogical conclusions from accurate assumptions, or logical conclusions from inaccurate assumptions. Most of us, for instance, are surprised by the amount of growth an exponential process can generate. Few of us can intuit how to damp oscillations in a complex system." (Donella H Meadows, "Limits to Growth", 1972)

"[...] the influence of a single butterfly is not only a fine detail-it is confined to a small volume. Some of the numerical methods which seem to be well adapted for examining the intensification of errors are not suitable for studying the dispersion of errors from restricted to unrestricted regions. One hypothesis, unconfirmed, is that the influence of a butterfly's wings will spread in turbulent air, but not in calm air." (Edward N Lorenz, [talk] 1972)

"A diverse community is a resilient community, capable of adapting to changing situations. However, diversity is a strategic advantage only if there is a truly vibrant community, sustained by a web of relationships. If the community is fragmented into isolated groups and individuals, diversity can easily become a source of prejudice and friction. But if the community is aware of the interdependence of all its members, diversity will enrich all the relationships and thus enrich the community as a whole, as well as each individual member. In such a community information and ideas flow freely through the entire network, and the diversity of interpretations and learning styles-even the diversity of mistakes-will enrich the entire community." (Humberto Maturana & Francisco J Varela, "The Tree of Knowledge", 1987)

"It is important to emphasize the value of simplicity and elegance, for complexity has a way of compounding difficulties and as we have seen, creating mistakes. My definition of elegance is the achievement of a given functionality with a minimum of mechanism and a maximum of clarity." (Fernando J Corbató, "On Building Systems That Will Fail", 1991)

"A model for simulating dynamic system behavior requires formal policy descriptions to specify how individual decisions are to be made. Flows of information are continuously converted into decisions and actions. No plea about the inadequacy of our understanding of the decision-making processes can excuse us from estimating decision-making criteria. To omit a decision point is to deny its presence - a mistake of far greater magnitude than any errors in our best estimate of the process." (Jay W Forrester, "Policies, decisions and information sources for modeling", 1994)

"This distinction is familiar in natural science, where one is not expected to mistake, say, the cardiovascular system for the circulation of the blood or the brain with mental processes. But it is unusual in social studies. [...] Mechanism is to system as motion is to body, combination (or dissociation) to chemical compound, and thinking to brain. [In the systemic view], agency is both constrained and motivated by structure, and in turn the latter is maintained or altered by individual action. In other words, social mechanisms reside neither in persons nor in their environment – they are part of the processes that unfold in or among social systems. […] All mechanisms are system-specific: there is no such thing as a universal or substrate-neutral mechanism." (Mario Bunge, "The Sociology-philosophy Connection", 1999)

"A depressing corollary of the butterfly effect (or so it was widely believed) was that two chaotic systems could never synchronize with each other. Even if you took great pains to start them the same way, there would always be some infinitesimal difference in their initial states. Normally that small discrepancy would remain small for a long time, but in a chaotic system, the error cascades and feeds on itself so swiftly that the systems diverge almost immediately, destroying the synchronization. Unfortunately, it seemed, two of the most vibrant branches of nonlinear science - chaos and sync - could never be married. They were fundamentally incompatible." (Steven Strogatz, "Sync: The Emerging Science of Spontaneous Order", 2003)

"Adaptive systems learn by enlightened trial and error. The system can take a long time to learn well just as it can take a human a long time to learn to properly swing a golf club even with the help of the best golf instructor. But this iterative learning can also produce solutions that we could not find or at least could not find easily by pure mathematical analysis." (Bart Kosko, "Noise", 2006)

"We forget - or we willfully ignore - that our models are simplifications of the world. We figure that if we make a mistake, it will be at the margin. In complex systems, however, mistakes are not measured in degrees but in whole orders of magnitude." (Nate Silver, "The Signal and the Noise: Why So Many Predictions Fail-but Some Don't", 2012)

"[…] humans make mistakes when they try to count large numbers in complicated systems. They make even greater errors when they attempt - as they always do - to reduce complicated systems to simple numbers." (Zachary Karabell, "The Leading Indicators: A short history of the numbers that rule our world", 2014)

"With a linear growth of errors, improving the measurements could always keep pace with the desire for longer prediction. But when errors grow exponentially fast, a system is said to have sensitive dependence on its initial conditions. Then long-term prediction becomes impossible. This is the philosophically disturbing message of chaos." (Steven H Strogatz, "Infinite Powers: The Story of Calculus - The Most Important Discovery in Mathematics", 2019)

On Mistakes, Blunders and Errors III: Mathematics

"Many errors, of a truth, consist merely in the application of the wrong names of things. For if a man says that the lines which are drawn from the centre of the circle to the circumference are not equal, he understands by the circle, at all events for the time, something else than mathematicians understand by it." (Baruch Spinoza, "Ethics", Book I, 1677)

"The mathematicians have been very much absorbed with finding the general solution of algebraic equations, and several of them have tried to prove the impossibility of it. However, if I am not mistaken, they have not as yet succeeded. I therefore dare hope that the mathematicians will receive this memoir with good will, for its purpose is to fill this gap in the theory of algebraic equations." (Niels H Abel, "Memoir on algebraic equations, proving the impossibility of a solution of the general equation of the fifth degree", 1824)

"The man of science, who, forgetting the limits of philosophical inquiry, slides from these formulæ and symbols into what is commonly understood by materialism, seems to me to place himself on a level with the mathematician, who should mistake the x's and y's with which he works his problems for real entities - and with this further disadvantage, as compared with the mathematician, that the blunders of the latter are of no practical consequence, while the errors of systematic materialism may paralyse the energies and destroy the beauty of a life." (Thomas H Huxley, "Method and Results", 1893)

"The mathematical formula is the point through which all the light gained by science passes in order to be of use to practice; it is also the point in which all knowledge gained by practice, experiment, and observation must be concentrated before it can be scientifically grasped. The more distant and marked the point, the more concentrated will be the light coming from it, the more unmistakable the insight conveyed. All scientific thought, from the simple gravitation formula of Newton, through the more complicated formulae of physics and chemistry, the vaguer so called laws of organic and animated nature, down to the uncertain statements of psychology and the data of our social and historical knowledge, alike partakes of this characteristic, that it is an attempt to gather up the scattered rays of light, the different parts of knowledge, in a focus, from whence it can be again spread out and analyzed, according to the abstract processes of the thinking mind. But only when this can be done with a mathematical precision and accuracy is the image sharp and well-defined, and the deductions clear and unmistakable. As we descend from the mechanical, through the physical, chemical, and biological, to the mental, moral, and social sciences, the process of focalization becomes less and less perfect, - the sharp point, the focus, is replaced by a larger or smaller circle, the contours of the image become less and less distinct, and with the possible light which we gain there is mingled much darkness, the sources of many mistakes and errors. But the tendency of all scientific thought is toward clearer and clearer definition; it lies in the direction of a more and more extended use of mathematical measurements, of mathematical formulae." (John T Merz, "History of European Thought in the 19th Century" Vol. 1, 1904)

"The belief that mathematics, because it is abstract, because it is static and cold and gray, is detached from life, is a mistaken belief. Mathematics, even in its purest and most abstract estate, is not detached from life. It is just the ideal handling of the problems of life, as sculpture may idealize a human figure or as poetry or painting may idealize a figure or a scene. Mathematics is precisely the ideal handling of the problems of life, and the central ideas of the science, the great concepts about which its stately doctrines have been built up, are precisely the chief ideas with which life must always deal and which, as it tumbles and rolls about them through time and space, give it its interests and problems, and its order and rationality." (Cassius J Keyser,"The Humanization of the Teaching of Mathematics", 1912)

"The mistake from which todays’ science suffers is that the theoreticians are concerned too unilaterally with precision mathematics, while the practitioners use a sort of approximate mathematics, without being in touch with precision mathematics through which they could reach a real approximation mathematics." (Felix Klein, "Elementary Mathematics from a Higher Standpoint" Vol III: "Precision Mathematics and Approximation Mathematics", 1928)

"The mistakes and unresolved difficulties of the past in mathematics have always been the opportunities of its future; and should analysis ever appear to be without or blemish, its perfection might only be that of death." (Eric T Bell, "The Development of Mathematics", 1940)

"But, really, mathematics is not religion; it cannot be founded on faith. And what was most important, the methods yielding such remarkable results in the hands of the great masters began to lead to errors and paradoxes when employed by their less talented students. The masters were kept from error by their perfect mathematical intuition, that subconscious feeling that often leads to the right answer more quickly than lengthy logical reasoning. But the students did not possess this intuition […]" (Naum Ya. Vilenkin, "Stories about Sets", 1968)

"Now a mathematician has a matchless advantage over general scientists, historians, politicians, and exponents of other professions: He can be wrong. A fortiori, he can also be right. [...] A mistake made by a mathematician, even a great one, is not a 'difference of a point of view' or 'another interpretation of the data' or a 'dictate of a conflicting ideology', it is a mistake. The greatest of all mathematicians, those who have discovered the greatest quantities of mathematical truths, are also those who have published the greatest numbers of lacunary proofs, insufficiently qualified assertions, and flat mistakes." (Clifford Truesdell, "Late Baroque Mechanics to Success, Conjecture, Error, and Failure in Newton's Principia" [in "Essays in the History of Mechanics"], 1968)

"The mistakes made by a great mathematician are of two kinds: first, trivial slips that anyone can correct, and, second, titanic failures reflecting the scale of the struggle which the great mathematician waged. Failures of this latter kind are often as important as successes, for they give rise to major discoveries by other mathematicians. One error of a great mathematician has often done more for science than a hundred impeccable little theorems proved by lesser men." (Clifford Truesdell, "Late Baroque Mechanics to Success, Conjecture, Error, and Failure in Newton's Principia" [in "Essays in the History of Mechanics"], 1968)

"Our mistake is not that we take our theories too seriously, but that we do not take them seriously enough. It is always hard to realize that these numbers and equations we play with at our desks have something to do with the real world." (Steven Weinberg, "The First Three Minutes", 1977)

"Is catastrophe theory correct? In its mathematics, yes; in the natural philosophy that inspired it and the scientific applications that flow from it, the only possible answer is that it's too soon to say. There is always a chance of error whenever we try to capture any aspect of reality in mathematical symbols, and another chance of error when (after working with the symbols) we use them to generate descriptions or predictions of reality." (Alexander Woodcock & Monte Davis, "Catastrophe Theory", 1978)

"Mathematics is not a branch of aesthetics. The mistake, which is common enough, probably stems from the requirement of aesthetic unity but is not identical with that unity." (J K Feibleman,"Assumptions of Grand Logics", 1979)

"Because mathematical proofs are long, they are also difficult to invent. One has to construct, without making any mistakes, long chains of assertions, and see what one is doing, see where one is going. To see means to be able to guess what is true and what is false, what is useful and what is not. To see means to have a feeling for which definitions one should introduce, and what the key assertions are that will allow one to develop a theory in a natural manner." (David Ruelle, "Chance and Chaos", 1991)

"There are two kinds of mistakes. There are fatal mistakes that destroy a theory; but there are also contingent ones, which are useful in testing the stability of a theory." (Gian-Carlo Rota, [lecture] 1996)

"So, when trying to solve a problem in mathematics we have to watch out for subtle mistakes, otherwise, we can easily get the wrong solution." (David Acheson, "1089 and All That: A Journey into Mathematics", 2002)

"Mathematics is about truth: discovering the truth, knowing the truth, and communicating the truth to others. It would be a great mistake to discuss mathematics without talking about its relation to the truth, for truth is the essence of mathematics. In its search for the purity of truth, mathematics has developed its own language and methodologies - its own way of paring down reality to an inner essence and capturing that essence in subtle patterns of thought. Mathematics is a way of using the mind with the goal of knowing the truth, that is, of obtaining certainty." (William Byers, "How Mathematicians Think", 2007)

"One mistake that students commonly make early on is that they assume that, in a topological space, any set is either open or closed. This is like meeting a blonde person and a brunette and assuming therefore that all people are either blonde or brunette. [...] It is in fact possible for a set to be both open and closed." (Steven G Krantz, "Essentials of Topology with Applications”, 2009)

"In mathematics, two angles that are said to coincide fit together perfectly. The word 'coincidence' does not describe luck or mistakes. It describes that which fits together perfectly." (Wayne Dyer, "The Essential Wayne Dyer Collection", 2013)

"The problem of teaching is the problem of introducing concepts and conceptual systems. In this crucial task the procedures of formal mathematical argument are of little value. The way we reason in formal mathematics is itself a conceptual system - deductive logic - but it is a huge mistake to identify this with mathematics. [...] Mathematics lives in its concepts and conceptual systems, which need to be explicitly addressed in the teaching of mathematics." (William Byers, "Deep Thinking: What Mathematics Can Teach Us About the Mind", 2015)

On Mistakes, Blunders and Errors XIII: Science

"Knowledge being to be had only of visible and certain truth, error is not a fault of our knowledge, but a mistake of our judgment, giving assent to that which is not true." (John Locke, "An Essay Concerning Human Understanding", 1689)

"Assert nothing till after repeated experiments and examinations, in all lights, and in all positions. Truth alone is the matter that you are in search after; and if you have been mistaken, let not vanity seduce you to persist in your mistake." (Henry Baker, "The Microscope Made Easy", 1742)

"The only method of preventing such errors from taking place, and of correcting them when formed, is to restrain and simplify our reasoning as much as possible. This depends entirely upon ourselves, and the neglect of it is the only source of our mistakes." (Antoine-Laurent de Lavoisier, "Elements of Chemistry in a New Systematic Order", 1790)

"Hypotheses are scaffoldings erected in front of a building and then dismantled when the building is finished. They are indispensable for the workman; but you mustn't mistake the scaffolding for the building." (Johann Wolfgang von Goethe, "Maxims and Reflections", 1833) 

"Experimental science hardly ever affords us more than approximations to truth; and whenever many agents are concerned we are in great danger of being mistaken." (Sir Humphry Davy, cca. 1836)

"We learn wisdom from failure much more than from success. We often discover what will do, by finding out what will not do; and probably he who never made a mistake never made a discovery." (Samuel Smiles, "Facilities and Difficulties", 1859)

"It has often been said that, to make discoveries, one must be ignorant. This opinion, mistaken in itself, nevertheless conceals a truth. It means that it is better to know nothing than to keep in mind fixed ideas based on theories whose confirmation we constantly seek, neglecting meanwhile everything that fails to agree with them." (Claude Bernard, "An Introduction to the Study of Experimental Medicine", 1865)

"It is surprising to learn the number of causes of error which enter into the simplest experiment, when we strive to attain rigid accuracy." (William S Jevons, "The Principles of Science: A Treatise on Logic and Scientific Method", 1874)

"Perfect readiness to reject a theory inconsistent with fact is a primary requisite of the philosophic mind. But it, would be a mistake to suppose that this candour has anything akin to fickleness; on the contrary, readiness to reject a false theory may be combined with a peculiar pertinacity and courage in maintaining an hypothesis as long as its falsity is not actually apparent. (William S Jevons, "The Principles of Science", 1874)

"There cannot be a greater mistake than that of looking superciliously upon the practical applications of science. The life and soul of science is its practical application; and just as the great advances in mathematics have been made through the desire of discovering the solution of problems which were of a highly practical kind in mathematical science, so in physical science many of the greatest advances that have been made from the beginning of the world to the present time have been made in earnest desire to turn the knowledge of the properties of matter to some purpose useful to mankind." (William T Kelvin, "Electrical Units of Measurement", 1883)

"It sounds paradoxical to say the attainment of scientific truth has been effected, to a great extent, by the help of scientific errors." (Thomas H Huxley, "The Progress of Science", 1887)

"The man of science, who, forgetting the limits of philosophical inquiry, slides from these formulæ and symbols into what is commonly understood by materialism, seems to me to place himself on a level with the mathematician, who should mistake the x's and y's with which he works his problems for real entities - and with this further disadvantage, as compared with the mathematician, that the blunders of the latter are of no practical consequence, while the errors of systematic materialism may paralyse the energies and destroy the beauty of a life." (Thomas H Huxley, "Method and Results", 1893)

"The scientific spirit is of more value than its products, and irrationally held truths may be more harmful than reasoned errors." (Thomas H Huxley, "Darwiniana", 1893–94)

"The folly of mistaking a paradox for a discovery, a metaphor for a proof, a torrent of verbiage for a spring of capital truths, and oneself for an oracle, is inborn in us." (Paul Valéry, "Introduction to the Method of Leonardo da Vinci", 1895)

"It is a great mistake to suppose that the mind of the active scientist is filled with pro-positions which, if not proved beyond all reasonable cavil, are at least extremely probable. On the contrary, he entertains hypotheses which are almost wildly incredible, and treats them with respect for the time being. Why does he do this? Simply because any scientific proposition whatever is always liable to be refuted and dropped at short notice. A hypothesis is something which looks as if it might be true and were true, and which is capable of verification or refutation by comparison with facts. The best hypothesis, in the sense of the one most recommending itself to the inquirer, is the one which can be the most readily refuted if it is false." (Charles S Peirce, 1896)

"The scientific value of truth is not, however, ultimate or absolute. It rests partly on practical, partly on aesthetic interests. As our ideas are gradually brought into conformity with the facts by the painful process of selection, - for intuition runs equally into truth and into error, and can settle nothing if not controlled by experience, - we gain vastly in our command over our environment. This is the fundamental value of natural science" (George Santayana, "The Sense of Beauty: Being the Outlines of Aesthetic Theory", 1896)

"It would be a mistake to suppose that a science consists entirely of strictly proved theses, and it would be unjust to require this. […] Science has only a few apodeictic propositions in its catechism: the rest are assertions promoted by it to some particular degree of probability. It is actually a sign of a scientific mode of thought to find satisfaction in these approximations to certainty and to be able to pursue constructive work further in spite of the absence of final confirmation." (Sigmund Freud, "Introductory Lectures on Psycho-Analysis", 1916)

"The mistake from which todays’ science suffers is that the theoreticians are concerned too unilaterally with precision mathematics, while the practitioners use a sort of approximate mathematics, without being in touch with precision mathematics through which they could reach a real approximation mathematics." (Felix Klein, "Elementary Mathematics from a Higher Standpoint" Vol III: "Precision Mathematics and Approximation Mathematics", 1928)

"More than any other science, mathematics develops through a sequence of consecutive abstractions. A desire to avoid mistakes forces mathematicians to find and isolate the essence of problems and the entities considered. Carried to an extreme, this procedure justifies the well-known joke that a mathematician is a scientist who knows neither what he is talking about nor whether whatever he is talking about exists or not." (Élie Cartan, 1940) 

"Men of science have made abundant mistakes of every kind; their knowledge has improved only because of their gradual abandonment of ancient errors, poor approximations, and premature conclusions." (George Sarton, "A History of Science" Vol 2, 1952)

"Nature is more subtle, more deeply intertwined and more strangely integrated than any of our pictures of her - than any of our errors. It is not merely that our pictures are not full enough; each of our pictures in the end turns out to be so basically mistaken that the marvel is that it worked at all." (Jacob Bronowski, "The Common Sense of Science", 1953) 

"Men of science have made abundant mistakes of every kind; their knowledge has improved only because of their gradual abandonment of ancient errors, poor approximations, and premature conclusions." (George Sarton, "A History of Science" Vol. 2, 1959)

"[…] the progress of science is a little like making a jig-saw puzzle. One makes collections of pieces which certainly fit together, though at first it is not clear where each group should come in the picture as a whole, and if at first one makes a mistake in placing it, this can be corrected later without dismantling the whole group." (Sir George Thomson, "The Inspiration of Science", 1961)

"All discoveries in art and science result from an accumulation of errors." (Marshall McLuhan, "Culture Is Our Business", 1970)

"Early scientific thinking was holistic, but speculative - the modern scientific temper reacted by being empirical, but atomistic. Neither is free from error, the former because it replaces factual inquiry with faith and insight, and the latter because it sacrifices coherence at the altar of facticity. We witness today another shift in ways of thinking: the shift toward rigorous but holistic theories. This means thinking in terms of facts and events in the context of wholes, forming integrated sets with their own properties and relationships." (Ervin László, "Introduction to Systems Philosophy", 1972)

"The point is that every experiment involves an error, the magnitude of which is not known beforehand and it varies from one experiment to another. For this reason, no matter what finite number of experiments have been carried out, the arithmetic mean of the values obtained will contain an error. Of course, if the experiments are conducted under identical conditions and the errors are random errors, then the error of the mean will diminish as the number of experiments is increased, but it cannot be reduced to zero for a finite number of experiments. […] The choice of entities for an experiment must be perfectly random, so that even an apparently inessential cause could not lead to erroneous conclusions." (Yakov Khurgin, "Did You Say Mathematics?", 1974)

"[…] in most sciences the question Why? is forbidden and the answer is actually to the question, How? Science is much better in explaining than in understanding, but it likes to mistake one for the other." (Erwin Chargaff, "Voices in the Labyrinth", Perspectives in Biology and Medicine Vol. 18, 1975)

"Early scientific thinking was holistic, but speculative - the modern scientific temper reacted by being empirical, but atomistic. Neither is free from error, the former because it replaces factual inquiry with faith and insight, and the latter because it sacrifices coherence at the altar of facticity. We witness today another shift in ways of thinking: the shift toward rigorous but holistic theories. This means thinking in terms of facts and events in the context of wholes, forming integrated sets with their own properties and relationships." (Ervin László, "Introduction to Systems Philosophy", 1972)

"Whatever humans have learned had to be learned as a consequence only of trial and error experience. Humans have learned only through mistakes." (Buckminster Fuller, "R Buckminster Fuller on education", 1979)

"What shows a theory to be inadequate or mistaken is not, as a rule, the discovery of a mistake in the information that led us to propound it; more often it is the contradictory evidence of a new observation which we were led to make because we held that theory." (Sir Peter B Medawar, "Pluto’s Republic: Incorporating the Art of the Soluble and Induction Intuition in Scientific Thought", 1982)

"Science usually amounts to a lot more than blind trial and error. Good statistics consists of much more than just significance tests; there are more sophisticated tools available for the analysis of results, such as confidence statements, multiple comparisons, and Bayesian analysis, to drop a few names. However, not all scientists are good statisticians, or want to be, and not all people who are called scientists by the media deserve to be so described." (Robert Hooke, "How to Tell the Liars from the Statisticians", 1983)

"[...] we learn only through trial and error. Our trials, however, are always our hypotheses. They stem from us, not from the external world. All we learn from the external world is that some of our efforts are mistaken." (Karl R Popper, "The Epistemological Position of Evolutionary Epistemology", [in "All Life is Problem Solving", 1999] 1987)

"Humans may crave absolute certainty; they may aspire to it; they may pretend, as partisans of certain religions do, to have attained it. But the history of science - by far the most successful claim to knowledge accessible to humans - teaches that the most we can hope for is successive improvement in our understanding, learning from our mistakes, an asymptotic approach to the Universe, but with the proviso that absolute certainty will always elude us. We will always be mired in error. The most each generation can hope for is to reduce the error bars a little, and to add to the body of data to which error bars apply." (Carl Sagan, "The Demon-Haunted World: Science as a Candle in the Dark", 1995)

"It is important to distinguish between the scientific concept of law as a generalization, and the social concept of law which is prescriptive and normative. A desire for tolerance in respecting the laws of different social systems must not lead us into the mistake of attributing volition to the entities of science or relativism to scientific laws." (Mordechai Ben-Ari, "Just a Theory: Exploring the Nature of Science", 2005)

"The human mind delights in finding pattern - so much so that we often mistake coincidence or forced analogy for profound meaning. No other habit of thought lies so deeply within the soul of a small creature trying to make sense of a complex world not constructed for it." (Stephen J Gould, "The Flamingo's Smile: Reflections in Natural History", 2010)

"No definition of a social problem is perfect, but there are two principal ways such definitions can be flawed. On the one hand, we may worry that a definition is too broad, that it encompasses more than it ought to include. That is, broad definitions identify some cases as part of the problem that we might think ought not to be included; statisticians call such cases false positives (that is, they mistakenly identify cases as part of the problem). On the other hand, a definition that is too narrow excludes cases that we might think ought to be included; these are false negatives (incorrectly identified as not being part of the problem)." (Joel Best, "Damned Lies and Statistics: Untangling Numbers from the Media, Politicians, and Activists", 2001)

"One should never mistake pattern for meaning." (Iain Banks, "The Hydrogen Sonata",  2012)

"A theory is a supposition which we hope to be true, a hypothesis is a supposition which we expect to be useful; fictions belong to the realm of art; if made to intrude elsewhere, they become either make-believes or mistakes." (G Johnstone Stoney)

"Science with its strict analysis of the facts, its persevering search for new, more consummate truths, and its relentless struggle against discovered mistakes and prejudices - science must saturate all or technics, our culture, and everyday life." (Abram F Joffe)

On Mistakes, Blunders and Errors II: Statistics and Probabilities

“It is a capital mistake to theorize before you have all the evidence. It biases the judgment.” (Sir Arthur C Doyle, “A Study in Scarlet”, 1887)

“It is a capital mistake to theorize before one has data. Insensibly one begins to twist facts to suit theories, instead of theories to suit facts.” (Sir Arthur C Doyle, “The Adventures of Sherlock Holmes”, 1892)

"What real and permanent tendencies there are lie hid beneath the shifting superfices of chance, as it were a desert in which the inexperienced traveller mistakes the temporary agglomerations of drifting sand for the real configuration of the ground" (Francis Y Edgeworth, 1898)

"Some of the common ways of producing a false statistical argument are to quote figures without their context, omitting the cautions as to their incompleteness, or to apply them to a group of phenomena quite different to that to which they in reality relate; to take these estimates referring to only part of a group as complete; to enumerate the events favorable to an argument, omitting the other side; and to argue hastily from effect to cause, this last error being the one most often fathered on to statistics. For all these elementary mistakes in logic, statistics is held responsible." (Sir Arthur L Bowley, "Elements of Statistics", 1901)

"If the chance of error alone were the sole basis for evaluating methods of inference, we would never reach a decision, but would merely keep increasing the sample size indefinitely." (C West Churchman, "Theory of Experimental Inference", 1948)

"There are instances of research results presented in terms of probability values of ‘statistical significance’ alone, without noting the magnitude and importance of the relationships found. These attempts to use the probability levels of significance tests as measures of the strengths of relationships are very common and very mistaken." (Leslie Kish, "Some statistical problems in research design", American Sociological Review 24, 1959)

"Poor statistics may be attributed to a number of causes. There are the mistakes which arise in the course of collecting the data, and there are those which occur when those data are being converted into manageable form for publication. Still later, mistakes arise because the conclusions drawn from the published data are wrong. The real trouble with errors which arise during the course of collecting the data is that they are the hardest to detect." (Alfred R Ilersic, "Statistics", 1959)

"The rounding of individual values comprising an aggregate can give rise to what are known as unbiased or biased errors. [...]The biased error arises because all the individual figures are reduced to the lower 1,000 [...] The unbiased error is so described since by rounding each item to the nearest 1,000 some of the approximations are greater and some smaller than the original figures. Given a large number of such approximations, the final total may therefore correspond very closely to the true or original total, since the approximations tend to offset each other. [...] With biased approximations, however, the errors are cumulative and their aggregate increases with the number of items in the series." (Alfred R Ilersic, "Statistics", 1959)

"While it is true to assert that much statistical work involves arithmetic and mathematics, it would be quite untrue to suggest that the main source of errors in statistics and their use is due to inaccurate calculations." (Alfred R Ilersic, "Statistics", 1959)

"No observations are absolutely trustworthy. In no field of observation can we entirely rule out the possibility that an observation is vitiated by a large measurement or execution error. If a reading is found to lie a very long way from its fellows in a series of replicate observations, there must be a suspicion that the deviation is caused by a blunder or gross error of some kind. [...] One sufficiently erroneous reading can wreck the whole of a statistical analysis, however many observations there are." (Francis J Anscombe, "Rejection of Outliers", Technometrics Vol. 2 (2), 1960)

"The most important and frequently stressed prescription for avoiding pitfalls in the use of economic statistics, is that one should find out before using any set of published statistics, how they have been collected, analysed and tabulated. This is especially important, as you know, when the statistics arise not from a special statistical enquiry, but are a by-product of law or administration. Only in this way can one be sure of discovering what exactly it is that the figures measure, avoid comparing the non-comparable, take account of changes in definition and coverage, and as a consequence not be misled into mistaken interpretations and analysis of the events which the statistics portray." (Ely Devons, "Essays in Economics", 1961)

"The problem of error has preoccupied philosophers since the earliest antiquity. According to the subtle remark made by a famous Greek philosopher, the man who makes a mistake is twice ignorant, for he does not know the correct answer, and he does not know that he does not know it." (Félix Borel, "Probability and Certainty", 1963)

"He who accepts statistics indiscriminately will often be duped unnecessarily. But he who distrusts statistics indiscriminately will often be ignorant unnecessarily. There is an accessible alternative between blind gullibility and blind distrust. It is possible to interpret statistics skillfully. The art of interpretation need not be monopolized by statisticians, though, of course, technical statistical knowledge helps. Many important ideas of technical statistics can be conveyed to the non-statistician without distortion or dilution. Statistical interpretation depends not only on statistical ideas but also on ordinary clear thinking. Clear thinking is not only indispensable in interpreting statistics but is often sufficient even in the absence of specific statistical knowledge. For the statistician not only death and taxes but also statistical fallacies are unavoidable. With skill, common sense, patience and above all objectivity, their frequency can be reduced and their effects minimised. But eternal vigilance is the price of freedom from serious statistical blunders." (W Allen Wallis & Harry V Roberts, "The Nature of Statistics", 1965)

"The calculus of probability can say absolutely nothing about reality [...] We have to stress this point because these attempts assume many forms and are always dangerous. In one sentence: to make a mistake of this kind leaves one inevitably faced with all sorts of fallacious arguments and contradictions whenever an attempt is made to state, on the basis of probabilistic considerations, that something must occur, or that its occurrence confirms or disproves some probabilistic assumptions." (Bruno de Finetti, "Theory of Probability", 1974)

"Mistakes arising from retrospective data analysis led to the idea of experimentation, and experience with experimentation led to the idea of controlled experiments and then to the proper design of experiments for efficiency and credibility. When someone is pushing a conclusion at you, it's a good idea to ask where it came from - was there an experiment, and if so, was it controlled and was it relevant?" (Robert Hooke, "How to Tell the Liars from the Statisticians", 1983)

"There are no mistakes. The events we bring upon ourselves, no matter how unpleasant, are necessary in order to learn what we need to learn; whatever steps we take, they’re necessary to reach the places we’ve chosen to go." (Richard Bach, "The Bridge across Forever", 1984)

"Correlation and causation are two quite different words, and the innumerate are more prone to mistake them than most." (John A Paulos, "Innumeracy: Mathematical Illiteracy and its Consequences", 1988)

"When you want to use some data to give the answer to a question, the first step is to formulate the question precisely by expressing it as a hypothesis. Then you consider the consequences of that hypothesis, and choose a suitable test to apply to the data. From the result of the test you accept or reject the hypothesis according to prearranged criteria. This cannot be infallible, and there is always a chance of getting the wrong answer, so you try and reduce the chance of such a mistake to a level which you consider reasonable." (Roger J Barlow, "Statistics: A guide to the use of statistical methods in the physical sciences", 1989)

"Exploratory regression methods attempt to reveal unexpected patterns, so they are ideal for a first look at the data. Unlike other regression techniques, they do not require that we specify a particular model beforehand. Thus exploratory techniques warn against mistakenly fitting a linear model when the relation is curved, a waxing curve when the relation is S-shaped, and so forth." (Lawrence C Hamilton, "Regression with Graphics: A second course in applied statistics", 1991)

"Most statistical models assume error free measurement, at least of independent (predictor) variables. However, as we all know, measurements are seldom if ever perfect. Particularly when dealing with noisy data such as questionnaire responses or processes which are difficult to measure precisely, we need to pay close attention to the effects of measurement errors. Two characteristics of measurement which are particularly important in psychological measurement are reliability and validity." (Clay Helberg, "Pitfalls of Data Analysis (or How to Avoid Lies and Damned Lies)", 1995)

"We can consider three broad classes of statistical pitfalls. The first involves sources of bias. These are conditions or circumstances which affect the external validity of statistical results. The second category is errors in methodology, which can lead to inaccurate or invalid results. The third class of problems concerns interpretation of results, or how statistical results are applied (or misapplied) to real world issues." (Clay Helberg, "Pitfalls of Data Analysis (or How to Avoid Lies and Damned Lies)", 1995) 

"This notion of 'being due' - what is sometimes called the gambler’s fallacy - is a mistake we make because we cannot help it. The problem with life is that we have to live it from the beginning, but it makes sense only when seen from the end. As a result, our whole experience is one of coming to provisional conclusions based on insufficient evidence: read ing the signs, gauging the odds." (John Haigh," Taking Chances: Winning With Probability", 1999)

"Big numbers warn us that the problem is a common one, compelling our attention, concern, and action. The media like to report statistics because numbers seem to be 'hard facts' - little nuggets of indisputable truth. [...] One common innumerate error involves not distinguishing among large numbers. [...] Because many people have trouble appreciating the differences among big numbers, they tend to uncritically accept social statistics (which often, of course, feature big numbers)." (Joel Best, "Damned Lies and Statistics: Untangling Numbers from the Media, Politicians, and Activists", 2001)

"Compound errors can begin with any of the standard sorts of bad statistics - a guess, a poor sample, an inadvertent transformation, perhaps confusion over the meaning of a complex statistic. People inevitably want to put statistics to use, to explore a number's implications. [...] The strengths and weaknesses of those original numbers should affect our confidence in the second-generation statistics." (Joel Best, "Damned Lies and Statistics: Untangling Numbers from the Media, Politicians, and Activists", 2001)

 "A major problem with many studies is that the population of interest is not adequately defined before the sample is drawn. Don’t make this mistake. A second major source of error is that the sample proves to have been drawn from a different population than was originally envisioned." (Phillip I Good & James W Hardin, "Common Errors in Statistics (and How to Avoid Them)", 2003)

"The difference between 'statistically significant' and 'not statistically significant' is not in itself necessarily statistically significant. By this, I mean more than the obvious point about arbitrary divisions, that there is essentially no difference between something significant at the 0.049 level or the 0.051 level. I have a bigger point to make. It is common in applied research–in the last couple of weeks, I have seen this mistake made in a talk by a leading political scientist and a paper by a psychologist–to compare two effects, from two different analyses, one of which is statistically significant and one which is not, and then to try to interpret/explain the difference. Without any recognition that the difference itself was not statistically significant." (Andrew Gelman, "The difference between ‘statistically significant’ and ‘not statistically significant’ is not in itself necessarily statistically significant", 2005)

"[…] an outlier is an observation that lies an 'abnormal' distance from other values in a batch of data. There are two possible explanations for the occurrence of an outlier. One is that this happens to be a rare but valid data item that is either extremely large or extremely small. The other is that it isa mistake – maybe due to a measuring or recording error." (Alan Graham, "Developing Thinking in Statistics", 2006)

"Many scientists who work not just with noise but with probability make a common mistake: They assume that a bell curve is automatically Gauss's bell curve. Empirical tests with real data can often show that such an assumption is false. The result can be a noise model that grossly misrepresents the real noise pattern. It also favors a limited view of what counts as normal versus non-normal or abnormal behavior. This assumption is especially troubling when applied to human behavior. It can also lead one to dismiss extreme data as error when in fact the data is part of a pattern." (Bart Kosko, "Noise", 2006) 

"A naive interpretation of regression to the mean is that heights, or baseball records, or other variable phenomena necessarily become more and more 'average' over time. This view is mistaken because it ignores the error in the regression predicting y from x. For any data point xi, the point prediction for its yi will be regressed toward the mean, but the actual yi that is observed will not be exactly where it is predicted. Some points end up falling closer to the mean and some fall further." (Andrew Gelman & Jennifer Hill, "Data Analysis Using Regression and Multilevel/Hierarchical Models", 2007)

"If there is an outlier there are two possibilities: The model is wrong – after all, a theory is the basis on which we decide whether a data point is an outlier (an unexpected value) or not. The value of the data point is wrong because of a failure of the apparatus or a human mistake. There is a third possibility, though: The data point might not be an actual  outlier, but part of a (legitimate) statistical fluctuation." (Manfred Drosg, "Dealing with Uncertainties: A Guide to Error Analysis", 2007)

"In error analysis the so-called 'chi-squared' is a measure of the agreement between the uncorrelated internal and the external uncertainties of a measured functional relation. The simplest such relation would be time independence. Theory of the chi-squared requires that the uncertainties be normally distributed. Nevertheless, it was found that the test can be applied to most probability distributions encountered in practice." (Manfred Drosg, "Dealing with Uncertainties: A Guide to Error Analysis", 2007)

"Another kind of error possibly related to the use of the representativeness heuristic is the gambler’s fallacy, otherwise known as the law of averages. If you are playing roulette and the last four spins of the wheel have led to the ball’s landing on black, you may think that the next ball is more likely than otherwise to land on red. This cannot be. The roulette wheel has no memory. The chance of black is just what it always is. The reason people tend to think otherwise may be that they expect the sequence of events to be representative of random sequences, and the typical random sequence at roulette does not have five blacks in a row." (Jonathan Baron, "Thinking and Deciding" 4th Ed, 2008)

"[…] humans make mistakes when they try to count large numbers in complicated systems. They make even greater errors when they attempt - as they always do - to reduce complicated systems to simple numbers." (Zachary Karabell, "The Leading Indicators: A short history of the numbers that rule our world", 2014)

"There is a growing realization that reported 'statistically significant' claims in statistical publications  are routinely mistaken. Researchers typically express the confidence in their data in terms of p-value: the probability that a perceived result is actually the result of random variation. The value of p (for 'probability') is a way of measuring the extent to which a data set provides evidence against a so-called null hypothesis. By convention, a p- value below 0.05 is considered a meaningful refutation of the null hypothesis; however, such conclusions are less solid than they appear." (Andrew Gelman & Eric Loken, "The Statistical Crisis in Science", American Scientist Vol. 102(6), 2014)

"Using a sample to estimate results in the full population is common in data analysis. But you have to be careful, because even small mistakes can quickly become big ones, given that each observation represents many others. There are also many factors you need to consider if you want to make sure your inferences are accurate." (John H Johnson & Mike Gluck, "Everydata: The misinformation hidden in the little data you consume every day", 2016)

"The central limit conjecture states that most errors are the result of many small errors and, as such, have a normal distribution. The assumption of a normal distribution for error has many advantages and has often been made in applications of statistical models." (David S Salsburg, "Errors, Blunders, and Lies: How to Tell the Difference", 2017)

"Variance is error from sensitivity to fluctuations in the training set. If our training set contains sampling or measurement error, this noise introduces variance into the resulting model. [...] Errors of variance result in overfit models: their quest for accuracy causes them to mistake noise for signal, and they adjust so well to the training data that noise leads them astray. Models that do much better on testing data than training data are overfit." (Steven S Skiena, "The Data Science Design Manual", 2017)

"Statistical models have two main components. First, a mathematical formula that expresses a deterministic, predictable component, for example the fitted straight line that enables us to make a prediction [...]. But the deterministic part of a model is not going to be a perfect representation of the observed world [...] and the difference between what the model predicts, and what actually happens, is the second component of a model and is known as the residual error - although it is important to remember that in statistical modelling, ‘error’ does not refer to a mistake, but the inevitable inability of a model to exactly represent what we observe." (David Spiegelhalter, "The Art of Statistics: Learning from Data", 2019)

"If we don’t understand the statistics, we’re likely to be badly mistaken about the way the world is. It is all too easy to convince ourselves that whatever we’ve seen with our own eyes is the whole truth; it isn’t. Understanding causation is tough even with good statistics, but hopeless without them. [...] And yet, if we understand only the statistics, we understand little. We need to be curious about the world that we see, hear, touch, and smell, as well as the world we can examine through a spreadsheet." (Tim Harford, "The Data Detective: Ten easy rules to make sense of statistics", 2020)

"Premature enumeration is an equal-opportunity blunder: the most numerate among us may be just as much at risk as those who find their heads spinning at the first mention of a fraction. Indeed, if you’re confident with numbers you may be more prone than most to slicing and dicing, correlating and regressing, normalizing and rebasing, effortlessly manipulating the numbers on the spreadsheet or in the statistical package - without ever realizing that you don’t fully understand what these abstract quantities refer to. Arguably this temptation lay at the root of the last financial crisis: the sophistication of mathematical risk models obscured the question of how, exactly, risks were being measured, and whether those measurements were something you’d really want to bet your global banking system on." (Tim Harford, "The Data Detective: Ten easy rules to make sense of statistics", 2020)


"Always expect to find at least one error when you proofread your own statistics. If you don’t, you are probably making the same mistake twice." (Cheryl Russell)

21 April 2024

On Statistics: Statistical Fallacies III

"No doubt statistics can be easily misinterpreted; and are often very misleading when first applied to new problems. But many of the worst fallacies involved in the misapplications of statistics are definite and can be definitely exposed, till at last no one ventures to repeat them even when addressing an uninstructed audience: and on the whole arguments which can be reduced to statistical forms, though still in a backward condition, are making more sure and more rapid advances than any others towards obtaining the general acceptance of all who have studied the subjects to which they refer." (Alfred Marshall, "Principles of Economics", 1890)

"Without an adequate understanding of the statistical methods, the investigator in the social sciences may be like the blind man groping in a dark room for a black cat that is not there. The methods of Statistics are useful in an over-widening range of human activities in any field of thought in which numerical data may be had." (Frederick E Croxton & Dudley J Cowden, "Practical Business Statistics", 1937)

"Science of Statistics is the useful servant but only of great value to those who understand its proper use." (Willford I King, "The Elements of Statistical Method", 1912)

"Many people use statistics as a drunkard uses a street lamp - for support rather than illumination. It is not enough to avoid outright falsehood; one must be on the alert to detect possible distortion of truth. One can hardly pick up a newspaper without seeing some sensational headline based on scanty or doubtful data." (Anna C Rogers, "Graphic Charts Handbook", 1961)

"He who accepts statistics indiscriminately will often be duped unnecessarily. But he who distrusts statistics indiscriminately will often be ignorant unnecessarily. There is an accessible alternative between blind gullibility and blind distrust. It is possible to interpret statistics skillfully. The art of interpretation need not be monopolized by statisticians, though, of course, technical statistical knowledge helps. Many important ideas of technical statistics can be conveyed to the non-statistician without distortion or dilution. Statistical interpretation depends not only on statistical ideas but also on ordinary clear thinking. Clear thinking is not only indispensable in interpreting statistics but is often sufficient even in the absence of specific statistical knowledge. For the statistician not only death and taxes but also statistical fallacies are unavoidable. With skill, common sense, patience and above all objectivity, their frequency can be reduced and their effects minimised. But eternal vigilance is the price of freedom from serious statistical blunders." (W Allen Wallis & Harry V Roberts, "The Nature of Statistics", 1965)

"[…] it is not enough to say: 'There's error in the data and therefore the study must be terribly dubious'. A good critic and data analyst must do more: he or she must also show how the error in the measurement or the analysis affects the inferences made on the basis of that data and analysis." (Edward R Tufte, "Data Analysis for Politics and Policy", 1974)

"The use of statistical methods to analyze data does not make a study any more 'scientific', 'rigorous', or 'objective'. The purpose of quantitative analysis is not to sanctify a set of findings. Unfortunately, some studies, in the words of one critic, 'use statistics as a drunk uses a street lamp, for support rather than illumination'. Quantitative techniques will be more likely to illuminate if the data analyst is guided in methodological choices by a substantive understanding of the problem he or she is trying to learn about. Good procedures in data analysis involve techniques that help to (a) answer the substantive questions at hand, (b) squeeze all the relevant information out of the data, and (c) learn something new about the world." (Edward R Tufte, "Data Analysis for Politics and Policy", 1974)

"Typically, data analysis is messy, and little details clutter it. Not only confounding factors, but also deviant cases, minor problems in measurement, and ambiguous results lead to frustration and discouragement, so that more data are collected than analyzed. Neglecting or hiding the messy details of the data reduces the researcher's chances of discovering something new." (Edward R Tufte, "Data Analysis for Politics and Policy", 1974)

31 October 2023

Phillip I Good - Collected Quotes

 "A major problem with many studies is that the population of interest is not adequately defined before the sample is drawn. Don’t make this mistake. A second major source of error is that the sample proves to have been drawn from a different population than was originally envisioned." (Phillip I Good & James W Hardin, "Common Errors in Statistics (and How to Avoid Them)", 2003)

"A permutation test based on the original observations is appropriate only if one can assume that under the null hypothesis the observations are identically distributed in each of the populations from which the samples are drawn. If we cannot make this assumption, we will need to transform the observations, throwing away some of the information about them so that the distributions of the transformed observations are identical." (Phillip I Good & James W Hardin, "Common Errors in Statistics (and How to Avoid Them)", 2003)

"A well-formulated hypothesis will be both quantifiable and testable - that is, involve measurable quantities or refer to items that may be assigned to mutually exclusive categories. [...] When the objective of our investigations is to arrive at some sort of conclusion, then we need to have not only a hypothesis in mind, but also one or more potential alternative hypotheses." (Phillip I Good & James W Hardin, "Common Errors in Statistics (and How to Avoid Them)", 2003)

"Before we initiate data collection, we must have a firm idea of what we will measure. A second fundamental principle is also applicable to both experiments and surveys: Collect exact values whenever possible. Worry about grouping them in interval or discrete categories later. […] You can always group your results (and modify your groupings) after a study is completed. If after-the-fact grouping is a possibility, your design should state how the grouping will be determined; otherwise there will be the suspicion that you chose the grouping to obtain desired results." (Phillip I Good & James W Hardin, "Common Errors in Statistics (and How to Avoid Them)", 2003)

"Estimation methods should be impartial. Decisions should not depend on the accidental and quite irrelevant labeling of the samples. Nor should decisions depend on the units in which the measurements are made." (Phillip I Good & James W Hardin, "Common Errors in Statistics (and How to Avoid Them)", 2003)

"Every statistical procedure relies on certain assumptions for correctness. Errors in testing hypotheses come about either because the assumptions underlying the chosen test are not satisfied or because the chosen test is less powerful than other competing procedures."(Phillip I Good & James W Hardin, "Common Errors in Statistics (and How to Avoid Them)", 2003)

"[…] finding at least one cluster of events in time or in space has a greater probability than finding no clusters at all (equally spaced events)." (Phillip I Good & James W Hardin, "Common Errors in Statistics (and How to Avoid Them)", 2003)

"Graphical illustrations should be simple and pleasing to the eye, but the presentation must remain scientific. In other words, we want to avoid those graphical features that are purely decorative while keeping a critical eye open for opportunities to enhance the scientific inference we expect from the reader. A good graphical design should maximize the proportion of the ink used for communicating scientific information in the overall display." (Phillip I Good & James W Hardin, "Common Errors in Statistics (and How to Avoid Them)", 2003)

"If the sample is not representative of the population because the sample is small or biased, not selected at random, or its constituents are not independent of one another, then the bootstrap will fail. […] For a given size sample, bootstrap estimates of percentiles in the tails will always be less accurate than estimates of more centrally located percentiles. Similarly, bootstrap interval estimates for the variance of a distribution will always be less accurate than estimates of central location such as the mean or median because the variance depends strongly upon extreme values in the population." (Phillip I Good & James W Hardin, "Common Errors in Statistics (and How to Avoid Them)", 2003)

"More important than comparing the means of populations can be determining why the variances are different." (Phillip I Good & James W Hardin, "Common Errors in Statistics (and How to Avoid Them)", 2003)

"Most statistical procedures rely on two fundamental assumptions: that the observations are independent of one another and that they are identically distributed. If your methods of collection fail to honor these assumptions, then your analysis must fail also." (Phillip I Good & James W Hardin, "Common Errors in Statistics (and How to Avoid Them)", 2003)

"Never assign probabilities to the true state of nature, but only to the validity of your own predictions." (Phillip I Good & James W Hardin, "Common Errors in Statistics (and How to Avoid Them)", 2003)

"The greatest error associated with the use of statistical procedures is to make the assumption that one single statistical methodology can suffice for all applications. […] But one methodology can never be better than another, nor can estimation replace hypothesis testing or vice versa. Every methodology has a proper domain of application and another set of applications for which it fails. Every methodology has its drawbacks and its advantages, its assumptions, and its sources of error." (Phillip I Good & James W Hardin, "Common Errors in Statistics (and How to Avoid Them)", 2003)

"The sources of error in applying statistical procedures are legion and include all of the following: (•) Using the same set of data both to formulate hypotheses and to test them. (•) Taking samples from the wrong population or failing to specify the population(s) about which inferences are to be made in advance. (•) Failing to draw random, representative samples. (•) Measuring the wrong variables or failing to measure what you’d hoped to measure. (•) Using inappropriate or inefficient statistical methods. (•) Failing to validate models. But perhaps the most serious source of error lies in letting statistical procedures make decisions for you." (Phillip I Good & James W Hardin, "Common Errors in Statistics (and How to Avoid Them)", 2003)

"The vast majority of errors in estimation stem from a failure to measure what one wanted to measure or what one thought one was measuring. Misleading definitions, inaccurate measurements, errors in recording and transcription, and confounding variables plague results. To forestall such errors, review your data collection protocols and procedure manuals before you begin, run several preliminary trials, record potential confounding variables, monitor data collection, and review the data as they are collected." (Phillip I Good & James W Hardin, "Common Errors in Statistics (and How to Avoid Them)", 2003)

"The vast majority of errors in Statistics - and not incidentally, in most human endeavors - arise from a reluctance (or even an inability) to plan. Some demon (or demonic manager) seems to be urging us to cross the street before we’ve had the opportunity to look both ways. Even on those rare occasions when we do design an experiment, we seem more obsessed with the mechanics than with the concepts that underlie it." (Phillip I Good & James W Hardin, "Common Errors in Statistics (and How to Avoid Them)", 2003)

"Use statistics as a guide to decision making rather than a mandate." (Phillip I Good & James W Hardin, "Common Errors in Statistics (and How to Avoid Them)", 2003)

"When we assert that for a given population a percentage of samples will have a specific composition, this also is a deduction. But when we make an inductive generalization about a population based upon our analysis of a sample, we are on shakier ground. It is one thing to assert that if an observation comes from a normal distribution with mean zero, the probability is one-half that it is positive. It is quite another if, on observing that half the observations in the sample are positive, we assert that half of all the possible observations that might be drawn from that population will be positive also." (Phillip I Good & James W Hardin, "Common Errors in Statistics (and How to Avoid Them)", 2003)

"While a null hypothesis can facilitate statistical inquiry - an exact permutation test is impossible without it - it is never mandated. In any event, virtually any quantifiable hypothesis can be converted into null form. There is no excuse and no need to be content with a meaningless null. […] We must specify our alternatives before we commence an analysis, preferably at the same time we design our study." (Phillip I Good & James W Hardin, "Common Errors in Statistics (and How to Avoid Them)", 2003)

Related Posts Plugin for WordPress, Blogger...

On Leonhard Euler

"I have been able to solve a few problems of mathematical physics on which the greatest mathematicians since Euler have struggled in va...