Showing posts with label metaphors. Show all posts
Showing posts with label metaphors. Show all posts

17 September 2023

On Metaphors IX

"The employment of tropes, just as the use of schemata, is the exclusive privilege of the very learned. The rules governing tropes are also very strict, so that the latitude in which they may be used is definitely limited. For the rules teach that we may not extend figures. One who is studiously imitating the authors by using metaphors and figures, must take care to avoid crude figures that are hard to interpret. What is primarily desirable in language is lucid clarity and easy comprehensibility. Therefore schemata should be used only out of necessity or for ornamentation. Speech was invented as a means of communicating mental concepts; and figures [of speech] are admitted so far as they compensate by their utility for whatever they lack in conformity to the [rules of the grammatical] art." (John of Salisbury, "Metalogicon", 1159)

"The figure of speech or of thought by which we  transfer the language and ideas of a familiar  science to one with which we are less acquainted  may be called Scientific Metaphor." (James C Maxwell, British Association for the Advancement of Science, 1871)

"These generalized forms of elementary ideas may be called metaphorical terms in the sense in which every abstract term is metaphorical. The characteristic of a truly scientific system of metaphors is that each term in its metaphorical use retains all the formal relations to the other terms of the system which it had in its original use. The method is then truly scientific - that is, not only a legitimate product of science but capable of generating science in its turn." (James C Maxwell, British Association for the Advancement of Science, 1871)

"Scientific metaphors are called models. They are made with the full knowledge that the connection between the metaphor and the real thing is primarily in the mind of the scientist. And they are made with a clearly definable purpose - as starting points of a deductive process. […] Like every other aspect of scientific procedure, the scientific metaphor is a pragmatic device, to be used freely as long as it serves its purpose, to be discarded without regrets when it fails to do so." (Anatol Rapoport, "Operational Philosophy", 1954) 

"But metaphor is an indispensable tool of thought and expression - a characteristic of all human communication, even of that of the scientist. The conceptual models of cybernetics and the energy theories of psycho-analysis are, after all, only labeled metaphors." (Gregory Bateson, "Steps to an Ecology of Mind", 1972) 

"Literature is as much a product of the technological and scientific milieu as it is of the artistic one. Some of the large ideas, call them theories or metaphors - that humans are machines, that the observer affects the phenomenon observed, that information can be quantified—alter the way work is done in art. Metaphors invented by artists imply new ways of seeing, demolish mere logic, provoke alternatives, and lead to new theories in science." (David Porush, "The Soft Machine", 1985)

"All sorts of metaphorical interpretations are culturally ingrained. An astute designer will think about these possible interpretations and work with them, rather than against them." (Noah Iliinsky & Julie Steel, "Designing Data Visualizations", 2011)

"Visual metaphors are about integrating a certain visual quality in your work that somehow conveys that extra bit of connection between the data, the design, and the topic. It goes beyond just the choice of visual variable, though this will have a strong influence. Deploying the best visual metaphor is something that really requires a strong design instinct and a certain amount of experience." (Andy Kirk, "Data Visualization: A successful design process", 2012)

"Metaphors do somehow make known what they mean by the comparison they involve. Whenever we use them, we transfer meaning according to some similarity. But statements such as the aforesaid do not make anything known. There is no inherent resemblance to justify calling law ‘a measure’ or ‘an image’ , nor is it customary to refer to it as such. If one says that law is literally ‘a measure’ or ‘an image’, he is either deceiving or being deceived. An image is something fashioned in the likeness of something else, but such is not an inherent characteristic of law. If, on the other hand, the statement is not made in a literal sense, it is evident that it is obscure, and worse than any metaphorical expression." (Aristotle)

23 July 2021

Out of Context: On Metaphor (Definitions)

"Like every other aspect of scientific procedure, the scientific metaphor is a pragmatic device, to be used freely as long as it serves its purpose, to be discarded without regrets when it fails to do so." (Anatol Rapoport, "Operational Philosophy", 1954)

"Every metaphor is the tip of a submerged model." (Max Black," Models and Metaphors", 1962)

"Rationality consists [of] the continuous adaptation of our language to our continually expanding world, and metaphor is one of the chief means by which this is accomplished." (Mary B Hesse, "Models and Analogies in Science", 1966)

"But metaphor is an indispensable tool of thought and expression - a characteristic of all human communication, even of that of the scientist." (Gregory Bateson, "Steps to an Ecology of Mind", 1972) 

"A metaphor is a word used in an unfamiliar context to give us a new insight; a good metaphor moves us to see our ordinary world in an extraordinary way." (Sallie McFague, "Speaking in Parables", 1975)

"Metaphor is for most people a device of the poetic imagination and the rhetorical flourish - a matter of extraordinary rather than ordinary language. Moreover, metaphor is typically lviewed as characteristic of language alone, a matter of words rather than thought or action." (George Lakoff & Mark Johnson, "Metaphors we Live by", 1980)

"Analogies, metaphors, and emblems are the threads by which the mind holds on to the world even when, absentmindedly, it has lost direct contact with it, and they guarantee the unity of human experience." (Hannah Arendt, "The Life of the Mind", 1981)

"Metaphor [is] a pervasive mode of understanding by which we project patterns from one domain of experience in order to structure another domain of a different kind. So conceived metaphor is not merely a linguistic mode of expression; rather, it is one of the chief cognitive structures by which we are able to have coherent, ordered experiences that we can reason about and make sense of.“ (Mark Johnson, “The Body in the Mind”, 1987)

"Metaphor is the default form of thought, providing many angles from which to literally 'see' the world." (Marcel Danesi, "Poetic Logic: The Role of Metaphor in Thought, Language, and Culture", 2004)

"Metaphor is a primary cognitive tool by which we make sense of the world." (Terry Marks-Tarlow, "Psyche's Veil: Psychotherapy, Fractals and Complexity", 2008)

10 July 2021

On Machines XIII (Mind vs. Machines V)

"A machine can handle information; it can calculate, conclude, and choose; it can perform reasonable operations with information. A machine. therefore, can think." (Edmund C Berkeley, "Giant Brains or Machines that Think", 1949)

"From a narrow point of view, a machine that only thinks produces only information. It takes in information in one state, and it puts out information in another state. From this viewpoint, information in itself is harmless; it is just an arrangement of marks; and accordingly, a machine that thinks is harmless, and no control is necessary." (Edmund C Berkeley, "Giant Brains or Machines that Think", 1949)

"Now when we speak of a machine that thinks, or a mechanical  brain, what do we mean? Essentially, a mechanical brain is a machine that handles information, transfers information automatically from one part of the machine to another, and has a flexible control over the sequence of its operations. No human being is needed around such a machine to pick up a physical piece of information produced in one part of the machine, personally move it to another part of the machine, and there put it in again. Nor is any human being needed to give the machine instructions from minute to minute. Instead, we can write out the whole program to solve a problem, translate the program into machine language, and put the program into the machine." (Edmund C Berkeley, "Giant Brains or Machines that Think", 1949)

"A higher-level formal language is an abstract machine." (Joseph Weizenbaum, "Computer power and human reason: From judgment to calculation", 1976)

"[...] two programs can be thought of as strongly equivalent or as different realizations of the same algorithm or the same cognitive process if they can be represented by the same program in some theoretically specified virtual machine. A simple way of stating this is to say that we individuate cognitive processes in terms of their expression in the canonical language of this virtual machine. The formal structure of the virtual machine - or what I call its functional architecture - thus represents the theoretical definition of, for example, the right level of specificity (or level of aggregation) at which to view mental processes, the sort of functional resources the brain makes available - what operations are primitive, how memory is organized and accessed, what sequences are allowed, what limitations exist on the passing of arguments and on the capacities of various buffers, and so on." (Zenon W Pylyshyn, "Computation and cognition: Towards a foundation for cognitive science", 1984)

"A computer is an interpreted automatic formal system - that is to say, a symbol-manipulating machine." (John Haugeland, "Artificial intelligence: The very idea", 1985)

"The problem of understanding intelligence is said to be the greatest problem in science today and 'the' problem for this century [...]. Arguably, the problem of learning represents a gateway to understanding intelligence in brains and machines, to discovering how the human brain works, and to making intelligent machines that learn from experience and improve their competences as children." (Tomaso Poggio & Steve Smale, "The Mathematics of Learning: Dealing with Data", Notices of the AMS, 2003)

"If intelligence is a capacity that is gradually acquired as a result of development and learning, then a machine that can learn from experience would have, at least in theory, the capacity to carry out intelligent behavior. [...] Humans have created machines that imitate us - that provide mirrors to see ourselves and measure our strength, our intellect, and even our creativity." (Diego Rasskin-Gutman, "Chess Metaphors: Artificial Intelligence and the Human Mind", 2009)

"The mind creates a metaphor of ourselves and of the world that surrounds us. And it is so skillful that it has created machines that are capable of simulating human beings’ own creativity in a series of 1s and 0s [...]" (Diego Rasskin-Gutman, "Chess Metaphors: Artificial Intelligence and the Human Mind", 2009)

"The human mind isn’t a computer; it cannot progress in an orderly fashion down a list of candidate moves and rank them by a score down to the hundredth of a pawn the way a chess machine does. Even the most disciplined human mind wanders in the heat of competition. This is both a weakness and a strength of human cognition. Sometimes these undisciplined wanderings only weaken your analysis. Other times they lead to inspiration, to beautiful or paradoxical moves that were not on your initial list of candidates." (Garry Kasparov, "Deep Thinking", 2017)

09 June 2021

On Principles V: Identity

"The topics of ontology, or metaphysic, are cause, effect, action, passion, identity, opposition, subject, adjunct, and sign." (Isaac Watts, "Logic, or The right use of reason, in the inquiry after truth", 1725)

"Science arises from the discovery of Identity amid Diversity." (William S Jevons, "The Principles of Science: A Treatise on Logic and Scientific Method", 1874)

"The very possibility of mathematical science seems an insoluble contradiction. If this science is only deductive in appearance, from whence is derived that perfect rigour which is challenged by none? If, on the contrary, all the propositions which it enunciates may be derived in order by the rules of formal logic, how is it that mathematics is not reduced to a gigantic tautology? The syllogism can teach us nothing essentially new, and if everything must spring from the principle of identity, then everything should be capable of being reduced to that principle." (Henri Poincaré, "Science and Hypothesis", 1901)

"Metaphors deny distinctions between things: problems often arise from taking structural metaphors too literally. Because unexamined metaphors lead us to assume the identity of unidentical things, conflicts can arise which can only be resolved by understanding the metaphor (which requires its recognition as such), which means reconstructing the analogy on which it is based. […] The unexplained extension of concepts can too often result in the destruction rather than the expansion of meaning." (David Pimm,"Metaphor and Analogy in Mathematics", For the Learning of Mathematics Vol. 1 (3), 1981)

"The idea that one can 'introduce' a kind of objects simply by laying down an identity criterion for them really inverts the proper order of explanation. As Locke clearly understood, one must first have a clear conception of what kind of objects one is dealing with in order to extract a criterion of identity for them from that conception. […] So, rather than 'abstract' a kind of object from a criterion of identity, one must in general 'extract' a criterion of identity from a metaphysically defensible conception of a given kind of objects." (Edward J Lowe, The metaphysics of abstract objects, Journal of Philosophy 92 (10), 1995) 

"There is no unique, global, and universal relation of identity for abstract objects. [...] Abstract objects are of different sorts and this should mean, almost by definition, that there is no global, universal identity for sorts. Each sort X is equipped with an internal relation of identity but there is no identity relation that would apply to all sorts." (Jean-Pierre Marquis," Categorical foundations of mathematics, or how to provide foundations for abstract mathematics", The Review of Symbolic Logic Vol. 6 (1), 2012) 

"Reason is indeed all about identity, or, rather, tautology. Mathematics is the eternal, necessary system of rational, analytic tautology. Tautology is not 'empty', as it is so often characterized by philosophers. It is in fact the fullest thing there, the analytic ground of existence, and the basis of everything. Mathematical tautology has infinite masks to wear, hence delivers infinite variety. Mathematical tautology provides Leibniz’s world that is 'simplest in hypothesis and the richest in phenomena'. No hypothesis cold be simpler than the one revolving around tautologies concerning 'nothing'. There is something - existence - because nothing is tautologous, and 'something' is how that tautology is expressed. If we write x = 0, where x is any expression that has zero as its net result, then we have a world of infinite possibilities where something ('x') equals nothing (0)." (Thomas Stark, "God Is Mathematics: The Proofs of the Eternal Existence of Mathematics", 2018)

08 June 2021

On Patterns (2000-2009)

"In a linear world of equilibrium and predictability, the sparse research into an evidence base for management prescriptions and the confused findings it produces would be a sign of incompetence; it would not make much sense. Nevertheless, if organizations are actually patterns of nonlinear interaction between people; if small changes could produce widespread major consequences; if local interaction produces emergent global pattern; then it will not be possible to provide a reliable evidence base. In such a world, it makes no sense to conduct studies looking for simple causal relationships between an action and an outcome. I suggest that the story of the last few years strongly indicates that human action is nonlinear, that time and place matter a great deal, and that since this precludes simple evidence bases we do need to rethink the nature of organizations and the roles of managers and leaders in them." (Ralph D Stacey, "Complexity and Organizational Reality", 2000)

"The central proposition in [realistic thinking] is that human actions and interactions are processes, not systems, and the coherent patterning of those processes becomes what it becomes because of their intrinsic capacity, the intrinsic capacity of interaction and relationship, to form coherence. That emergent form is radically unpredictable, but it emerges in a controlled or patterned way because of the characteristic of relationship itself, creation and destruction in conditions at the edge of chaos." (Ralph D Stacey et al, "Complexity and Management: Fad or Radical Challenge to Systems Thinking?", 2000)

"Although the detailed moment-to-moment behavior of a chaotic system cannot be predicted, the overall pattern of its 'random' fluctuations may be similar from scale to scale. Likewise, while the fine details of a chaotic system cannot be predicted one can know a little bit about the range of its 'random' fluctuation." (F David Peat, "From Certainty to Uncertainty", 2002)

"There are endless examples of elaborate structures and apparently complex processes being generated through simple repetitive rules, all of which can be easily simulated on a computer. It is therefore tempting to believe that, because many complex patterns can be generated out of a simple algorithmic rule, all complexity is created in this way." (F David Peat, "From Certainty to Uncertainty", 2002)

"Randomness is a difficult notion for people to accept. When events come in clusters and streaks, people look for explanations and patterns. They refuse to believe that such patterns - which frequently occur in random data - could equally well be derived from tossing a coin. So it is in the stock market as well." (Didier Sornette, "Why Stock Markets Crash: Critical events in complex financial systems", 2003)

"Learning is the process of creating networks. Nodes are external entities which we can use to form a network. Or nodes may be people, organizations, libraries, web sites, books, journals, database, or any other source of information. The act of learning (things become a bit tricky here) is one of creating an external network of nodes - where we connect and form information and knowledge sources. The learning that happens in our heads is an internal network (neural). Learning networks can then be perceived as structures that we create in order to stay current and continually acquire, experience, create, and connect new knowledge (external). And learning networks can be perceived as structures that exist within our minds (internal) in connecting and creating patterns of understanding." (George Siemens, "Knowing Knowledge", 2006)

"Some number patterns, like even and odd numbers, lie on the surface. But the more you learn about numbers, both experimentally and theoretically, the more you discover patterns that are not so obvious. […] After a hidden pattern is exposed, it can be used to find more hidden patterns. At the end of a long chain of patterned reasoning, you can get to very difficult theorems, exploring facts about numbers that you otherwise would not know were true." (Avner Ash & Robert Gross, "Fearless Symmetry: Exposing the hidden patterns of numbers", 2006)

"Still, in the end, we find ourselves drawn to the beauty of the patterns themselves, and the amazing fact that we humans are smart enough to prove even a feeble fraction of all possible theorems about them. Often, greater than the contemplation of this beauty for the active mathematician is the excitement of the chase. Trying to discover first what patterns actually do or do not occur, then finding the correct statement of a conjecture, and finally proving it - these things are exhilarating when accomplished successfully. Like all risk-takers, mathematicians labor months or years for these moments of success." (Avner Ash & Robert Gross, "Fearless Symmetry: Exposing the hidden patterns of numbers", 2006)

"There is a big debate as to whether logic is part of mathematics or mathematics is part of logic. We use logic to think. We notice that our thinking, when it is valid, goes in certain patterns. These patterns can be studied mathematically. Thus, logic is a part of mathematics, called 'mathematical logic'." (Avner Ash & Robert Gross, "Fearless Symmetry: Exposing the hidden patterns of numbers", 2006) 

"The system is highly sensitive to some small changes and blows them up into major alterations in weather patterns. This is popularly known as the butterfly effect in that it is possible for a butterfly to flap its wings in São Paolo, so making a tiny change to air pressure there, and for this tiny change to escalate up into a hurricane over Miami. You would have to measure the flapping of every butterfly’s wings around the earth with infinite precision in order to be able to make long-term forecasts. The tiniest error made in these measurements could produce spurious forecasts. However, short-term forecasts are possible because it takes time for tiny differences to escalate."  (Ralph D Stacey, "Strategic Management and Organisational Dynamics: The Challenge of Complexity" 5th Ed. , 2007)

"Perception requires imagination because the data people encounter in their lives are never complete and always equivocal. [...] We also use our imagination and take shortcuts to fill gaps in patterns of nonvisual data. As with visual input, we draw conclusions and make judgments based on uncertain and incomplete information, and we conclude, when we are done analyzing the patterns, that out picture is clear and accurate. But is it?" (Leonard Mlodinow, "The Drunkard’s Walk: How Randomness Rules Our Lives", 2008)

"Why is the human need to be in control relevant to a discussion of random patterns? Because if events are random, we are not in control, and if we are in control of events, they are not random. There is therefore a fundamental clash between our need to feel we are in control and our ability to recognize randomness. That clash is one of the principal reasons we misinterpret random events."  (Leonard Mlodinow, "The Drunkard’s Walk: How Randomness Rules Our Lives", 2008)

"In emergent processes, the whole is greater than the sum of the parts. A mathematical phenomenon that appears in certain dynamic systems also occurs within biological systems, from molecular interactions within the cells to the cognitive processes that we use to move within society. [...] Emergent patterns of ideas, beauty, desires, or tragicomedy wait, ready to trap the next traveler in their complex domain of neatly patterned squares - the never-ending world of chess metaphors." (Diego Rasskin-Gutman, "Chess Metaphors: Artificial Intelligence and the Human Mind", 2009)

"Obviously, the final goal of scientists and mathematicians is not simply the accumulation of facts and lists of formulas, but rather they seek to understand the patterns, organizing principles, and relationships between these facts to form theorems and entirely new branches of human thought." (Clifford A Pickover, "The Math Book", 2009)

"The master of chess is deeply familiar with these patterns and knows very well the position that would be beneficial to reach. The rest is thinking in a logical way (calculating) about how each piece should be moved to reach the new pattern that has already taken shape in the chess player’s mind. This way of facing chess is closely related to the solving of theorems in mathematics. For example, a mathematician who wishes to prove an equation needs to imagine how the terms on each side of the equal sign can be manipulated so that one is reduced to the other. The enterprise is far from easy, to judge by the more than two hundred years that have been needed to solve theorems such as that of Fermat (z^n = x^n + y^n), using diverse tricks to prove the equation." (Diego Rasskin-Gutman, "Chess Metaphors: Artificial Intelligence and the Human Mind", 2009)

05 June 2021

On Concepts IX

"The symbols organized by knowledge, or concepts, themselves belong to social nature as its ideological elements. Therefore, by operating upon them, knowledge is able to expand its organizing function much more broadly than labour in its technological operation of real things; and as we have already seen that many things, which are not organized in practice, can be organized by knowledge, i.e. in symbols: where the ingression of things is absent, the ingression of their concepts is still possible." (Alexander A Bogdanov, "Tektology: The Universal Organizational Science" Vol. I, 1913)

"Every object that we perceive appears in innumerable aspects. The concept of the object is the invariant of all these aspects." (Max Born physicist, "The Statistical Interpretations of Quantum Mechanics", [Nobel lecture] 1954)

"It is one of the consolations of philosophy that the benefit of showing how to dispense with a concept does not hinge on dispensing with it." (Willard v O Quine, "Word and Object", 1960)

"The idea that one can 'introduce' a kind of objects simply by laying down an identity criterion for them really inverts the proper order of explanation. As Locke clearly understood, one must first have a clear conception of what kind of objects one is dealing with in order to extract a criterion of identity for them from that conception. […] So, rather than 'abstract' a kind of object from a criterion of identity, one must in general 'extract' a criterion of identity from a metaphysically defensible conception of a given kind of objects." (Edward J Lowe," The metaphysics of abstract objects", Journal of Philosophy 92(10), 1995)

"The realm of the particularity of each experienced item differs from the formal realm of concepts. [...] The power of paradigmatic thought is to bring order to experience by seeing individual things as belonging to a category." (Donald E Polkinghorne, “Narrative configuration in qualitative analysis", International Journal of Qualitative Studies in Education Vol. 8 (1), 1995)

"In the new systems thinking, the metaphor of knowledge as a building is being replaced by that of the network. As we perceive reality as a network of relationships, our descriptions, too, form an interconnected network of concepts and models in which there are no foundations. For most scientists such a view of knowledge as a network with no firm foundations is extremely unsettling, and today it is by no means generally accepted. But as the network approach expands throughout the scientific community, the idea of knowledge as a network will undoubtedly find increasing acceptance." (Fritjof Capra, "The Web of Life: a new scientific understanding of living systems", 1996)

"Abstraction is an essential knowledge process, the process (or, to some, the alleged process) by which we form concepts. It consists in recognizing one or several common features or attributes (properties, predicates) in individ­uals, and on that basis stating a concept subsuming those common features or attributes. Concept is an idea, associated with a word expressing a prop­erty or a collection of properties inferred or derived from different samples. Subsumption is the logical technique to get generality from particulars." (Hourya B Sinaceur," Facets and Levels of Mathematical Abstraction", Standards of Rigor in Mathematical Practice 18-1, 2014)

02 June 2021

On Structure: Structure in Mathematics II

"[…] the major mathematical research acquires an organization and orientation similar to the poetical function which, adjusting by means of metaphor disjunctive elements, displays a structure identical to the sensitive universe. Similarly, by means of its axiomatic or theoretical foundation, mathematics assimilates various doctrines and serves the instructive purpose, the one set up by the unifying moral universe of concepts." (Dan Barbilian, "The Autobiography of the Scientist", 1940)

"Mathematicians deal with possible worlds, with an infinite number of logically consistent systems. Observers explore the one particular world we inhabit. Between the two stands the theorist. He studies possible worlds but only those which are compatible with the information furnished by observers. In other words, theory attempts to segregate the minimum number of possible worlds which must include the actual world we inhabit. Then the observer, with new factual information, attempts to reduce the list further. And so it goes, observation and theory advancing together toward the common goal of science, knowledge of the structure and observation of the universe." (Edwin P Hubble, "The Problem of the Expanding Universe", 1941)

"To say that mathematics in general has been reduced to logic hints at some new firming up of mathematics at its foundations. This is misleading. Set theory is less settled and more conjectural than the classical mathematical superstructure than can be founded upon it." (Willard van Orman Quine, "Elementary Logic", 1941)

"One expects a mathematical theorem or a mathematical theory not only to describe and to classify in a simple and elegant way numerous and a priori disparate special cases. One also expects ‘elegance’ in its ‘architectural’ structural makeup." (John von Neumann, "The Mathematician" [in "Works of the Mind" Vol. I (1), 1947])

"The constructions of the mathematical mind are at the same time free and necessary. The individual mathematician feels free to define his notions and set up his axioms as he pleases. But the question is will he get his fellow-mathematician interested in the constructs of his imagination. We cannot help the feeling that certain mathematical structures which have evolved through the combined efforts of the mathematical community bear the stamp of a necessity not affected by the accidents of their historical birth. Everybody who looks at the spectacle of modern algebra will be struck by this complementarity of freedom and necessity." (Hermann Weyl, "A Half-Century of Mathematics", The American Mathematical Monthly, 1951)

"Mathematicians create by acts of insight and intuition. Logic then sanctions the conquests of intuition. It is the hygiene that mathematics practice to keep its ideas healthy and strong. Moreover, the whole structure rests fundamentally on uncertain ground, the intuitions of man." (Morris Kline, "Mathematics in Western Culture", 1953)

"Mathematics is not only the model along the lines of which the exact sciences are striving to design their structure; mathematics is the cement which holds the structure together." (Tobias Dantzig, "Number: The Language of Science" 4th Ed, 1954)

"Mathematics, springing from the soil of basic human experience with numbers and data and space and motion, builds up a far-flung architectural structure composed of theorems which reveal insights into the reasons behind appearances and of concepts which relate totally disparate concrete ideas." (Saunders MacLane, "Of Course and Courses"The American Mathematical Monthly, Vol 61, No 3, 1954)

"Chess combines the beauty of mathematical structure with the recreational delights of a competitive game." (Martin Gardner, "Mathematics, Magic, and Mystery", 1956)

"Probability is a mathematical discipline with aims akin to those, for example, of geometry or analytical mechanics. In each field we must carefully distinguish three aspects of the theory: (a) the formal logical content, (b) the intuitive background, (c) the applications. The character, and the charm, of the whole structure cannot be appreciated without considering all three aspects in their proper relation." (William Feller, "An Introduction to Probability Theory and Its Applications", 1957)

"If the system exhibits a structure which can be represented by a mathematical equivalent, called a mathematical model, and if the objective can be also so quantified, then some computational method may be evolved for choosing the best schedule of actions among alternatives. Such use of mathematical models is termed mathematical programming."  (George Dantzig, "Linear Programming and Extensions", 1959)

08 May 2021

On Heuristics I

"The materialistic point of view in psychology can claim, at best, only the value of an heuristic hypothesis." (Wilhelm Wundt, "Principles of Physiological Psychology", 1874)

"Heuristic reasoning is good in itself. What is bad is to mix up heuristic reasoning with rigorous proof. What is worse is to sell heuristic reasoning for rigorous proof." (George Pólya, "How to Solve It", 1945)

"Heuristic, or heuretic, or 'ars inveniendi' was the name of a certain branch of study, not very clearly circumscribed, belonging to logic, or to philosophy, or to psychology, often outlined, seldom presented in detail, and as good as forgotten today. The aim of heuristic is to study the methods and rules of discovery and invention. [...] Heuristic, as an adjective, means 'serving to discover'." (George Pólya, "How to Solve It", 1945)

"Heuristic reasoning is reasoning not regarded as final and strict but as provisional and plausible only, whose purpose is to discover the solution of the present problem. We are often obliged to use heuristic reasoning. We shall attain complete certainty when we shall have obtained the complete solution, but before obtaining certainty we must often be satisfied with a more or less plausible guess. We may need the provisional before we attain the final. We need heuristic reasoning when we construct a strict proof as we need scaffolding when we erect a building." (George Pólya, "How to Solve It", 1945)

"The attempt to characterize exactly models of an empirical theory almost inevitably yields a more precise and clearer understanding of the exact character of a theory. The emptiness and shallowness of many classical theories in the social sciences is well brought out by the attempt to formulate in any exact fashion what constitutes a model of the theory. The kind of theory which mainly consists of insightful remarks and heuristic slogans will not be amenable to this treatment. The effort to make it exact will at the same time reveal the weakness of the theory." (Patrick Suppes," A Comparison of the Meaning and Uses of Models in Mathematics and the Empirical Sciences", Synthese  Vol. 12 (2/3), 1960)

"Factoring big numbers is a strange kind of mathematics that closely resembles the experimental sciences, where nature has the last and definitive word. […] as with the experimental sciences, both rigorous and heuristic analyses can be valuable in understanding the subject and moving it forward. And, as with the experimental sciences, there is sometimes a tension between pure and applied practitioners." (Carl B Pomerance, "A Tale of Two Sieves", The Notices of the American Mathematical Society 43, 1996)

"[…] mathematics does not come to us written indelibly on Nature’s Tablets, but rather is the product of a controlled search governed by metaphorical considerations, the premier instance being the heuristics of the conservation principles." (Philip Mirowski, "More Heat than Light: Economics as Social Physics: Physics as Nature’s Economics", 1989)

"Mathematicians, like the rest of us, cherish clever ideas; in particular they delight in an ingenious picture. But this appreciation does not overwhelm a prevailing skepticism. After all, a diagram is - at best - just a special case and so can't establish a general theorem. Even worse, it can be downright misleading. Though not universal, the prevailing attitude is that pictures are really no more than heuristic devices; they are psychologically suggestive and pedagogically important - but they prove nothing. I want to oppose this view and to make a case for pictures having a legitimate role to play as evidence and justification - a role well beyond the heuristic.  In short, pictures can prove theorems." (James R Brown, "Philosophy of Mathematics: An Introduction to the World of Proofs and Pictures", 1999)

"In the language of mental models, such past experience provided the default assumptions necessary to fill the gaps in the emerging and necessarily incomplete framework of a relativistic theory of gravitation. It was precisely the nature of these default assumptions that allowed them to be discarded again in the light of novel information - provided, for instance, by the further elaboration of the mathematical formalism - without, however, having to abandon the underlying mental models which could thus continue to function as heuristic orientations." (Jürgen Renn, "Before the Riemann Tensor: The Emergence of Einstein’s Double Strategy", [in "The Universe of General Relativity"] 2000)

"You can often hear from non-mathematicians, especially from philosophers, that mathematics consists exclusively in drawing conclusions from clearly stated premises; and that in this process, it makes no difference what these premises signify, whether they are true or fa1se, provided only that they do not contradict one another. But a per. son who has done productive mathematical work will talk quite differently. In fact these people [the non-mathematicians] are thinking only of the crystallized form into which finished mathematica1 theories are finally cast. However, the investigator himself, in mathematics as in every other science, does not work in this rigorous deductive fashion. On the contrary, he makes essential use of his imagination and proceeds inductively aided by heuristic expedients. One can give numerous examples of mathematicians who have discovered theorems of the greatest importance which they were unable to prove. Should one then refuse to recognize this as a great accomplishment and in deference to the above definition insist that this is not mathematics? After all it is an arbitrary thing how the word is to be used, but no judgment of value can deny that the inductive work of the person who first announces the theorem is at least as valuable as the deductive work. of the one who proves it. For both are equally necessary and the discovery is the presupposition of the later conclusion." (Felix Klein)

12 March 2021

Diego Rasskin-Gutman - Collected Quotes

"A chess hypothesis is basically the equivalent to drawing up a strategic plan. Experimentation in chess is equivalent to the moves that are found to carry out each plan. Throughout the history of chess, both the plans (the hypotheses) as well as the moves (the experiments) have been evolving (thanks to results from the practice of the game and from analyses), and this knowledge is the patrimony of professional players." (Diego Rasskin-Gutman, "Chess Metaphors: Artificial Intelligence and the Human Mind", 2009)

"A second class of metaphors - mathematical algorithms, heuristics, and models - brings us closer to the world of computer science programs, simulations, and approximations of the brain and its cognitive processes." (Diego Rasskin-Gutman, "Chess Metaphors: Artificial Intelligence and the Human Mind", 2009)

"An algorithm refers to a successive and finite procedure by which it is possible to solve a certain problem. Algorithms are the operational base for most computer programs. They consist of a series of instructions that, thanks to programmers’ prior knowledge about the essential characteristics of a problem that must be solved, allow a step-by-step path to the solution." (Diego Rasskin-Gutman, "Chess Metaphors: Artificial Intelligence and the Human Mind", 2009)

"Any scientific hypothesis springs from knowledge that was previously generated by observations of facts in the real world. In addition, hypotheses produce predictions that need to be tested. For some, scientific definitions are limited to natural phenomena (although this definition would require mathematics to stop being a science since it deals with ideal objects)." (Diego Rasskin-Gutman, "Chess Metaphors: Artificial Intelligence and the Human Mind", 2009)

"As art, chess speaks to us of the personal decisions that are made in the course of a game. Looking at this facet of the game, the essential protagonist is the aesthetic sense rather than the capacity for calculation, which thus moves us closer to the human dimension and farther from mathematical algorithms." (Diego Rasskin-Gutman, "Chess Metaphors: Artificial Intelligence and the Human Mind", 2009)

"Chess, as a game of zero sum and total information is, theoretically, a game that can be solved. The problem is the immensity of the search tree: the total number of positions surpasses the number of atoms in our galaxy. When there are few pieces on the board, the search space is greatly reduced, and the problem becomes trivial for computers’ calculation capacity." (Diego Rasskin-Gutman, "Chess Metaphors: Artificial Intelligence and the Human Mind", 2009)

"Chess also offers a modality that includes an exercise of totally free creation - compositions. These artificial positions are created for didactic reasons to illustrate a certain subject or to propose a problem that has to be solved following a series of indications" (Diego Rasskin-Gutman, "Chess Metaphors: Artificial Intelligence and the Human Mind", 2009)

"Chess is human communication. Each player, in each move, must understand the opponent’s message or soon fall into difficulties. In this way, the creative act is united with the capacity to understand the opponent’s intentions, resulting in a fight of ideas, wills, and creative imagination." (Diego Rasskin-Gutman, "Chess Metaphors: Artificial Intelligence and the Human Mind", 2009)

"Cognitive psychology has followed a different direction, considering intelligence as a set of mental representations and a series of processes that operate on these representations that allows the individual to adapt to the changing conditions of the environment. This type of approach is connected with information theory. The intelligent mind operates by processing information that it collects from the environment, and the better and faster this information is processed, the more intelligence is demonstrated." (Diego Rasskin-Gutman, "Chess Metaphors: Artificial Intelligence and the Human Mind", 2009)

"Finally, chess has a science - like special attraction since it lets the player first propose hypotheses of different strategic plans that are based on the game rules and possible moves of the pieces and then refute those hypotheses after careful investigation of the different lines of play. This process is analogous to the everyday work of a scientist." (Diego Rasskin-Gutman, "Chess Metaphors: Artificial Intelligence and the Human Mind", 2009)

"From its mystical origins as a dialogue with the supernatural powers to a metaphor for war, chess passes through a period as a representation of order in the universe until it becomes the game-art-science that millions of people all over the world are passionate about and that has developed into a testing ground for the sciences of artificial intelligence and cognitive psychology." (Diego Rasskin-Gutman, "Chess Metaphors: Artificial Intelligence and the Human Mind", 2009)

"Game theory postulates rational behavior for each participant. Each player is conscious of the rules and behaves in accordance with them, each player has sufficient knowledge of the situation in which he or she is involved to be able to evaluate what the best option is when it comes to taking action (a move), and each player takes into account the decisions that might be made by other participants and their repercussions with respect to his or her own decision. Game theory about zero-sum games with two participants is relevant for chess. In this type of situation, each action that is favorable to one participant (player) is proportionally unfavorable for the opponent. Thus, the gain of one represents the loss of the other." (Diego Rasskin-Gutman, "Chess Metaphors: Artificial Intelligence and the Human Mind", 2009)

"Game theory proposes a method called minimization-maximization (minimax) that determines the best possibility that is available to a player by following a decision tree that minimizes the opponent’s gain and maximizes the player’s own. This important algorithm is the basis for generating algorithms for chess programs." (Diego Rasskin-Gutman, "Chess Metaphors: Artificial Intelligence and the Human Mind", 2009)

"If intelligence is a capacity that is gradually acquired as a result of development and learning, then a machine that can learn from experience would have, at least in theory, the capacity to carry out intelligent behavior. [...] Humans have created machines that imitate us - that provide mirrors to see ourselves and measure our strength, our intellect, and even our creativity." (Diego Rasskin-Gutman, "Chess Metaphors: Artificial Intelligence and the Human Mind", 2009)

"In emergent processes, the whole is greater than the sum of the parts. A mathematical phenomenon that appears in certain dynamic systems also occurs within biological systems, from molecular interactions within the cells to the cognitive processes that we use to move within society. [...] Emergent patterns of ideas, beauty, desires, or tragicomedy wait, ready to trap the next traveler in their complex domain of neatly patterned squares - the never-ending world of chess metaphors." (Diego Rasskin-Gutman, "Chess Metaphors: Artificial Intelligence and the Human Mind", 2009)

"In fact, H [entropy] measures the amount of uncertainty that exists in the phenomenon. If there were only one event, its probability would be equal to 1, and H would be equal to 0 - that is, there is no uncertainty about what will happen in a phenomenon with a single event because we always know what is going to occur. The more events that a phenomenon possesses, the more uncertainty there is about the state of the phenomenon. In other words, the more entropy, the more information." (Diego Rasskin-Gutman, "Chess Metaphors: Artificial Intelligence and the Human Mind", 2009)

"Many terms that are used to comment on games are aesthetic allusions, indicating that among chess players it is hard to separate out the game’s creative and analytic aspects. Terms that are frequently used include subtlety, depth, beauty, surprise, vision, brilliance, elegance, harmony, and symmetry." (Diego Rasskin-Gutman, "Chess Metaphors: Artificial Intelligence and the Human Mind", 2009)

"On the surface, chess is a game that has a winner and a loser. However, a deeper look reveals that perhaps chess is not just a game but a line of communication between two brains. [...] chess is a communication device. As with any other act of communication, it is necessary to have someone who sends the message, a transmission medium, and someone who receives the message. Players are both the communicators and receivers; the board and the chess pieces are the transmission medium. In an exchange of messages, ideas, attitudes, and personal positions about the uncertainty of our world, however, where is the win, and where is the loss?" (Diego Rasskin-Gutman, "Chess Metaphors: Artificial Intelligence and the Human Mind", 2009)

"Pattern perception (that is, the perception of similarities in spatial or temporal configurations) has a fundamental role in playing chess [...] The two essential components in decision making in chess are recognizing patterns stored in long-term memory (which requires an exhaustive knowledge database) and searching for a solution within the problem space. The first component uses perception and long-term memory, and the second leans mainly on the calculation of variations, which in turn has its foundations in logical reasoning." (Diego Rasskin-Gutman, "Chess Metaphors: Artificial Intelligence and the Human Mind", 2009)

"The brain and its cognitive mental processes are the biological foundation for creating metaphors about the world and oneself. Artificial intelligence, human beings’ attempt to transcend their biology, tries to enter into these scenarios to learn how they function. But there is another metaphor of the world that has its own particular landscapes, inhabitants, and laws. The brain provides the organic structure that is necessary for generating the mind, which in turn is considered a process that results from brain activity." (Diego Rasskin-Gutman, "Chess Metaphors: Artificial Intelligence and the Human Mind", 2009)

"The master of chess is deeply familiar with these patterns and knows very well the position that would be beneficial to reach. The rest is thinking in a logical way (calculating) about how each piece should be moved to reach the new pattern that has already taken shape in the chess player’s mind. This way of facing chess is closely related to the solving of theorems in mathematics. For example, a mathematician who wishes to prove an equation needs to imagine how the terms on each side of the equal sign can be manipulated so that one is reduced to the other. The enterprise is far from easy, to judge by the more than two hundred years that have been needed to solve theorems such as that of Fermat (z^n = x^n + y^n), using diverse tricks to prove the equation." (Diego Rasskin-Gutman, "Chess Metaphors: Artificial Intelligence and the Human Mind", 2009)

"The mind creates a metaphor of ourselves and of the world that surrounds us. And it is so skillful that it has created machines that are capable of simulating human beings’ own creativity in a series of 1s and 0s [...]" (Diego Rasskin-Gutman, "Chess Metaphors: Artificial Intelligence and the Human Mind", 2009)

"The complexities of the universe are reflected in the complexities of our brains and in that natural, intimate and solitary activity that we call mind. In this process of matching up and representing, the inexhaustible human curiosity accepts the ancestral challenge of exploring the enormity of what we have yet to know. Chess, a world of fixed rules but with almost infinite borders, is an approachable model of that profound and endless human search." (Diego Rasskin-Gutman, "Chess Metaphors: Artificial Intelligence and the Human Mind", 2009)

"The problem of identifying the subset of good moves is much more complicated than simply counting the total number of possibilities and falls completely into the domain of strategy and tactics of chess as a game." (Diego Rasskin-Gutman, "Chess Metaphors: Artificial Intelligence and the Human Mind", 2009)

"The simplest basic architecture of an artificial neural network is composed of three layers of neurons - input, output, and intermediary (historically called perceptron). When the input layer is stimulated, each node responds in a particular way by sending information to the intermediary level nodes, which in turn distribute it to the output layer nodes and thereby generate a response. The key to artificial neural networks is in the ways that the nodes are connected and how each node reacts to the stimuli coming from the nodes it is connected to. Just as with the architecture of the brain, the nodes allow information to pass only if a specific stimulus threshold is passed. This threshold is governed by a mathematical equation that can take different forms. The response depends on the sum of the stimuli coming from the input node connections and is 'all or nothing'." (Diego Rasskin-Gutman, "Chess Metaphors: Artificial Intelligence and the Human Mind", 2009)

"Vision is a capacity to understand a position and to generate solid strategic plans. And a good base of chess knowledge is needed to understand what it means to play with brilliance or elegance." (Diego Rasskin-Gutman, "Chess Metaphors: Artificial Intelligence and the Human Mind", 2009)

"With Kurt Gödel, we fi nd in the twentieth century the idea that formal systems are incomplete, a concept that is perhaps important to chess theory. If undecidable statements exist in chess, then it is impossible to solve them completely with a computer chess program." (Diego Rasskin-Gutman, "Chess Metaphors: Artificial Intelligence and the Human Mind", 2009)

07 March 2021

On Coherence IV

"Man's general way of thinking of the totality, i.e. his general world view, is crucial for overall order of the human mind itself. If he thinks of the totality as constituted of independent fragments, then that is how his mind will tend to operate, but if he can include everything coherently and harmoniously in an overall whole that is undivided, unbroken and without border (for every border is a division or break) then his mind will tend to move in a similar way, and from this will flow an orderly action within the whole." (David Bohm, "Wholeness and the Implicate Order", 1980)

"Nature is disordered, powerful and chaotic, and through fear of the chaos we impose system on it. We abhor complexity, and seek to simplify things whenever we can by whatever means we have at hand. We need to have an overall explanation of what the universe is and how it functions. In order to achieve this overall view we develop explanatory theories which will give structure to natural phenomena: we classify nature into a coherent system which appears to do what we say it does." (James Burke, "The Day the Universe Changed", 1985)

"Metaphor [is] a pervasive mode of understanding by which we project patterns from one domain of experience in order to structure another domain of a different kind. So conceived metaphor is not merely a linguistic mode of expression; rather, it is one of the chief cognitive structures by which we are able to have coherent, ordered experiences that we can reason about and make sense of. Through metaphor, we make use of patterns that obtain in our physical experience to organise our more abstract understanding. " (Mark Johnson, "The Body in the Mind", 1987)

"There is no coherent knowledge, i.e. no uniform comprehensive account of the world and the events in it. There is no comprehensive truth that goes beyond an enumeration of details, but there are many pieces of information, obtained in different ways from different sources and collected for the benefit of the curious. The best way of presenting such knowledge is the list - and the oldest scientific works were indeed lists of facts, parts, coincidences, problems in several specialized domains." (Paul K Feyerabend, "Farewell to Reason", 1987)

"When loops are present, the network is no longer singly connected and local propagation schemes will invariably run into trouble. [...] If we ignore the existence of loops and permit the nodes to continue communicating with each other as if the network were singly connected, messages may circulate indefinitely around the loops and process may not converges to a stable equilibrium. […] Such oscillations do not normally occur in probabilistic networks […] which tend to bring all messages to some stable equilibrium as time goes on. However, this asymptotic equilibrium is not coherent, in the sense that it does not represent the posterior probabilities of all nodes of the network." (Judea Pearl, "Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference", 1988)

"A world view is a system of co-ordinates or a frame of reference in which everything presented to us by our diverse experiences can be placed. It is a symbolic system of representation that allows us to integrate everything we know about the world and ourselves into a global picture, one that illuminates reality as it is presented to us within a certain culture. […] A world view is a coherent collection of concepts and theorems that must allow us to construct a global image of the world, and in this way to understand as many elements of our experience as possible." (Diederick Aerts et al, "World views: From Fragmentation to Integration", 1994)

"There are a variety of swarm topologies, but the only organization that holds a genuine plurality of shapes is the grand mesh. In fact, a plurality of truly divergent components can only remain coherent in a network. No other arrangement-chain, pyramid, tree, circle, hub-can contain true diversity working as a whole. This is why the network is nearly synonymous with democracy or the market." (Kevin Kelly, "Out of Control: The New Biology of Machines, Social Systems and the Economic World", 1995)

"The role of science, like that of art, is to blend proximate imagery with more distant meaning, the parts we already understand with those given as new into larger patterns that are coherent enough to be acceptable as truth. Biologists know this relation by intuition during the course of fieldwork, as they struggle to make order out of the infinitely varying patterns of nature." (Edward O Wilson, "In Search of Nature", 1996)

"Falling between order and chaos, the moment of complexity is the point at which self-organizing systems emerge to create new patterns of coherence and structures of behaviour." (Mark C Taylor, "The Moment of Complexity: Emerging Network Culture", 2001)

04 February 2021

On Imagination (1975-1999)

"Imagination is the outreaching of mind […] the bombardment of the conscious mind with ideas, impulses, images and every sort of psychic phenomena welling up from the preconscious. It is the capacity to ‘dream dreams and see visions’" (Rollo May, "The Courage to Create", 1975)

"The structures with which mathematics deals are more like lace, the leaves of trees, and the play of light and shadow on a human face, than they are like buildings and machines, the least of their representatives. The best proofs in mathematics are short and crisp like epigrams, and the longest have swings and rhythms that are like music. The structures of mathematics and the propositions about them are ways for the imagination to travel and the wings, or legs, or vehicles to take you where you want to go." (Scott Buchanan, "Poetry and Mathematics", 1975)

"[…] the distinction between rigorous thinking and more vague ‘imaginings’; even in mathematics itself, all is not a question of rigor, but rather, at the start, of reasoned intuition and imagination, and, also, repeated guessing. After all, most thinking is a synthesis or juxtaposition of advances along a line of syllogisms - perhaps in a continuous and persistent ‘forward'’ movement, with searching, so to speak ‘sideways’, in directions which are not necessarily present from the very beginning and which I describe as ‘sending out exploratory patrols’ and trying alternative routes." (Stanislaw M Ulam, "Adventures of a Mathematician", 1976)

"Imagination - backed up by practical tests to determine which imaginative leaps are securely founded - is the key to a more accurate world picture." (John R Gribbin, "White holes: Cosmic gushers in the universe", 1977)

"Science is not a heartless pursuit of objective information. It is a creative human activity, its geniuses acting more as artists than information processors. Changes in theory are not simply the derivative results of the new discoveries but the work of creative imagination influenced by contemporary social and political forces. " (Stephen J Gould, "Ever Since Darwin: Reflections in Natural History", 1977)

"Imagination is our means of interpreting the world, and it also is our means of forming images in the mind. The images themselves are not separate from our interpretations of the world; they are our way of thinking of the objects in the world. We see the forms in our mind’s eye and we see these very forms in the world. We could not do one of these things if we could not do the other" (Mary Warnock, "Imagination", 1978)

"Imagination will often carry us to worlds that never were. But without it we go nowhere." (Carl Sagan, "Cosmos", 1980)

"Metaphor is for most people a device of the poetic imagination and the rhetorical flourish - a matter of extraordinary rather than ordinary language. Moreover, metaphor is typieully viewed as characteristic of language alone, a matter of words rather than thought or action. For this reason, most people think they can get along perfectly well without metaphor. We have found, on the contrary, that metaphor is pervasive in everyday life, not just in language but in thought and action. Our ordinary conceptual system, in terms of which we both think and act, is fundamentally metaphorical in nature." (George Lakoff & Mark Johnson, "Metaphors we Live by", 1980)

"Science, since people must do it, is a socially embedded activity. It progresses by hunch, vision, and intuition. Much of its change through time does not record a closer approach to absolute truth, but the alteration of cultural contexts that influence it so strongly. Facts are not pure and unsullied bits of information; culture also influences what we see and how we see it. Theories, moreover, are not inexorable inductions from facts. The most creative theories are often imaginative visions imposed upon facts; the source of imagination is also strongly cultural." (Stephen J Gould, "The Mismeasure of Man", 1980)

"For the great majority of mathematicians, mathematics is […] a whole world of invention and discovery - an art. The construction of a new theorem, the intuition of some new principle, or the creation of a new branch of mathematics is the triumph of the creative imagination of the mathematician, which can be compared to that of a poet, the painter and the sculptor." (George F J Temple, "100 Years of Mathematics: a Personal Viewpoint", 1981)

"At present, no complete account can be given - one may as well ask for an inventory of the entire products of the human imagination - and indeed such an account would be premature, since mental models are supposed to be in people's heads, and their exact constitution is an empirical question. Nevertheless, there are three immediate constraints on possible models. […] 1. The principle of computability: Mental models, and the machinery for constructing and interpreting them, are computable. […] 2. The principle of finitism: A mental model must be finite in size and cannot directly represent an infinite domain. […] 3. The principle of constructivism: A mental model is constructed from tokens arranged in a particular structure to represent a state of affairs." (Philip Johnson-Laird, "Mental Models" 1983)

"Fortunately, somewhere between chance and mystery lies imagination, the only thing that protects our freedom, despite the fact that people keep trying to reduce it or kill it off altogether." (Luis Buñuel, "My Last Breath", 1983)

"The vision of the Universe that is so vivid in our minds is framed by a few iron posts of true observation - themselves resting on theory for their meaning - but most of all the walls and towers in the vision are of papier-mâché, plastered in between those posts by an immense labor of imagination and theory." (John A Wheeler & Wojciech H Zurek, "Quantum Theory and Measurement", 1983)

"Theoretical scientists, inching away from the safe and known, skirting the point of no return, confront nature with a free invention of the intellect. They strip the discovery down and wire it into place in the form of mathematical models or other abstractions that define the perceived relation exactly. The now-naked idea is scrutinized with as much coldness and outward lack of pity as the naturally warm human heart can muster. They try to put it to use, devising experiments or field observations to test its claims. By the rules of scientific procedure it is then either discarded or temporarily sustained. Either way, the central theory encompassing it grows. If the abstractions survive they generate new knowledge from which further exploratory trips of the mind can be planned. Through the repeated alternation between flights of the imagination and the accretion of hard data, a mutual agreement on the workings of the world is written, in the form of natural law." (Edward O Wilson, "Biophilia", 1984)

"[...] without imagination, heightened awareness, moral sense, and some reference to the general culture, the engineering experience becomes less meaningful, less fulfilling than it should be." (Samuel C Florman, "The Civilized Engineer", 1985)

"One cannot ‘invent’ the structure of an object. The most we can do is to patiently bring it to the light of day, with humility - in making it known, it is ‘discovered’. If there is some sort of inventiveness in this work, and if it happens that we find ourselves the maker or indefatigable builder, we are in no sense ‘making’ or ’building’ these ‘structures’. They have not waited for us to find them in order to exist, exactly as they are! But it is in order to express, as faithfully as possible, the things that we have been detecting or discovering, the reticent structure which we are trying to grasp at, perhaps with a language no better than babbling. Thereby are we constantly driven to ‘invent’ the language most appropriate to express, with increasing refinement, the intimate structure of the mathematical object, and to ‘construct’ with the help of this language, bit by bit, those ‘theories’ which claim to give a fair account of what has been apprehended and seen. There is a continual coming and going, uninterrupted, between the apprehension of things, and the means of expressing them by a language in constant state improvement [...].The sole thing that constitutes the true inventiveness and imagination of the researcher is the quality of his attention as he listens to the voices of things." (Alexander Grothendieck, "Récoltes et semailles –Rélexions et témoignage sur un passé de mathématicien", 1985)

"We who are heirs to three recent centuries of scientific development can hardly imagine a state of mind in which many mathematical objects were regarded as symbols of spiritual truths or episodes in sacred history. Yet, unless we make this effort of imagination, a fraction of the history of mathematics is incomprehensible." (Philip J Davis & Rueben Hersh, "The Mathematical Experience", 1985)

"Catastrophes are often stimulated by the failure to feel the emergence of a domain, and so what cannot be felt in the imagination is experienced as embodied sensation in the catastrophe. (William I Thompson, "Gaia, a Way of Knowing: Political Implications of the New Biology", 1987)

"If it should turn out that the whole of physical reality can be described by a finite set of equations, I would be disappointed. I would feel that the Creator had been uncharacteristically lacking in imagination." (Freeman J Dyson, "Infinite in All Directions", 1988)

"The dreams of people are in the machines, a planet network of active imaginations hooked into their made-up, make-believe worlds. Artificial reality is taking over; it has its own children." (Storm Constantine, "Immaculate" (1991)

"The most persuasive positive argument for mental images as objects is [that] whenever one thinks one is seeing something there must be something one is seeing. It might be an object directly, or it might be a mental picture. [This] point is so plausible that it is deniable only at the peril of becoming arbitrary. One should concede that the question whether mental images are entities of some sort is not resolvable by logical or linguistic analysis, and believe what makes sense of experience." (Eva T H Brann,"The World of Imagination" , 1991)

"In many ways, the mathematical quest to understand infinity parallels mystical attempts to understand God. Both religions and mathematics attempt to express the relationships between humans, the universe, and infinity. Both have arcane symbols and rituals, and impenetrable language. Both exercise the deep recesses of our mind and stimulate our imagination. Mathematicians, like priests, seek ‘ideal’, immutable, nonmaterial truths and then often try to apply theses truth in the real world." (Clifford A Pickover, "The Loom of God: Mathematical Tapestries at the Edge of Time", 1997)

"Simple observation generally gets us nowhere. It is the creative imagination that increases our understanding by finding connections between apparently unrelated phenomena, and forming logical, consistent theories to explain them. And if a theory turns out to be wrong, as many do, all is not lost. The struggle to create an imaginative, correct picture of reality frequently tells us where to go next, even when science has temporarily followed the wrong path." (Richard Morris, "The Universe, the Eleventh Dimension, and Everything: What We Know and How We Know It", 1999)

Previous Post << || >> Next Post

01 December 2020

On Symbols (1950-1959)

"The most elementary communication is not possible without some degree of conformity to the 'conventions' of the symbolic system." (Talcott Parsons, "The social system", 1951) 

"We could compare mathematics so formalized to a game of chess in which the symbols correspond to the chessmen; the formulae, to definite positions of the men on the board; the axioms, to the initial positions of the chessmen; the directions for drawing conclusions, to the rules of movement; a proof, to a series of moves which leads from the initial position to a definite configuration of the men.” (Friedrich Waismann & Karl Menger, “Introduction to Mathematical Thinking: The Formation of Concepts in Modern Mathematics”, 1951)

"Culture consists of patterns, explicit and implicit, of and for behavior acquired and transmitted by symbols, constituting the distinctive achievement of human groups, including their embodiments in artifacts; the essential core of culture consists of traditional (i.e., historically derived and selected) ideas and especially their attached values; culture systems may, on the one hand, be considered as products of action, on the other as conditioning elements of further action." (Alfred L Kroeber & Clyde Kluckhohn, "Culture", 1952)

"A signal is comprehended if it serves to make us notice the object or situation it bespeaks. A symbol is understood when we conceive the idea it presents." (Susanne Langer, "Feeling and Form: A Theory of Art", 1953)

"Philosophy is in history, and is never independent of historical discourse. But for the tacit symbolism of life it substitutes, in principle, a conscious symbolism; for a latent meaning, one that is manifest. It is never content to accept its historical situation. It changes this situation by revealing it to itself." (Maurice Merleau-Ponty, "Éloge de la philosophie" ["In Praise of Philosophy"], 1953) 

"Beauty had been born, not, as we so often conceive it nowadays, as an ideal of humanity, but as measure, as the reduction of the chaos of appearances to the precision of linear symbols. Symmetry, balance, harmonic division, mated and mensurated intervals – such were its abstract characteristics." (Herbert Read, "Icon and Idea: The Function of Art in the Development of Human Consciousness", 1955)

"A symbol, therefore, may have no effect and indeed ordinarily will have no effect on the image of the immediate future around one. It does produce an effect, however, of what might be called the image of the image, on the image of the future, on the image of the past, on the image of the potential or even of the image of the possible."(Kenneth E Boulding, "The Image: Knowledge in life and society", 1956)

"The symbol and the metaphor are as necessary to science as to poetry." (Jacob Bronowski, "Science and Human Values", 1956)

"To be sure, mathematics can be extended to any branch of knowledge, including economics, provided the concepts are so clearly defined as to permit accurate symbolic representation. That is only another way of saying that in some branches of discourse it is desirable to know what you are talking about." (James R Newman, "The World of Mathematics", 1956)

"Behind these symbols lie the boldest, purest, coolest abstractions mankind has ever made. No schoolman speculating on essences and attributes ever approached anything like the abstractness of algebra." (Susanne K Langer, "Philosophy in a New Key", 1957)

"The function of mathematical logic is to reveal and codify the logical processes employed in mathematical reasoning and to clarify the concepts of mathematics; it is itself a branch of mathematics, employing mathematical symbolism and technique, a branch which has developed in its entirety during the past hundred years and which in its vigor and fecundity and the power and importance of its discoveries may well claim to be in the forefront of modern mathematics." (Reuben L Goodstein, "Mathematical Logic", 1957)

"Mathematics is neither a description of nature nor an explanation of its operation; it is not concerned with physical motion or with the metaphysical generation of quantities. It is merely the symbolic logic of possible relations, and as such is concerned with neither approximate nor absolute truth, but only with hypothetical truth. That is, mathematics determines what conclusions will follow logically from given premises. The conjunction of mathematics and philosophy, or of mathematics and science is frequently of great service in suggesting new problems and points of view." (Carl B Boyer, "The History of the Calculus and Its Conceptual Development", 1959)

"The mathematician, the statistician, and the philosopher do different things with a theory of probability. The mathematician develops its formal consequences, the statistician applies the work of the mathematician and the philosopher describes in general terms what this application consists in. The mathematician develops symbolic tools without worrying overmuch what the tools are for; the statistician uses them; the philosopher talks about them. Each does his job better if he knows something about the work of the other two." (Irving J Good, "Kinds of Probability", Science Vol. 129 (3347),  1959)

15 November 2020

On Networks (1990-1999)

"A neural network is a massively parallel distributed processor that has a natural propensity for storing experiential knowledge and making it available for use. It resembles the brain in two respects: 1. Knowledge is acquired by the network through a learning process. 2. Interneuron connection strengths known as synaptic weights are used to store the knowledge." (Igor Aleksander, "An introduction to neural computing", 1990) 

"Neural Computing is the study of networks of adaptable nodes which through a process of learning from task examples, store experiential knowledge and make it available for use." (Igor Aleksander, "An introduction to neural computing", 1990) 

"Metaphor plays an essential role in establishing a link between scientific language and the world. Those links are not, however, given once and for all. Theory change, in particular, is accompanied by a change in some of the relevant metaphors and in the corresponding parts of the network of similarities through which terms attach to nature." (Thomas S Kuhn, "Metaphor in science", 1993)

"What is a system? A system is a network of interdependent components that work together to try to accomplish the aim of the system. A system must have an aim. Without an aim, there is no system. The aim of the system must be clear to everyone in the system. The aim must include plans for the future. The aim is a value judgment." (William E Deming, "The New Economics for Industry, Government, Education”, 1993)

"Mathematics says the sum value of a network increases as the square of the number of members. In other words, as the number of nodes in a network increases arithmetically, the value of the network increases exponentially. Adding a few more members can dramatically increase the value of the network." (Kevin Kelly, "Out of Control: The New Biology of Machines, Social Systems and the Economic World", 1995)

"The basic principle of an autocatalytic network is that even though nothing can make itself, everything in the pot has at least one reaction that makes it, involving only other things in the pot. It's a symbiotic system in which everything cooperates to make the metabolism work - the whole is greater than the sum of the parts." (J Doyne Farmer, "The Second Law of Organization" [in The Third Culture: Beyond the Scientific Revolution], 1995)

"The only organization capable of unprejudiced growth, or unguided learning, is a network. All other topologies limit what can happen." (Kevin Kelly, "Out of Control: The New Biology of Machines, Social Systems and the Economic World", 1995)

"The multiplier effect is a major feature of networks and flows. It arises regardless of the particular nature of the resource, be it goods, money, or messages." (John H Holland, "Hidden Order - How Adaptation Builds Complexity", 1995)

"There are a variety of swarm topologies, but the only organization that holds a genuine plurality of shapes is the grand mesh. In fact, a plurality of truly divergent components can only remain coherent in a network. No other arrangement-chain, pyramid, tree, circle, hub-can contain true diversity working as a whole. This is why the network is nearly synonymous with democracy or the market." (Kevin Kelly, "Out of Control: The New Biology of Machines, Social Systems and the Economic World", 1995)

"In the new systems thinking, the metaphor of knowledge as a building is being replaced by that of the network. As we perceive reality as a network of relationships, our descriptions, too, form an interconnected network of concepts and models in which there are no foundations. For most scientists such a view of knowledge as a network with no firm foundations is extremely unsettling, and today it is by no means generally accepted. But as the network approach expands throughout the scientific community, the idea of knowledge as a network will undoubtedly find increasing acceptance." (Fritjof Capra, "The Web of Life: A new scientific understanding of living systems", 1996)

"Networks constitute the new social morphology of our societies, and the diffusion of networking logic substantially modifies the operation and outcomes in processes of production, experience, power, and culture. While the networking form of social organization has existed in other times and spaces, the new information technology paradigm provides the material basis for its pervasive expansion throughout the entire social structure." (Manuel Castells, "The Rise of the Network Society", 1996)

"The more complex the network is, the more complex its pattern of interconnections, the more resilient it will be." (Fritjof Capra, "The Web of Life: A New Scientific Understanding of Living Systems", 1996)

"There is a multilayering of global networks in the key strategic activities that structure and destructure the planet. When these multilayered networks overlap in some node, when there is a node that belongs to different networks, two major consequences follow. First, economies of synergy between these different networks take place in that node: between financial markets and media businesses; or between academic research and technology development and innovation; between politics and media." (Manuel Castells, "The Rise of the Network Society", 1996) 

"When the knowledge base of an industry is both complex and expanding and the sources of expertise are widely dispersed, the locus of innovation will be found in networks of learning, rather than in individual firms." (Walter W. Powell et al, "Interorganizational collaboration and the locus of innovation: Networks of learning in biotechnology", Administrative science quarterly, 1996) 

"Mathematics says the sum value of a network increases as the square of the number of members. In other words, as the number of nodes in a network increases arithmetically, the value of the network increases exponentially. Adding a few more members can dramatically increase the value for all members." (Kevin Kelly, "New Rules for the New Economy: 10 radical strategies for a connected world", 1998)

"Networks have existed in every economy. What’s different now is that networks, enhanced and multiplied by technology, penetrate our lives so deeply that 'network' has become the central metaphor around which our thinking and our economy are organized. Unless we can understand the distinctive logic of networks, we can’t profit from the economic transformation now under way." (Kevin Kelly, "New Rules for the New Economy: 10 radical strategies for a connected world", 1998)

"The dynamic of our society, and particularly our new economy, will increasingly obey the logic of networks. Understanding how networks work will be the key to understanding how the economy works." (Kevin Kelly, "New Rules for the New Economy: 10 radical strategies for a connected world", 1998)

"The notion of system we are interested in may be described generally as a complex of elements or components directly or indirectly related in a network of interrelationships of various kinds, such that it constitutes a dynamic whole with emergent properties." (Walter F Buckley, "Society: A Complex Adaptive System - Essays in Social Theory", 1998)

03 October 2020

The Web of Life III

All knowledge is profitable; profitable in its ennobling effect on the character, in the pleasure it imparts in its acquisition, as well as in the power it gives over the operations of mind and of matter. All knowledge is useful; every part of this complex system of nature is connected with every other. Nothing is isolated. The discovery of to-day, which appears unconnected with any useful process, may, in the course of a few years, become the fruitful source of a thousand inventions." (Joseph Henry, "Report of the Secretary" [Sixth Annual Report of the Board of Regents of the Smithsonian Institution for 1851], 1852)

"The hosts of living organisms are not random creatures, they can be classified in battalions and regiments. Neither are they isolated creatures, for every thread of life is inter-twined with others in a complex web." (John A Thomson, "The System of Animate Nature" Vol. 1, 1920)

"The human mind is so complex and things are so tangled up with each other that, to explain a blade of straw, one would have to take to pieces an entire universe. A definition is a sack of flour compressed into a thimble." (Rémy de Gourmont, "Decadence and Other Essays on the Culture of Ideas", 1921)

"The new paradigm may be called a holistic world view, seeing the world as an integrated whole rather than a dissociated collection of parts. It may also be called an ecological view, if the term 'ecological' is used in a much broader and deeper sense than usual. Deep ecological awareness recognizes the fundamental interdependence of all phenomena and the fact that, as individuals and societies we are all embedded in (and ultimately dependent on) the cyclical process of nature." (Fritjof Capra & Gunter A Pauli, "Steering business toward sustainability", 1995)

"These three insights - the network pattern, the flow of energy, and the nutrient cycles—are essential to the new scientific conception of life. Scientists have formulated them in complicated technical language. They speak of 'autopoietic networks', 'dissipative structures', and 'catalytic cycles'. But the basic phenomena described by those technical terms are the web of life, the flow of energy, and the cycles of nature." (Fritjof Capra," Turn, Turn, Turn: Understanding Nature’s Cycles", 1997)

"All living organisms must feed on continual flows of matter and energy: from their environment to stay alive, and all living organisms continually produce waste. However, an ecosystem generates no net waste, one species' waste being another species' food. Thus, matter cycles continually through the web of life." (Fritjof Capra, "The Hidden Connections", 2002)

"When we look at the world around us, we find that we are not thrown into chaos and randomness but are part of a great order, a grand symphony of life. Every molecule in our body was once a part of previous bodies-living or nonliving-and will be a part of future bodies. In this sense, our body will not die but will live on, again and again, because life lives on. We share not only life's molecules but also its basic principles of organization with the rest of the living world. Arid since our mind, too, is embodied, our concepts and metaphors are embedded in the web of life together with our bodies and brains. We belong to the universe, we are at home in it, and this experience of belonging can make our lives profoundly meaningful." (Fritjof Capra, "The Hidden Connections", 2002)

"All living systems are networks of smaller components, and the web of life as a whole is a multilayered structure of living systems nesting within other living systems - networks within networks." (Fritjof Capra, "The Systems View of Life: A Unifying Vision", 2014)

"In other words, the web of life consists of networks within networks. At each scale, under closer scrutiny, the nodes of the network reveal themselves as smaller networks. We tend to arange these systems, all nesting within larger systems, in a hierarchical scheme by placing the larger systems above the smaller ones in pyramid fashion. But this is a human projection. In nature there is no 'above' or 'below', and there are no hierarchies. There are only networks nesting within other networks." (Fritjof Capra, "The Systems View of Life: A Unifying Vision", 2014)

09 August 2020

Mental Models LIII (Conceptual Models II)

"But metaphor is an indispensable tool of thought and expression - a characteristic of all human communication, even of that of the scientist. The conceptual models of cybernetics and the energy theories of psycho-analysis are, after all, only labeled metaphors." (Gregory Bateson, "Steps to an Ecology of Mind", 1972)

"[…] conceptual models, even when incorrect, are useful to the extent that criticism of the model may point to new theoretical developments."  (Gregory Bateson, "Steps to an Ecology of Mind", 1972)

"As the least conscious layer of the user experience, the conceptual model has the paradoxical quality of also having the most impact on usability. If an appropriate conceptual model is faithfully represented throughout the interface, after users recognize and internalize the model, they will have a fundamental understanding of what the application does and how to operate it." (Bob Baxley, "Making the Web Work: Designing Effective Web Applications", 2002) 

"A conceptual model of an interactive application is, in summary: the structure of the application - the objects and their operations, attributes, and relation-ships; an idealized view of the how the application works – the model designers hope users will internalize; the mechanism by which users accomplish the tasks the application is intended to support." (Jeff Johnson & Austin Henderson, "Conceptual Models", 2011)

"Conceptual models are best thought of as design-tools - a way for designers to straighten out and simplify the design and match it to the users’ task-domain, thereby making it clearer to users how they should think about the application. The designers’ responsibility is to devise a conceptual model that seems natural to users based on the users’ familiarity with the task domain. If designers do their job well, the conceptual model will be the basis for users’ mental models of the application." (Jeff Johnson & Austin Henderson, "Conceptual Models", 2011)

"The conceptual model is not the users’ mental model of the application. […] users of an application form mental models of it to allow them to predict its behavior. A mental model is the user’s high-level understanding of how the application works; it allows the user to predict what the application will do in response to various user-actions. Ideally, a user’s mental model of an application should be similar to the designers’ conceptual model, but in practice the two models may differ significantly. Even if a user’s mental model is the same as the designer’s conceptual model, they are distinct models." (Jeff Johnson & Austin Henderson, "Conceptual Models", 2011)

"Briefly, a conceptual model is the configuration of conceptual elements and the navigation between them. As such, a conceptual model is the foundation of the user interface of any interactive system." (Avi Parush, "Conceptual Design for Interactive Systems", 2015)

"A conceptual model is a framework that is initially used in research to outline the possible courses of action or to present an idea or thought. When a conceptual model is developed in a logical manner, it will provide a rigor to the research process." (N Elangovan & R Rajendran, "Conceptual Model: A Framework for Institutionalizing the Vigor in Business Research", 2015) 

"Once we understand our user's mental model, we can capture it in a conceptual model. The conceptual model is a representation of the mental model using elements, relationships, and conditions. Our design and final system will be the tangible result of this conceptual model." (Pau Giner & Pablo Perea, "UX Design for Mobile, 2017) 

"A model or conceptual model is a schematic or representation that describes how something works. We create and adapt models all the time without realizing it. Over time, as you gain more information about a problem domain, your model will improve to better match reality." (James Padolsey, "Clean Code in JavaScript", 2020)

28 February 2020

On Cybernetics (1960-1969)

"Cybernetics is the general science of communication. But to refer to communication is consciously or otherwise to refer to distinguishable states of information inputs and outputs and /or to information being processed within some relatively isolated system." (Henryk Greniewski, "Cybernetics without Mathematics", 1960)

"Cybernetics offers a scientific approach to the cussedness of organisms, suggests how their behaviours can be catalysed and the mystique and rule of thumb banished." (Gordon Pask, "An Approach to Cybernetics", 1961)

"Cybernetics is concerned primarily with the construction of theories and models in science, without making a hard and fast distinction between the physical and the biological sciences. The theories and models occur both in symbols and in hardware, and by 'hardware’ we shall mean a machine or computer built in terms of physical or chemical, or indeed any handleable parts. Most usually we shall think of hardware as meaning electronic parts such as valves and relays. Cybernetics insists, also, on a further and rather special condition that distinguishes it from ordinary scientific theorizing: it demands a certain standard of effectiveness. In this respect it has acquired some of the same motive power that has driven research on modern logic, and this is especially true in the construction and application of artificial languages and the use of operational definitions. Always the search is for precision and effectiveness, and we must now discuss the question of effectiveness in some detail. It should be noted that when we talk in these terms we are giving pride of place to the theory of automata at the expense, at least to some extent, of feedback and information theory." (Frank H George, "The Brain As A Computer", 1962)

"The famous balance of nature is the most extraordinary of all cybernetic systems. Left to itself, it is always self-regulated." (Joseph W Krutch, Saturday Review, 1963)

"The famous balance of nature is the most extraordinary of all cybernetic systems. Left to itself, it is always self-regulated." (Joseph W Krutch, "If You Don't Mind My Saying So...: Essays on Man and Nature", 1964)

"Cybernetics is the science or the art of manipulating defensible metaphors; showing how they may be constructed and what can be inferred as a result of their existence." (Gordon Pask, "The Cybernetics of Human Performance and Learning", 1966)

"[…] cybernetics studies the flow of information round a system, and the way in which this information is used by the system as a means of controlling itself: it does this for animate and inanimate systems indifferently. For cybernetics is an interdisciplinary science, owing as much to biology as to physics, as much to the study of the brain as to the study of computers, and owing also a great deal to the formal languages of science for providing tools with which the behaviour of all these systems can be objectively described." (A Stafford Beer, 1966)

"In the language of cybernetics, maintaining reactions can be outlined as follows: the sensing material receives information about the external environment in the form of coded signals. This information is reprocessed and sent in the form of new signals through defined channels, or networks. This new information brings about an internal reorganization of the system which contributes to the preservation of its integrity. The mechanism which reprocesses the information is called the control system. It consists of a vast number of input and output elements, connected by channels through which the signals are transmitted. The information can be stored in a recall or memory system, which may consist of separate elements, each of which can be in one of several stable states. The particular state of the element varies, under the influence of the input signals. When a number of such elements are in certain specified states, information is, in effect, recorded in the form of a text of finite length, using an alphabet with a finite number of characters. These processes underlie contemporary electronic computing machines and are, in a number of respects, strongly analogous to biological memory systems." (Carl Sagan, "Intelligent Life in the Universe", 1966)

"Now we are looking for another basic outlook on the world - the world as organization. Such a conception - if it can be substantiated - would indeed change the basic categories upon which scientific thought rests, and profoundly influence practical attitudes. This trend is marked by the emergence of a bundle of new disciplines such as cybernetics, information theory, general system theory, theories of games, of decisions, of queuing and others; in practical applications, systems analysis, systems engineering, operations research, etc. They are different in basic assumptions, mathematical techniques and aims, and they are often unsatisfactory and sometimes contradictory. They agree, however, in being concerned, in one way or another, with ‘systems’, ‘wholes’ or ‘organizations’; and in their totality, they herald a new approach." (Ludwig von Bertalanffy, "General System Theory", 1968)

"Cybernetics, based upon the principle of feedback or circular causal trains providing mechanisms for goal-seeking and self-controlling behavior." (Ludwig von Bertalanffy, "General System Theory", 1968)

"A more viable model, one much more faithful to the kind of system that society is more and more recognized to be, is in process of developing out of, or is in keeping with, the modern systems perspective (which we use loosely here to refer to general systems research, cybernetics, information and communication theory, and related fields). Society, or the sociocultural system, is not, then, principally an equilibrium system or a homeostatic system, but what we shall simply refer to as a complex adaptive system." (Walter F Buckley, "Society as a complex adaptive system", 1968)

"According to the science of cybernetics, which deals with the topic of control in every kind of system (mechanical, electronic, biological, human, economic, and so on), there is a natural law that governs the capacity of a control system to work. It says that the control must be capable of generating as much 'variety' as the situation to be controlled. (Anthony S Beer, "Management Science", 1968)

"Perhaps the most important single characteristic of modern organizational cybernetics is this: That in addition to concern with the deleterious impacts of rigidly-imposed notions of what constitutes the application of good 'principles of organization and management' the organization is viewed as a subsystem of a larger system(s), and as comprised itself of functionally interdependent subsystems." (Richard F Ericson, "Organizational cybernetics and human values", 1969)
Related Posts Plugin for WordPress, Blogger...

On Leonhard Euler

"I have been able to solve a few problems of mathematical physics on which the greatest mathematicians since Euler have struggled in va...