Showing posts with label transformations. Show all posts
Showing posts with label transformations. Show all posts

07 November 2023

On Transformations ( - 1899)

"Given that annihilation of nature in its entirety is impossible, and that death and dissolution are not appropriate to the whole mass of this entire globe or star, from time to time, according to an established order, it is renewed, altered, changed, and transformed in all its parts." (Giordano Bruno, "The Ash Wednesday Supper", 1584)

"Concerning the theory of equations, I have tried to find out under what circumstances equations are solvable by radicals, which gave me the opportunity of investigating thoroughly, and describing, all transformations possible on an equation, even if it is the case that it is not solvable by radicals." (Évariste Galois, [letter to Auguste Chevalier] 1832)

"[Algebra] has for its object the resolution of equations; taking this expression in its full logical meaning, which signifies the transformation of implicit functions into equivalent explicit ones. In the same way arithmetic may be defined as destined to the determination of the values of functions. […] We will briefly say that Algebra is the Calculus of functions, and Arithmetic is the Calculus of Values." (Auguste Comte, "Philosophy of Mathematics", 1851)

"[…] the quantities of heat which must be imparted to, or withdrawn from a changeable body are not the same, when these changes occur in a non-reversible manner, as they are when the same changes occur reversibly. In the second place, with each non-reversible change is associated an uncompensated transformation […] I propose to call the magnitude S the entropy of the body […] I have intentionally formed the word entropy so as to be as similar as possible to the word energy […]" (Rudolf Clausius, "The Mechanical Theory of Heat", 1867)

"The second fundamental theorem [the second law of thermodynamics], in the form which I have given to it, asserts that all transformations occurring in nature may take place in a certain direction, which I have assumed as positive, by themselves, that is, without compensation […] the entire condition of the universe must always continue to change in that first direction, and the universe must consequently approach incessantly a limiting condition. […] For every body two magnitudes have thereby presented themselves - the transformation value of its thermal content [the amount of inputted energy that is converted to 'work'], and its disgregation [separation or disintegration]; the sum of which constitutes its entropy." (Rudolf Clausius, "The Mechanical Theory of Heat", 1867)

"Mathematics is the science of the functional laws and transformations which enable us to convert figured extension and rated motion into number." (George H Howison, "The Departments of Mathematics, and their Mutual Relations", Journal of Speculative Philosophy Vol. 5, No. 2, 1871)

"Instead of the points of a line, plane, space, or any manifold under investigation, we may use instead any figure contained within the manifold: a group of points, curve, surface, etc. As there is nothing at all determined at the outset about the number of arbitrary parameters upon which these figures should depend, the number of dimensions of the line, plane, space, etc. is likewise arbitrary and depends only on the choice of space element. But so long as we base our geometrical investigation on the same group of transformations, the geometrical content remains unchanged. That is, every theorem resulting from one choice of space element will also be a theorem under any other choice; only the arrangement and correlation of the theorems will be changed. The essential thing is thus the group of transformations; the number of dimensions to be assigned to a manifold is only of secondary importance." (Felix Klein, "A comparative review of recent researches in geometry", Bulletin of the American Mathematoical Society 2(10), 1893)

"In our century the conceptions substitution and substitution group, transformation and transformation group, operation and operation group, invariant, differential invariant and differential parameter, appear more and more clearly as the most important conceptions of mathematics." (Sophus Lie, Leipziger Berichte No. 47, 1896)

05 November 2023

On Transformations (1900-1949)

"The power of differential calculus is that it linearizes all problems by going back to the 'infinitesimally small', but this process can be used only on smooth manifolds. Thus our distinction between the two senses of rotation on a smooth manifold rests on the fact that a continuously differentiable coordinate transformation leaving the origin fixed can be approximated by a linear transformation at О and one separates the (nondegenerate) homogeneous linear transformations into positive and negative according to the sign of their determinants. Also the invariance of the dimension for a smooth manifold follows simply from the fact that a linear substitution which has an inverse preserves the number of variables." (Hermann Weyl, "The Concept of a Riemann Surface", 1913)

"It can, you see, be said, with the same approximation to truth, that the whole of science, including mathematics, consists in the study of transformations or in the study of relations." (Cassius J Keyser. "Mathematical Philosophy: A Study of Fate and Freedom", 1922)

"The conception of tensors is possible owing to the circumstance that the transition from one co-ordinate system to another expresses itself as a linear transformation in the differentials. One here uses the exceedingly fruitful mathematical device of making a problem "linear" by reverting to infinitely small quantities." (Hermann Weyl, "Space - Time - Matter", 1922)

"The sequence of different positions of the same particle at different times forms a one-dimensional continuum in the four-dimensional space-time, which is called the world-line of the particle. All that physical experiments or observations can teach us refers to intersections of world-lines of different material particles, light-pulsations, etc., and how the course of the world-line is between these points of intersection is entirely irrelevant and outside the domain of physics. The system of intersecting world-lines can thus be twisted about at will, so long as no points of intersection are destroyed or created, and their order is not changed. It follows that the equations expressing the physical laws must be invariant for arbitrary transformations." (Willem de Sitter, "Kosmos", 1932)

"A mathematician is not a man who can readily manipulate figures; often he cannot. He is not even a man who can readily perform the transformations of equations by the use of calculus. He is primarily an individual who is skilled in the use of symbolic logic on a high plane, and especially he is a man of intuitive judgment in the choice of the manipulative processes he employs." (Vannevar Bush, "As We May Think", 1945)

"It should be observed first that the whole concept of a category is essentially an auxiliary one; our basic concepts are essentially those of a functor and of a natural transformation […]. The idea of a category is required only by the precept that every function should have a definite class as domain and a definite class as range, for the categories are provided as the domains and ranges of functors. Thus one could drop the category concept altogether […]" (Samuel Eilenberg & Saunders Mac Lane, "A general theory of natural equivalences", Transactions of the American Mathematical Society 58, 1945)

"We have assumed that the laws of nature must be capable of expression in a form which is invariant for all possible transformations of the space-time co-ordinates." (Gerald J Whitrow, "The Structure of the Universe: An Introduction to Cosmology", 1949)

On Transformations (2010 - )

"All forms of complex causation, and especially nonlinear transformations, admittedly stack the deck against prediction. Linear describes an outcome produced by one or more variables where the effect is additive. Any other interaction is nonlinear. This would include outcomes that involve step functions or phase transitions. The hard sciences routinely describe nonlinear phenomena. Making predictions about them becomes increasingly problematic when multiple variables are involved that have complex interactions. Some simple nonlinear systems can quickly become unpredictable when small variations in their inputs are introduced." (Richard N Lebow, "Forbidden Fruit: Counterfactuals and International Relations", 2010)

"Strange attractors, unlike regular ones, are geometrically very complicated, as revealed by the evolution of a small phase-space volume. For instance, if the attractor is a limit cycle, a small two-dimensional volume does not change too much its shape: in a direction it maintains its size, while in the other it shrinks till becoming a 'very thin strand' with an almost constant length. In chaotic systems, instead, the dynamics continuously stretches and folds an initial small volume transforming it into a thinner and thinner 'ribbon' with an exponentially increasing length." (Massimo Cencini et al, "Chaos: From Simple Models to Complex Systems", 2010)

"Symmetry may have its appeal but it is inherently stale. Some kind of imbalance is behind every transformation." (Marcelo Gleiser, "A Tear at the Edge of Creation: A Radical New Vision for Life in an Imperfect Universe", 2010)

"[…] topology is the study of those properties of geometric objects which remain unchanged under bi-uniform and bi-continuous transformations. Such transformations can be thought of as bending, stretching, twisting or compressing or any combination of these." (Lokenath Debnath, "The Legacy of Leonhard Euler - A Tricentennial Tribute", 2010)

"A crucial difference between topology and geometry lies in the set of allowable transformations. In topology, the set of allowable transformations is much larger and conceptually much richer than is the set of Euclidean transformations. All Euclidean transformations are topological transformations, but most topological transformations are not Euclidean. Similarly, the sets of transformations that define other geometries are also topological transformations, but many topological transformations have no counterpart in these geometries. It is in this sense that topology is a generalization of geometry." (John Tabak, "Beyond Geometry: A new mathematics of space and form", 2011)

"What distinguishes topological transformations from geometric ones is that topological transformations are more 'primitive'. They retain only the most basic properties of the sets of points on which they act." (John Tabak, "Beyond Geometry: A new mathematics of space and form", 2011)

"The potential freedom in the choice of a particular mathematical representation of physical objects is loosely called symmetry. In mathematical terms, physical symmetries are intimately related to groups in the sense that symmetry transformations form a group." (Teiko Heinosaari & Mario Ziman, "The Mathematical Language of Quantum Theory: From Uncertainty to Entanglement", 2012)

"Mathematics does not merely describe the problem in an abstract way, it allows us to find a previously unknown 'solution' from the abstract description. It is surprising that the unknown can be transformed into the well known when we succeed in describing the problem mathematically." (Waro Iwane, "Mathematics in Our Company: What Does It Describe?", [in "What Mathematics Can Do for You"] 2013)

"[…] the symmetry group of the infinite logarithmic spiral is an infinite group, with one element for each real number . Two such transformations compose by adding the corresponding angles, so this group is isomorphic to the real numbers under addition." (Ian Stewart, "Symmetry: A Very Short Introduction", 2013)

"Intersections of lines, for example, remain intersections, and the hole in a torus (doughnut) cannot be transformed away. Thus a doughnut may be transformed topologically into a coffee cup (the hole turning into a handle) but never into a pancake. Topology, then, is really a mathematics of relationships, of unchangeable, or 'invariant', patterns." (Fritjof Capra, "The Systems View of Life: A Unifying Vision", 2014)

"It is evident that chaotic behavior, in the new scientific sense of the term, is very different from random, erratic motion. With the help of strange attractors a distinction can be made between mere randomness, or 'noise', and chaos. Chaotic behavior is deterministic and patterned, and strange attractors allow us to transform the seemingly random data into distinct visible shapes." (Fritjof Capra, "The Systems View of Life: A Unifying Vision", 2014)

"Topology is a geometry in which all lengths, angles, and areas can be distorted at will. Thus a triangle can be continuously transformed into a rectangle, the rectangle into a square, the square into a circle, and so on. Similarly, a cube can be transformed into a cylinder, the cylinder into a cone, the cone into a sphere. Because of these continuous transformations, topology is known popularly as 'rubber sheet geometry'. All figures that can be transformed into each other by continuous bending, stretching, and twisting are called 'topologically equivalent'." (Fritjof Capra, "The Systems View of Life: A Unifying Vision", 2014)

"[…] topology is concerned precisely with those properties of geometric figures that do not change when the figures are transformed. Intersections of lines, for example, remain intersections, and the hole in a torus (doughnut) cannot be transformed away. Thus a doughnut may be transformed topologically into a coffee cup (the hole turning into a handle) but never into a pancake. Topology, then, is really a mathematics of relationships, of unchangeable, or 'invariant', patterns." (Fritjof Capra, "The Systems View of Life: A Unifying Vision", 2014)

"[…] the role that symmetry plays is not confined to material objects. Symmetries can also refer to theories and, in particular, to quantum theory. For if the laws of physics are to be invariant under changes of reference frames, the set of all such transformations will form a group. Which transformations and which groups depends on the systems under consideration." (William H Klink & Sujeev Wickramasekara, "Relativity, Symmetry and the Structure of Quantum Theory I: Galilean quantum theory", 2015)

"Symmetries are transformations that keep certain parameters (properties, equations, and so on) invariant, that is, the parameters they refer to are conserved under these transformations. It is to be expected, therefore, that the identification of conserved quantities is inseparable from the identification of fundamental symmetries in the laws of nature. Symmetries single out 'privileged' operations, conservation laws single out 'privileged' quantities or properties that correspond to these operations. Yet the specific connections between a particular symmetry and the invariance it entails are far from obvious. For instance, the isotropy of space (the indistinguishability of its directions) is intuitive enough, but the conservation of angular momentum based on that symmetry, and indeed, the concept of angular momentum, are far less intuitive." (Yemima Ben-Menahem, "Causation in Science", 2018)

On Transformations (2000-2009)

"Compound errors can begin with any of the standard sorts of bad statistics - a guess, a poor sample, an inadvertent transformation, perhaps confusion over the meaning of a complex statistic. People inevitably want to put statistics to use, to explore a number's implications. [...] The strengths and weaknesses of those original numbers should affect our confidence in the second-generation statistics." (Joel Best, "Damned Lies and Statistics: Untangling Numbers from the Media, Politicians, and Activists", 2001)

"A permutation test based on the original observations is appropriate only if one can assume that under the null hypothesis the observations are identically distributed in each of the populations from which the samples are drawn. If we cannot make this assumption, we will need to transform the observations, throwing away some of the information about them so that the distributions of the transformed observations are identical." (Phillip I Good & James W Hardin, "Common Errors in Statistics (and How to Avoid Them)", 2003)

"A physical system is said to possess a symmetry if one can make a change in the system such that, after the change, the system is exactly the same as it was before. We call the change we are making to the system a symmetry operation or a symmetry transformation. If a system stays the same when we do a transformation to it, we say that the system is invariant under the transformation." (Leon M Lederman & Christopher T Hill, "Symmetry and the Beautiful Universe", 2004)

"A symmetry is a set of transformations applied to a structure, such that the transformations preserve the properties of the structure." (Philip Dorrell, "What is Music?: Solving a Scientific Mystery", 2004)

"So, a scientist's definition of symmetry would be something like this: symmetry is an invariance of an object or system to a transformation. The invariance is the sameness or constancy of the system in form, appearance, composition, arrangement, and so on, and a transformation is the abstract action we apply to the system that takes it from one state into another, equivalent, one. There are often numerous transformations we can apply on a given system that take it into an equivalent state." (Leon M Lederman & Christopher T Hill, "Symmetry and the Beautiful Universe", 2004)

"Intuitively, two spaces that are homeomorphic have the same general shape in spite of possible deformations of distance and angle. Thus, if two spaces are not homeomorphic, they will tend to look distinctly different. Our job is to specify the difference. To do this rigorously, we need to define some property of topological spaces and show that the property is preserved under transformations by any homeomorphism. Then if one space has the property and the other one does not have the property, there is no way they can be homeomorphic." (Robert Messer & Philip Straffin, "Topology Now!", 2006)

"Topology is the study of geometric objects as they are transformed by continuous deformations. To a topologist the general shape of the objects is of more importance than distance, size, or angle." (Robert Messer & Philip Straffin, "Topology Now!", 2006)

"A great deal of the results in many areas of physics are presented in the form of conservation laws, stating that some quantities do not change during evolution of the system. However, the formulations in cybernetical physics are different. Since the results in cybernetical physics establish how the evolution of the system can be changed by control, they should be formulated as transformation laws, specifying the classes of changes in the evolution of the system attainable by control function from the given class, i.e., specifying the limits of control." (Alexander L Fradkov, "Cybernetical Physics: From Control of Chaos to Quantum Control", 2007)

"Poetry and code - and mathematics - make us read differently from other forms of writing. Written poetry makes the silent reader read three kinds of pattern at once; code moves the reader from a static to an active, interactive and looped domain; while algebraic topology allows us to read qualitative forms and their transformations." (Stephanie Strickland & Cynthia L Jaramillo, "Dovetailing Details Fly Apart - All over, again, in code, in poetry, in chreods", 2007)

"Under certain circumstances, complex systems can demonstrate stronger types of particular correlation, some forming almost instantaneously to overwhelm their parent and transforming it into something completely and unexpectedly. This is the phenomenon we now know understand as 'emergence', the process by which complex systems transition into something that they once were not. Like complexity, emergence has a spectrum of disguises, being capable of manifesting great subtlety and power." (Philip Tetlow, "The Web’s Awake: An Introduction to the Field of Web Science and the Concept of Web Life", 2007)

"The concept of symmetry is used widely in physics. If the laws that determine relations between physical magnitudes and a change of these magnitudes in the course of time do not vary at the definite operations (transformations), they say, that these laws have symmetry (or they are invariant) with respect to the given transformations. For example, the law of gravitation is valid for any points of space, that is, this law is in variant with respect to the system of coordinates." (Alexey Stakhov et al, "The Mathematics of Harmony", 2009)

"The methodology of feedback design is borrowed from cybernetics (control theory). It is based upon methods of controlled system model’s building, methods of system states and parameters estimation (identification), and methods of feedback synthesis. The models of controlled system used in cybernetics differ from conventional models of physics and mechanics in that they have explicitly specified inputs and outputs. Unlike conventional physics results, often formulated as conservation laws, the results of cybernetical physics are formulated in the form of transformation laws, establishing the possibilities and limits of changing properties of a physical system by means of control." (Alexander L Fradkov, "Cybernetical Physics: From Control of Chaos to Quantum Control", 2007)

04 November 2023

On Transformations (1975-1999)

 "Every branch of geometry can be defined as the study of properties that are unaltered when a specified figure is given specified symmetry transformations. Euclidian plane geometry, for instance, concerns the study of properties that are 'invariant' when a figure is moved about on the plane, rotated, mirror reflected, or uniformly expanded and contracted. Affine geometry studies properties that are invariant when a figure is 'stretched' in a certain way. Projective geometry studies properties invariant under projection. Topology deals with properties that remain unchanged even when a figure is radically distorted in a manner similar to the deformation of a figure made of rubber." (Martin Gardner, "Aha! Insight", 1978)

"Topology has to do with those properties of a space which are left unchanged by the kind of transformation that we have called a topological equivalence or homeomorphism. But what sort of spaces interest us and what exactly do we mean by a 'space? The idea of a homeomorphism involves very strongly the notion of continuity [...]"  (Mark A Armstrong, "Basic Topology", 1979)

"The relations that define a system as a unity, and determine the dynamics of interaction and transformations which it may undergo as such a unity constitute the organization of the machine."(Humberto Maturana, "Autopoiesis and cognition: The realization of the living", 1980)

"The search for fundamental symmetries boils down to the study of transformations that do not change fundamental physical action - such transformations as reflection, rotation, the Lorentz transformation, and the like." (Anthony Zee, "Fearful Symmetry: The Search for Beauty in Modern Physics", 1986)

"And finally we wish to note that critical economies are associated with bifurcation values of the exogenous parameters of the economy. Critical economies are states at which an economy discontinuously undergoes a structural transformation in the pattern of its equilibria in response to slow changes in parameters. In short, general equilibria are susceptible to catastrophes in the general sense." (J Barkley Rosser Jr., "From Catastrophe to Chaos: A General Theory of Economic Discontinuities", 1991)

"[…] a symmetry isn't a thing; it's a transformation. Not any old transformation, though: a symmetry of an object is a transformation that leaves it apparently unchanged." (Ian Stewart & Martin Golubitsky, "Fearful Symmetry: Is God a Geometer?", 1992)

"To a mathematician, an object possesses symmetry if it retains its form after some transformation. A circle, for example, looks the same after any rotation; so a mathematician says that a circle is symmetric, even though a circle is not really a pattern in the conventional sense - something made up from separate, identical bits. Indeed the mathematician generalizes, saying that any object that retains its form when rotated - such as a cylinder, a cone, or a pot thrown on a potter's wheel - has circular symmetry." (Ian Stewart & Martin Golubitsky,"Fearful Symmetry: Is God a Geometer?", 1992)

"The logarithm is one of many transformations that we can apply to univariate measurements. The square root is another. Transformation is a critical tool for visualization or for any other mode of data analysis because it can substantially simplify the structure of a set of data. For example, transformation can remove skewness toward large values, and it can remove monotone increasing spread. And often, it is the logarithm that achieves this removal." (William S Cleveland, "Visualizing Data", 1993)

"If you start with a number and form its square root, you get another number. The term for such an 'object' is function. You can think of a function as a mathematical rule that starts with a mathematical object-usually a number-and associates to it another object in a specific manner. Functions are often defined using algebraic formulas, which are just shorthand ways to explain what the rule is, but they can be defined by any convenient method. Another term with the same meaning as 'function' is transformation: the rule transforms the first object into the second. […] Operations and functions are very similar concepts. Indeed, on a suitable level of generality there is not much to distinguish them. Both of them are processes rather than things." (Ian Stewart, "Nature's Numbers: The unreal reality of mathematics", 1995)

"Topology studies the properties of geometrical objects that remain unchanged under transformations called homeomorphisms and deformations." (Victor V Prasolov, "Intuitive Topology", 1995)

"A formal system consists of a number of tokens or symbols, like pieces in a game. These symbols can be combined into patterns by means of a set of rules which defines what is or is not permissible (e.g. the rules of chess). These rules are strictly formal, i.e. they conform to a precise logic. The configuration of the symbols at any specific moment constitutes a ‘state’ of the system. A specific state will activate the applicable rules which then transform the system from one state to another. If the set of rules governing the behaviour of the system are exact and complete, one could test whether various possible states of the system are or are not permissible." (Paul Cilliers, "Complexity and Postmodernism: Understanding Complex Systems", 1998)

"In our analysis of complex systems (like the brain and language) we must avoid the trap of trying to find master keys. Because of the mechanisms by which complex systems structure themselves, single principles provide inadequate descriptions. We should rather be sensitive to complex and self-organizing interactions and appreciate the play of patterns that perpetually transforms the system itself as well as the environment in which it operates." (Paul Cilliers, "Complexity and Postmodernism: Understanding Complex Systems", 1998)

"Cybernetics is the science of effective organization, of control and communication in animals and machines. It is the art of steersmanship, of regulation and stability. The concern here is with function, not construction, in providing regular and reproducible behaviour in the presence of disturbances. Here the emphasis is on families of solutions, ways of arranging matters that can apply to all forms of systems, whatever the material or design employed. [...] This science concerns the effects of inputs on outputs, but in the sense that the output state is desired to be constant or predictable – we wish the system to maintain an equilibrium state. It is applicable mostly to complex systems and to coupled systems, and uses the concepts of feedback and transformations (mappings from input to output) to effect the desired invariance or stability in the result." (Chris Lucas, "Cybernetics and Stochastic Systems", 1999)

"One of the basic tasks of topology is to learn to distinguish nonhomeomorphic figures. To this end one introduces the class of invariant quantities that do not change under homeomorphic transformations of a given figure. The study of the invariance of topological spaces is connected with the solution of a whole series of complex questions: Can one describe a class of invariants of a given manifold? Is there a set of integral invariants that fully characterizes the topological type of a manifold? and so forth." (Michael I Monastyrsky, "Riemann, Topology, and Physics", 1999)

"Topology studies those characteristics of figures which are preserved under a certain class of continuous transformations. Imagine two figures, a square and a circular disk, made of rubber. Deformations can convert the square into the disk, but without tearing the figure it is impossible to convert the disk by any deformation into an annulus. In topology, this intuitively obvious distinction is formalized." (Michael I Monastyrsky, "Riemann, Topology, and Physics", 1999)

"Two figures which can be transformed into one other by continuous deformations without cutting and pasting are called homeomorphic. […] The definition of a homeomorphism includes two conditions: continuous and one- to-one correspondence between the points of two figures. The relation between the two properties has fundamental significance for defining such a paramount concept as the dimension of space." (Michael I Monastyrsky, "Riemann, Topology, and Physics", 1999)

On Transformation (1900-1974)

"The notion of an abstract group arises by consideration of the formal properties of one-to-one transformations of a set onto itself. Similarly, the notion of a category is obtained from the formal properties of the class of all transformations y : X → Y of any one set into another, or of continuous transformations of one topological space into another, or of homomorphisms, of one group into another, and so on." (Saunders Mac Lane, "Duality for groups", Bulletin of the American Mathematical Society 56, 1950)

"The discrete change has only to become small enough in its jump to approximate as closely as is desired to the continuous change. It must further be remembered that in natural phenomena the observations are almost invariably made at discrete intervals; the 'continuity' ascribed to natural events has often been put there by the observer's imagina- tion, not by actual observation at each of an infinite number of points. Thus the real truth is that the natural system is observed at discrete points, and our transformation represents it at discrete points. There can, therefore, be no real incompatibility." (W Ross Ashby, "An Introduction to Cybernetics", 1956)

"If a machine is a purposive system, then the machine's description will be given by an account of the successive states of the system as its purpose unfolds. This succession of states is given by a set of transitions of one item to another, and this set is known technically as a transformation. When the transforms obtained from a transformation include no fresh item, but are concerned with re-arranging the items that are there already, we speak of a closed system." (Stafford Beer, "Cybernetics and Management", 1959)

"Category theory is an embodiment of Klein’s dictum that it is the maps that count in mathematics. If the dictum is true, then it is the functors between categories that are important, not the categories. And such is the case. Indeed, the notion of category is best excused as that which is necessary in order to have the notion of functor. But the progression does not stop here. There are maps between functors, and they are called natural transformations." (Peter Freyd, "The theories of functors and models", 1965)

"A manifold can be given by specifying the coordinate ranges of an atlas, the images in those coordinate ranges of the overlapping parts of the coordinate domains, and the coordinate transformations for each of those overlapping domains. When a manifold is specified in this way, a rather tricky condition on the specifications is needed to give the Hausdorff property, but otherwise the topology can be defined completely by simply requiring the coordinate maps to be homeomorphisms." (Richard L Bishop & Samuel I Goldberg, "Tensor Analysis on Manifolds", 1968)

"A structure is a system of transformations. Inasmuch as it is a system and not a mere collection of elements and their properties, these transformations involve laws: the structure is preserved or enriched by the interplay of its transformation laws, which never yield results external to the system nor employ elements that are external to it. In short, the notion of structure is composed of three key ideas: the idea of wholeness, the idea of transformation, and the idea of self-regulation." (Jean Piaget, "Structuralism", 1968)

"Knowing reality means constructing systems of transformations that correspond, more or less adequately, to reality. They are more or less isomorphic to transformations of reality. The transformational structures of which knowledge consists are not copies of the transformations in reality; they are simply possible isomorphic models among which experience can enable us to choose. Knowledge, then, is a system of transformations that become progressively adequate." (Jean Piaget, "Genetic Epistemology", 1968)

"[…] topology, a science that studies the properties of geometric figures that do not change under continuous transformations." (Yakov Khurgin, "Did You Say Mathematics?", 1974)

"[…] under plane transformations, like those encountered in the arbitrary stretching of a rubber sheet, certain properties of the figures involved are preserved. The mathematician has a name for them. They are called continuous transformations. This means that very close lying points pass into close lying points and a line is translated into a line under these transformations. Quite obviously, then, two intersecting lines will continue to intersect under a continuous transformation, and nonintersecting lines will not intersect; also, a figure with a hole cannot translate into a figure without a hole or into one with two holes, for that would require some kind of tearing or gluing - a disruption of the continuity." (Yakov Khurgin, "Did You Say Mathematics?", 1974)

25 January 2021

On Continuity II (Topology)

"Things are called continuous when the touching limits of each become one and the same and are contained in each other. Continuity is impossible if these extremities are two. […] Continuity belongs to things that naturally in virtue of their mutual contact form a unity. And in whatever way that which holds them together is one, so too will the whole be one."(Aristotle, "Physics", cca. 350 BC)

"When what surrounds, then, is not separate from the thing, but is in continuity with it, the thing is said to be in what surrounds it, not in the sense of in place, but as a part in a whole. But when the thing is separate or in contact, it is immediately ‘in’ the inner surface of the surrounding body, and this surface is neither a part of what is in it nor yet greater than its extension, but equal to it; for the extremities of things which touch are coincident." (Aristotle, "Physics", cca. 350 BC)

"I hold: 1) that small portions of space are, in fact, of a nature analogous to little hills on a surface that is on the average fiat; namely, that the ordinary laws of geometry are not valid in them; 2) that this property of being curved or distorted is constantly being passed on from one portion of space to another after the manner of a wave; 3) that this variation of the curvature of space is what really happens in the phenomenon that we call the motion of matter, whether ponderable or ethereal; 4) that in the physical world nothing else takes place but this variation, subject (possibly) to the law of continuity." (William K Clifford, "On the Space Theory of Matter", [paper delivered before the Cambridge Philosophical Society, 1870)

"That branch of mathematics which deals with the continuity properties of two- (and more) dimensional manifolds is called analysis situs or topology. […] Two manifolds must be regarded as equivalent in the topological sense if they can be mapped point for point in a reversibly neighborhood-true (topological) fashion on each other." (Hermann Weyl, "The Concept of a Riemann Surface", 1913)

"In topology we are concerned with geometrical facts that do not even involve the concepts of a straight line or plane but only the continuous connectiveness between points of a figure." (David Hilbert, "Geometry and Imagination", 1952)

"General or point set topology can be thought of as the abstract study of the ideas of nearness and continuity. This is done in the first place by picking out in elementary geometry those properties of nearness that seem to be fundamental and taking them as axioms." (Andrew H Wallace, "Differential Topology: First Steps", 1968)

"The major strength of catastrophe theory is to provide a qualitative topology of the general structure of discontinuities. Its major weakness is that it frequently is not associated with specific models allowing precise quantitative prediction, although such are possible in principle." (J Barkley Rosser Jr., "From Catastrophe to Chaos: A General Theory of Economic Discontinuities", 1991)

"[...] if we consider a topological space instead of a plane, then the question of whether the coordinates axes in that space are curved or straight becomes meaningless. The way we choose coordinate systems is related to the way we observe the property of smoothness in a topological space." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"The property of smoothness includes the property of continuity. The notion of a topological space was born from the development of abstract algebra as a universal notion for the property of continuity." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"A continuous function preserves closeness of points. A discontinuous function maps arbitrarily close points to points that are not close. The precise definition of continuity involves the relation of distance between pairs of points. […] continuity, a property of functions that allows stretching, shrinking, and folding, but preserves the closeness relation among points." (Robert Messer & Philip Straffin, "Topology Now!", 2006)

"Topology is the study of geometric objects as they are transformed by continuous deformations. To a topologist the general shape of the objects is of more importance than distance, size, or angle." (Robert Messer & Philip Straffin, "Topology Now!", 2006)

"[…] topology is the study of those properties of geometric objects which remain unchanged under bi-uniform and bi-continuous transformations. Such transformations can be thought of as bending, stretching, twisting or compressing or any combination of these." (Lokenath Debnath, "The Legacy of Leonhard Euler - A Tricentennial Tribute", 2010)

"Topology is a geometry in which all lengths, angles, and areas can be distorted at will. Thus a triangle can be continuously transformed into a rectangle, the rectangle into a square, the square into a circle, and so on. Similarly, a cube can be transformed into a cylinder, the cylinder into a cone, the cone into a sphere. Because of these continuous transformations, topology is known popularly as 'rubber sheet geometry'. All figures that can be transformed into each other by continuous bending, stretching, and twisting are called 'topologically equivalent'." (Fritjof Capra, "The Systems View of Life: A Unifying Vision", 2014)

"Topology is an elastic version of geometry that retains the idea of continuity but relaxes rigid metric notions of distance." (Samuel Eilenberg)

26 July 2018

On Topology IV (More on Topology)

"The young mathematical disciple 'topology' might be of some help in making psychology a real science." (Kurt Lewin, Principles of topological psychology, 1936)

"Topology provides the synergetic means of ascertaining the values of any system of experiences. Topology is the science of fundamental pattern and structural relationships of event constellations." (R Buckminster Fuller, "Operating Manual for Spaceship Earth", 1969)

"Topology is not ‘designed to guide us’ in structure. It is this structure." (Jacques Lacan, "L’Étourdit", 1972)

"No other theory known to science [other than superstring theory] uses such powerful mathematics at such a fundamental level. […] because any unified field theory first must absorb the Riemannian geometry of Einstein’s theory and the Lie groups coming from quantum field theory. […] The new mathematics, which is responsible for the merger of these two theories, is topology, and it is responsible for accomplishing the seemingly impossible task of abolishing the infinities of a quantum theory of gravity." (Michio Kaku, "Hyperspace", 1995)

"Topology makes it possible to explain the general structure of the set of solutions without even knowing their analytic expression." (Michael I. Monastyrsky, "Riemann, Topology, and Physics" 2nd Ed., 2008)

"At the basis of the distance concept lies, for example, the concept of convergent point sequence and their defined limits, and one can, by choosing these ideas as those fundamental to point set theory, eliminate the notions of distance." (Felix Hausdorff)

"In every subject one looks for the topological and algebraic structures involved, since these structures form a unifying core for the most varied branches of mathematics." (K Weise and H Noack, "Aspects of Topology")

"Mathematicians do not study objects, but relations between objects. Thus, they are free to replace some objects by others so long as the relations remain unchanged. Content to them is irrelevant: they are interested in form only." (Henri Poincaré)

"Poetry and code - and mathematics - make us read differently from other forms of writing. Written poetry makes the silent reader read three kinds of pattern at once; code moves the reader from a static to an active, interactive and looped domain; while algebraic topology allows us to read qualitative forms and their transformations." (Stephanie Strickland)

"Topology is the study of the modal relations of spatial figures and the laws of connectivity, mutual position, and ordering of points, lines, surfaces, and solids and their parts independently of measure and magnitude relations." (Johann B Listing)

02 July 2018

On Topology II (Definitions)

"I believe that we need another analysis properly geometric or linear, which treats PLACE directly the way that algebra treats MAGNITUDE." (Gottfried W Leibniz, 1670s)

"The branch of geometry that deals with magnitudes has been zealously studied throughout the past, but there is another branch that has been almost unknown up to now; Leibniz spoke of it first, calling it the ‘geometry of position’ (geometria situs). This branch of geometry deals with relations dependent on position; it does not take magnitudes into considerations, nor does it involve calculation with quantities. But as yet no satisfactory definition has been given of the problems that belong to this geometry of position or of the method to be used in solving them." (Leonhard Euler, 1735) 

"Topology is the study of the modal relations of spatial figures and the laws of connectivity, mutual position, and ordering of points, lines, surfaces, and solids and their parts independently of measure and magnitude relations." (Johann B Listing)

"The use of figures is, above all, then, for the purpose of making known certain relations between the objects that we study, and these relations are those which occupy the branch of geometry that we have called Analysis Situs [that is, topology], and which describes the relative situation of points and lines on surfaces, without consideration of their magnitude." (Henri Poincaré, "Analysis Situs", Journal de l'Ecole Polytechnique 1, 1895)

"Imagine any sort of model and a copy of it done by an awkward artist: the proportions are altered, lines drawn by a trembling hand are subject to excessive deviation and go off in unexpected directions. From the point of view of metric or even projective geometry these figures are not equivalent, but they appear as such from the point of view of geometry of position [that is, topology]." (Henri Poincaré, "Dernières pensées", 1920)

"Topology begins where sets are implemented with some cohesive properties enabling one to define continuity." (Solomon Lefschetz, "Introduction to Topology", 1949)

"In topology we are concerned with geometrical facts that do not even involve the concepts of a straight line or plane but only the continuous connectiveness between points of a figure." (David Hilbert, "Geometry and Imagination", 1952)

"Topology is precisely that mathematical discipline which allows a passage from the local to the global." (René Thom)

"Topology studies the properties of geometrical objects that remain unchanged under transformations called homeomorphisms and deformations." (Victor V Prasolov, "Intuitive Topology", 1995)

"Topology is the mathematical study of properties of objects which are preserved through deformations, twistings, and stretchings but not through breaks or cuts." (David Robinson & David Goforth, "The Topology of the 2×2 Games: A New Periodic Table". 2005)

"Topology makes it possible to explain the general structure of the set of solutions without even knowing their analytic expression." (Michael I Monastyrsky, "Riemann, Topology, and Physics" 2nd Ed., 2008)

"[…] topology is the study of those properties of geometric objects which remain unchanged under bi-uniform and bi-continuous transformations. Such transformations can be thought of as bending, stretching, twisting or compressing or any combination of these." (Lokenath Debnath, "The Legacy of Leonhard Euler - A Tricentennial Tribute", 2010)

02 April 2018

On Algebra: Definitions I

"Whoever thinks algebra is a trick in obtaining unknowns has thought it in vain. No attention should be paid to the fact that algebra and geometry are different in appearance. Algebras are geometric facts which are proved." (Omar Khayyam [quoted by J.J. Winter and W. Arafat, "The Algebra of ‘Umar Khayyam’", Journal of the Royal Asiatic Society of Bengal, Volume 41, 1950)

 "By the help of God and with His precious assistance I say that algebra is a scientific art. The objects with which it deals are absolute numbers and (geometrical) magnitudes which, though themselves unknown, are related to things which are known, whereby the determination of the unknown quantities is possible. Such a thing is either a quantity or a unique relation, which is only determined by careful examination. […] What one searches for in the algebraic art are the relations which lead from the known to the unknown, to discover which is the object of algebra as stated above." (Omar Khayyam [quoted by Daoud Suleiman Kasir in "The Algebra of Omar Khayyam", 1931)

"[…] the sciences that are expressed by numbers or by other small signs, are easily learned; and without doubt this facility rather than its demonstrability is what has made the fortune of algebra." (Julien Offray de La Mettrie, "Man a Machine", 1747)

"Algebra is a general Method of Computation by certain Signs and Symbols which have been contrived for this Purpose, and found convenient. It is called an Universal Arithmetic, and proceeds by Operations and Rules similar to those in Common Arithmetic, founded upon the same Principles." (Colin Maclaurin, "A Treatise on Algebra", 1748)

"Algebra is a way to bring us to certainty in mathematics; but must it be presently condemned as an ill way, because there are some questions in mathematics, which a man cannot come to certainty in by the way of Algebra?" (John Locke)

"[Algebra] has for its object the resolution of equations; taking this expression in its full logical meaning, which signifies the transformation of implicit functions into equivalent explicit ones. In the same way arithmetic may be defined as destined to the determination of the values of functions. […] We will briefly say that Algebra is the Calculus of functions, and Arithmetic is the Calculus of Values." (Auguste Comte, "Philosophy of Mathematics", 1851)

“Algebra is but written geometry and geometry is but figured algebra.” (Sophie Germain, "Mémoire sur les Surfaces Élastiques", 1880)

"Algebra reverses the relative importance of the factors in ordinary language. It is essentially a written language, and it endeavors to exemplify in its written structures the patterns which it is its purpose to convey. The pattern of the marks on paper is a particular instance of the pattern to be conveyed to thought. The algebraic method is our best approach to the expression of necessity, by reason of its reduction of accident to the ghost-like character of the real variable." (Alfred N Whitehead, "Essays in Science and Philosophy", 1948)

"[…] algebra is the intellectual instrument which has been created for rendering clear the quantitative aspects of the world." (Simone Weil, "The Organization of Thought", 1974)

"Algebra is the offer made by the devil to the mathematician. The devil says: I will give you this powerful machine, it will answer any question you like. All you need to do is give me your soul: give up geometry and you will have this marvelous machine." (Michael F Atiyah, 2004)

09 December 2017

On Symmetry V (Symmetry vs. Asymmetry I)

“Symmetry may have its appeal but it is inherently stale. Some kind of imbalance is behind every transformation.” (Marcelo Gleiser, “A Tear at the Edge of Creation: A Radical New Vision for Life in an Imperfect Universe”, 2010)

“Rut seldom is asymmetry merely the absence of symmetry. Even in asymmetric designs one feels symmetry as the norm from which one deviates under the influence of forces of non-formal character.” (Hermann Weyl, “Symmetry”, 1952)

“[…] in all things that live there are certain irregularities and deficiencies which are not only signs of life, but sources of beauty. No human face is exactly the same in its lines on each side, no leaf perfect in its lobes, no branch in its symmetry. All admit irregularity as they imply change; […]” (John Ruskin, “The Stones of Venice: The Sea Stories”, 2013)

“Nature is never perfectly symmetric. Nature's circles always have tiny dents and bumps. There are always tiny fluctuations, such as the thermal vibration of molecules. These tiny imperfections load Nature's dice in favour of one or other of the set of possible effects that the mathematics of perfect symmetry considers to be equally possible.” (Ian Stewart & Martin Golubitsky, “Fearful Symmetry: Is God a Geometer?”, 1992)

“In every symmetrical system every deformation that tends to destroy the symmetry is complemented by an equal and opposite deformation that tends to restore it. […] One condition, therefore, though not an absolutely sufficient one, that a maximum or minimum of work corresponds to the form of equilibrium, is thus applied by symmetry.” (Ernst Mach, “The Science of Mechanics: A Critical and Historical Account of Its Development”, 1893)

“Symmetry is a fundamental organizing principle of shape. It helps in classifying and understanding patterns in mathematics, nature, art, and, of course, poetry. And often the counterpoint to symmetry — the breaking or interruption of symmetry - is just as important in creative endeavors.” (Marcia Birken & Anne C. Coon, “Discovering Patterns in Mathematics and Poetry”, 2008)

“An asymmetry in the present is understood as having originated from a past symmetry.” (Michael Leyton, “Symmetry, Causality, Mind”, 1992)

“Approximate symmetry is a softening of the hard dichotomy between symmetry and asymmetry. The extent of deviation from exact symmetry that can still be considered approximate symmetry will depend on the context and the application and could very well be a matter of personal taste.” (Joe Rosen, “Symmetry Rules: How Science and Nature Are Founded on Symmetry”, 2008)

“[…] asymmetry can be defined only relative to symmetry, and vice versa. Asymmetric elements in paintings or buildings are most effective when superimposed against a background of symmetry.” (Alan Lightman, “The Accidental Universe: The World You Thought You Knew”, 2014)

“Chaos demonstrates that deterministic causes can have random effects […] There's a similar surprise regarding symmetry: symmetric causes can have asymmetric effects. […] This paradox, that symmetry can get lost between cause and effect, is called symmetry-breaking. […] From the smallest scales to the largest, many of nature's patterns are a result of broken symmetry; […]” (Ian Stewart & Martin Golubitsky, “Fearful Symmetry: Is God a Geometer?”, 1992)

On Symmetry III (Mathematicians I)

“To a mathematician, an object possesses symmetry if it retains its form after some transformation. A circle, for example, looks the same after any rotation; so a mathematician says that a circle is symmetric, even though a circle is not really a pattern in the conventional sense - something made up from separate, identical bits. Indeed the mathematician generalizes, saying that any object that retains its form when rotated - such as a cylinder, a cone, or a pot thrown on a potter's wheel - has circular symmetry.” (Ian Stewart & Martin Golubitsky, “Fearful Symmetry: Is God a Geometer?”, 1992)

"Guided only by their feeling for symmetry, simplicity, and generality, and an indefinable sense of the fitness of things, creative mathematicians now, as in the past, are inspired by the art of mathematics rather than by any prospect of ultimate usefulness." (Eric Temple Bell)


"What makes a great mathematician? A feel for form, a strong sense of what is important. Möbius had both in abundance. He knew that topology was important. He knew that symmetry is a fundamental and powerful mathematical principle. The judgment of posterity is clear: Möbius was right.” (Ian Stewart)


“Mathematicians attach great importance to the elegance of their methods and their results. This is not pure dilettantism. What is it indeed that gives us the feeling of elegance in a solution, in a demonstration? It is the harmony of the diverse parts, their symmetry, their happy balance; in a word it is all that introduces order, all that gives unity, that permits us to see clearly and to comprehend at once both the ensemble and the details.” (Henri Poincaré, “The Future of Mathematics”, Monist Vol. 20, 1910)


“The mathematician has, above all things, an eye for symmetry […]) (James C Maxwell, 1871)

“For the mathematician, the pattern searcher, understanding symmetry is one of the principal themes in the quest to chart the mathematical world.” (Marcus du Sautoy, “Symmetry: A Journey into the Patterns of Nature”, 2008)


“Perhaps the simplest way to explain symmetry is to follow the operational approach used by mathematicians: a symmetry is a motion. That is, suppose you have an object and pick it up, move it around, and set it down. If it is impossible to distinguish between the object in its original and final positions, we say that it has a symmetry.” (Michael Field & Martin Golubitsky, “Symmetry in Chaos: A Search for Pattern in Mathematics, Art, and Nature” 2nd Ed, 2009)

On Symmetry I

“Symmetry is what we see at a glance; based on the fact that there is no reason for any difference, and based also on the face of man; whence it happens that symmetry is only wanted in breadth, not in height or depth.” (Blaise Pascal, “Pensées”, 1670)

“Symmetry is evidently a kind of unity in variety, where a whole is determined by the rhythmic repetition of similar.” (George Santayana, “The Sense of Beauty”, 1896)

“By the word symmetry […] one thinks of an external relationship between pleasing parts of a whole; mostly the word is used to refer to parts arranged regularly against one another around a centre. We have […] observed [these parts] one after the other, not always like following like, but rather a raising up from below, a strength out of weakness, a beauty out of ordinariness.” (Goethe)

“In everyday language, the words 'pattern' and 'symmetry' are used almost interchangeably, to indicate a property possessed by a regular arrangement of more-or-less identical units […]” (Ian Stewart & Martin Golubitsky, “Fearful Symmetry: Is God a Geometer?”, 1992)

“In the one sense symmetric means something like well-proportioned, well-balanced, and symmetry denotes that sort of concordance of several parts by which they integrate into a whole. Beauty is bound up with symmetry.” (Hermann Weyl, “Symmetry”, 1952)

“A thing is symmetrical if there is something you can do to it so that after you have finished doing it, it looks the same as before.” (Hermann Weyl, “Symmetry”, 1952)

“[…] a symmetry isn't a thing; it's a transformation. Not any old transformation, though: a symmetry of an object is a transformation that leaves it apparently unchanged.” (Ian Stewart & Martin Golubitsky, “Fearful Symmetry: Is God a Geometer?”, 1992)

“A symmetry is a set of transformations applied to a structure, such that the transformations preserve the properties of the structure.” (Philip Dorrell, “What is Music?: Solving a Scientific Mystery”, 2004)

“Symmetry is the representation of two or more equivalent or balanced elements with respect to a common origin, position, or axis.” (David Smith, “The Symmetry Solution: A Modern View of Biblical Prophecy”, 2009)

“Symmetry is basically a geometrical concept. Mathematically it can be defined as the invariance of geometrical patterns under certain operations. But when abstracted, the concept applies to all sorts of situations. It is one of the ways by which the human mind recognizes order in nature. In this sense symmetry need not be perfect to be meaningful. Even an approximate symmetry attracts one's attention, and makes one wonder if there is some deep reason behind it.” (Eguchi Tohru & ‎K Nishijima , “Broken Symmetry: Selected Papers Of Y Nambu”, 1995)
Related Posts Plugin for WordPress, Blogger...

On Leonhard Euler

"I have been able to solve a few problems of mathematical physics on which the greatest mathematicians since Euler have struggled in va...