Showing posts with label emergence. Show all posts
Showing posts with label emergence. Show all posts

29 October 2023

Out of Context: On Emergence (Definitions)

"[...] emergence is an integral part of the dynamics of open systems [...] " (Fritjof  Capra, "The Hidden Connections", 2002)

"Emergence is not really mysterious, although it may be complex. Emergence is brought about by the interactions between the parts of a system. 
" (Derek Hitchins, "Advanced Systems Thinking, Engineering and Management", 2003)

"Emergence is the phenomenon of properties, capabilities and behaviours evident in the whole system that are not exclusively ascribable to any of its parts." (Derek Hitchins, "Advanced Systems Thinking, Engineering and Management", 2003)

"Emergence refers to the relationship between the details of a system and the larger view." (Yaneer Bar-Yam, "Making Things Work: Solving Complex Problems in a Complex World", 2004)

[emergence:] "The process of complex pattern formation from simpler rules; emergent properties are neither properties had by any parts of the system taken in isolation nor a resultant of a mere summation of properties of parts of the system." (Ani Calinescu & Janet Efstathiou, "Measures of Network Structure", Encyclopedia of Networked and Virtual Organizations, 2008) 

"Emergence is defined as the occurrence of new processes operating at a higher level of abstraction then is the level at which the local rules operate." (Jirí Kroc & Peter M A Sloot, "Complex Systems Modeling by Cellular Automata", Encyclopedia of Artificial Intelligence, 2009)

"This spontaneous emergence of order at critical points of instability, which is often referred to simply as 'emergence', is one of the hallmarks of life." (Fritjof Capra, "The Systems View of Life: A Unifying Vision", 2014)

"Emergence is a nontrivial relationship between the properties of a system at microscopic and macroscopic scales. Macroscopic properties are called emergent when it is hard to explain them simply from microscopic properties." (Hiroki Sayama, "Introduction to the Modeling and Analysis of Complex Systems", 2015)

[emergence:] "A feature in a complex system that is generated through the dynamic interactions between the parts of a system at one level, and is realized at the next level of organization without intentionality or causality." (A Faye Bres, "Integral Post-Analysis of Design-Based Research of an Organizational Learning Process for Strategic Renewal of Environmental Management", Integral Theory and Transdisciplinary Action Research in Education, 2019)

15 May 2021

On Stability II

"Stability is commonly thought of as desirable, for its presence enables the system to combine of flexibility and activity in performance with something of permanence. Behaviour that is goal-seeking is an example of behaviour that is stable around a state of equilibrium. Nevertheless, stability is not always good, for a system may persist in returning to some state that, for other reasons, is considered undesirable." (W Ross Ashby, "An Introduction to Cybernetics", 1956)

"Effect spreads its 'tentacles' not only forwards (as a new cause giving rise to a new effect) but also backwards, to the cause which gave rise to it, thus modifying, exhausting or intensifying its force. This interaction of cause and effect is known as the principle of feedback. It operates everywhere, particularly in all self-organising systems where perception, storing, processing and use of information take place, as for example, in the organism, in a cybernetic device, and in society. The stability, control and progress of a system are inconceivable without feedback." (Alexander Spirkin, "Dialectical Materialism", 1983)

"Structure is the type of connection between the elements of a whole. […] . Structure is a composite whole, or an internally organised content. […] Structure implies not only the position of its elements in space but also their movement in time, their sequence and rhythm, the law of mutation of a process. So structure is actually the law or set of laws that determine a system's composition and functioning, its properties and stability." (Alexander Spirkin, "Dialectical Materialism", 1983)

"Stability theory is the study of systems under various perturbing influences. Since there are many systems, many types of influences, and many equations describing systems, this is an open-ended problem. A system is designed so that it will be stable under external influences. However, one cannot predict all external influences, nor predict the magnitude of those that occur. Consequently, we need control theory. If one is interested in stability theory, a natural result is a theory of control." (Richard E Bellman, "Eye of the Hurricane: An Autobiography", 1984)

"All systems evolve, although the rates of evolution may vary over time both between and within systems. The rate of evolution is a function of both the inherent stability of the system and changing environmental circumstances. But no system can be stabilized forever. For the universe as a whole, an isolated system, time’s arrow points toward greater and greater breakdown, leading to complete molecular chaos, maximum entropy, and heat death. For open systems, including the living systems that are of major interest to us and that interchange matter and energy with their external environments, time’s arrow points to evolution toward greater and greater complexity. Thus, the universe consists of islands of increasing order in a sea of decreasing order. Open systems evolve and maintain structure by exporting entropy to their external environments." (L Douglas Kiel, "Chaos Theory in the Social Sciences: Foundations and Applications", 1996)

"The phenomenon of emergence takes place at critical points of instability that arise from fluctuations in the environment, amplified by feedback loops." (Fritjof Capra, "The Hidden Connections", 2002)

"This spontaneous emergence of order at critical points of instability is one of the most important concepts of the new understanding of life. It is technically known as self-organization and is often referred to simply as ‘emergence’. It has been recognized as the dynamic origin of development, learning and evolution. In other words, creativity-the generation of new forms-is a key property of all living systems. And since emergence is an integral part of the dynamics of open systems, we reach the important conclusion that open systems develop and evolve. Life constantly reaches out into novelty." (Fritjof  Capra, "The Hidden Connections", 2002)

"Classification is only one of the mathematical aspects of catastrophe theory. Another is stability. The stable states of natural systems are the ones that we can observe over a longer period of time. But the stable states of a system, which can be described by potential functions and their singularities, can become unstable if the potentials are changed by perturbations. So stability problems in nature lead to mathematical questions concerning the stability of the potential functions." (Werner Sanns, "Catastrophe Theory" [Mathematics of Complexity and Dynamical Systems, 2012])

"An important aspect of the global theory of dynamical systems is the stability of the orbit structure as a whole. The motivation for the corresponding theory comes from applied mathematics. Mathematical models always contain simplifying assumptions. Dominant features are modeled; supposed small disturbing forces are ignored. Thus, it is natural to ask if the qualitative structure of the set of solutions - the phase portrait - of a model would remain the same if small perturbations were included in the model. The corresponding mathematical theory is called structural stability." (Carmen Chicone, "Stability Theory of Ordinary Differential Equations" [Mathematics of Complexity and Dynamical Systems, 2012])

"This spontaneous emergence of order at critical points of instability, which is often referred to simply as 'emergence', is one of the hallmarks of life. It has been recognized as the dynamic origin of development, learning, and evolution. In other words, creativity-the generation of new forms-is a key property of all living systems." (Fritjof Capra, "The Systems View of Life: A Unifying Vision", 2014)

17 March 2021

Catastrophe Theory I

"[...] if the behavior points for the entire control surface are plotted and then connected, they form a smooth surface: the behavior surface. The surface has an overall slope from high values where rage predominates to low values in the region where fear is the prevailing state of mind, but the slope is not its most distinctive feature. Catastrophe theory reveals that in the middle of the surface there must be a smooth double fold, creating a pleat without creases, which grows narrower from the front of the surface to the back and eventually disappears in a singular point where the three sheets of the pleat come together. It is the pleat that gives the model its most interesting characteristics. All the points on the behavior surface represent the most probable behavior [...], with the exception of those on the middle sheet, which represent least probable behavior. Through catastrophe theory we can deduce the shape of the entire surface from the fact that the behavior is bimodal for some control points." (E Cristopher Zeeman, "Catastrophe Theory", Scientific American, 1976)

"Catastrophe Theory is - quite likely - the first coherent attempt (since Aristotelian logic) to give a theory on analogy. When narrow-minded scientists object to Catastrophe Theory that it gives no more than analogies, or metaphors, they do not realise that they are stating the proper aim of Catastrophe Theory, which is to classify all possible types of analogous situations." (René F Thom," La Théorie des catastrophes: État présent et perspective", 1977)

"'Catastrophe theory' denotes both a purely mathematical discipline describing certain singularities of smooth maps, as well as the concerted effort to apply these theorems to a wide variety of problems in fields ranging from linguistics and psychology to embryology, evolution, physics, and engineering." (Héctor J Sussmann & Raphael S Zahler, "Catastrophe Theory as Applied to the Social and Biological Sciences: A Critique" Synthese Vol. 37 (2), 1978)

"Because of its foundation in topology, catastrophe theory is qualitative, not quantitative. Just as geometry treated the properties of a triangle without regard to its size, so topology deals with properties that have no magnitude, for example, the property of a given point being inside or outside a closed curve or surface. This property is what topologists call 'invariant' -it does not change even when the curve is distorted. A topologist may work with seven-dimensional space, but he does not and cannot measure (in the ordinary sense) along any of those dimensions. The ability to classify and manipulate all types of form is achieved only by giving up concepts such as size, distance, and rate. So while catastrophe theory is well suited to describe and even to predict the shape of processes, its descriptions and predictions are not quantitative like those of theories built upon calculus. Instead, they are rather like maps without a scale: they tell us that there are mountains to the left, a river to the right, and a cliff somewhere ahead, but not how far away each is, or how large." (Alexander Woodcock & Monte Davis, "Catastrophe Theory", 1978)

"But there is another kind of change, too, change that is less suited to mathematical analysis: the abrupt bursting of a bubble, the discontinuous transition from ice at its melting point to water at its freezing point, the qualitative shift in our minds when we 'get' a pun or a play on words. Catastrophe theory is a mathematical language created to describe and classify this second type of change. It challenges scientists to change the way they think about processes and events in many fields." (Alexander Woodcock & Monte Davis, "Catastrophe Theory", 1978)

"Catastrophe theory is a controversial new way of thinking about change - change in a course of events, change in an object's shape, change in a system's behavior, change in ideas themselves. Its name suggests disaster, and indeed the theory can be applied to literal catastrophes such as the collapse of a bridge or the downfall of an empire. But it also deals with changes as quiet as the dancing of sunlight on the bottom of a pool of water and as subtle as the transition from waking to sleep." (Alexander Woodcock & Monte Davis, "Catastrophe Theory", 1978)

"Catastrophes are often stimulated by the failure to feel the emergence of a domain, and so what cannot be felt in the imagination is experienced as embodied sensation in the catastrophe. (William I Thompson, "Gaia, a Way of Knowing: Political Implications of the New Biology", 1987)

"A catastrophe is a universal unfolding of a singular function germ. The singular function germs are called organization centers of the catastrophes. [...] Catastrophe theory is concerned with the mathematical modeling of sudden changes - so called 'catastrophes' - in the behavior of natural systems, which can appear as a consequence of continuous changes of the system parameters. While in common speech the word catastrophe has a negative connotation, in mathematics it is neutral." (Werner Sanns, "Catastrophe Theory" [Mathematics of Complexity and Dynamical Systems, 2012])

"Catastrophe theory can be thought of as a link between classical analysis, dynamical systems, differential topology (including singularity theory), modern bifurcation theory and the theory of complex systems. [...] The name ‘catastrophe theory’ is used for a combination of singularity theory and its applications. [...] From the didactical point of view, there are two main positions for courses in catastrophe theory at university level: Trying to teach the theory as a perfect axiomatic system consisting of exact definitions, theorems and proofs or trying to teach mathematics as it can be developed from historical or from natural problems." (Werner Sanns, "Catastrophe Theory" [Mathematics of Complexity and Dynamical Systems, 2012])

"Classification is only one of the mathematical aspects of catastrophe theory. Another is stability. The stable states of natural systems are the ones that we can observe over a longer period of time. But the stable states of a system, which can be described by potential functions and their singularities, can become unstable if the potentials are changed by perturbations. So stability problems in nature lead to mathematical questions concerning the stability of the potential functions." (Werner Sanns, "Catastrophe Theory" [Mathematics of Complexity and Dynamical Systems, 2012])

24 January 2021

String Theory II

"To build matter itself from geometry - that in a sense is what string theory does. It can be thought of that way, especially in a theory like the heterotic string which is inherently a theory of gravity in which the particles of matter as well as the other forces of nature emerge in the same way that gravity emerges from geometry. Einstein would have been pleased with this, at least with the goal, if not the realization. [...] He would have liked the fact that there is an underlying geometrical principle - which, unfortunately, we don’t really yet understand." (David Gross, [interview] 1988)

"I have no idea whether the properties of the universe as we know it are fundamental or emergent, but I believe that the mere possibility of the latter should give the string theorists pause, for it would imply that more than one set of microscopic equations is consistent with experiment - so that we are blind to these equations until better experiments are designed - and also that the true nature of the microscopic equations is irrelevant to our world." (Robert B Laughlin, "Fractional quantization", Reviews of Modern Physics vol. 71 (4), [Nobel lecture] 1999)

"String theory has the potential to show that all of the wondrous happenings in the universe - from the frantic dance of subatomic quarks to the stately waltz of orbiting binary stars; from the primordial fireball of the big bang to the majestic swirl of heavenly galaxies - are reflections of one, grand physical principle, one master equation."  (Brian Greene, "The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory", 2000)

"String theory [...] resolves the central dilemma confronting contemporary physics - the incompatibility between quantum mechanics and general relativity - and that unifies our understanding of all of nature's fundamental material constituents and forces. But to accomplish these feats, [...] string theory requires that the universe have extra space dimensions."  (Brian Greene, "The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory", 2000)

"In string theory, to understand the nature of the Big Bang, or the quantum fate of a black hole, or the nature of the vacuum state that determines the properties of the elementary particles, requires information beyond perturbation theory [...] Perturbation theory is not everything. It is just the way the [string] theory was discovered." (Edward Witten, "The Past and Future of String Theory", 2003)

"Replacing particles by strings is a naive-sounding step, from which many other things follow. In fact, replacing Feynman graphs by Riemann surfaces has numerous consequences: 1. It eliminates the infinities from the theory. [...] 2. It greatly reduces the number of possible theories. [...] 3. It gives the first hint that string theory will change our notions of spacetime." (Edward Witten, "The Past and Future of String Theory", 2003)

"String theory seems to be incompatible with a world in which a cosmological constant has a positive sign, which is what the observations indicate." (Lee Smolin, "The New Humanists: Science at the Edge", 2003)

"Some string theorists prefer to believe that string theory is too arcane to be understood by human beings, rather than consider the possibility that it might just be wrong." (Lee Smolin, "The Trouble with Physics: The Rise of String Theory, The Fall of a Science and What Comes Next", 2006)

"Even though it is, properly speaking, a postprediction, in the sense that the experiment was made before the theory, the fact that gravity is a consequence of string theory, to me, is one of the greatest theoretical insights ever." (Edward Witten)

"I would expect that a proper elucidation of what string theory really is all about would involve a revolution in our concepts of the basic laws of physics - similar in scope to any that occurred in the past. (Edward Witten [interview])

21 January 2021

Complex Systems VII

"A complex system is a system formed out of many components whose behavior is emergent, that is, the behavior of the system cannot be simply inferred from the behavior of its components. The amount of information necessary to describe the behavior of such a system is a measure of its complexity." (Yaneer Bar-Yamm, "Dynamics of Complexity", 1997)

"Strategy in complex systems must resemble strategy in board games. You develop a small and useful tree of options that is continuously revised based on the arrangement of pieces and the actions of your opponent. It is critical to keep the number of options open. It is important to develop a theory of what kinds of options you want to have open." (John H Holland, [presentation] 2000)

"Abstract formulations of simply stated concrete ideas are often the result of efforts to create idealized models of complex systems. The models are 'idealized' in the sense that they retain only the most fundamental properties of the original systems. The vocabulary is chosen to be as inclusive as possible so that research into the model reveals facts about a wide variety of similar systems. Unfortunately, it is often the case that over time the connection between a model and the systems on which it was based is lost, and the interested reader is faced with something that looks as if it were created to be deliberately complicated - deliberately confusing - but the original intention was just the opposite. Often, the model was devised to be simpler and more transparent than any of the systems on which it was based." (John Tabak, "Beyond Geometry: A new mathematics of space and form", 2011)

[complex system:] "A system whose intricacy impedes the forecasting of its behaviour." (Valentina M Ghinea, "Modelling and Simulation of the Need for Harmonizing the European Higher Education Systems", Handbook of Research on Trends in European Higher Education Convergence, 2014)

"The problem of complexity is at the heart of mankind's inability to predict future events with any accuracy. Complexity science has demonstrated that the more factors found within a complex system, the more chances of unpredictable behavior. And without predictability, any meaningful control is nearly impossible. Obviously, this means that you cannot control what you cannot predict. The ability ever to predict long-term events is a pipedream. Mankind has little to do with changing climate; complexity does." (Lawrence K Samuels, "The Real Science Behind Changing Climate", 2014)

"A system which is usually composed of large number of possibly heterogeneous interacting agents, which are seen to exhibit emergent behavior. Emergence implies that system level behavior (macro level) cannot be inferred from observation of individual level behavior of its constituents (micro level). This absence of explicit links between the micro and macro levels makes complex systems especially difficult to analyze using traditional statistical and analytical techniques to study the dynamics of behavior. One typically requires the use of bottom up simulation based methods to study such systems. Complex systems are ubiquitous - markets, societies, social networks, the Internet, weather, ecosystems, are just a few examples." (Stephen E Glavin & Abhijit Sengupta, "Modelling of Consumer Goods Markets: An Agent-Based Computational Approach", Handbook of Research on Managing and Influencing Consumer Behavior, 2015)

[complex system:] "The occurrence of new phenomena generated unpredictably by the interaction of simple rules and individual mechanisms that are in constant flux and interaction. Emergence suggests something novel is perpetually emerging at a systems/global level as the world and environment constantly shifts and changes at a mechanistic/local level." (Kathy Sanford & Tim Hopper, "Digital Media in the Classroom: Emergent Perspectives for 21st Century Learners", Handbook of Research on Digital Media and Creative Technologies, 2015)

"A system characterized by the number of the elements that constitute it, and by the nature of the interactions between these elements." (Manuela Piscitelli, "Application of Complexity Theory in Representation of the City", Handbook of Research on Chaos and Complexity Theory in the Social Sciences, 2016)

"A complex system means a system whose perceived complicated behaviors can be attributed to one or more of the following characteristics: large number of element, large number of relationships among elements, non-linear and discontinuous relationship, and uncertain characteristics of elements." (Chunfang Zhou, "Fostering Creative Problem Solvers in Higher Education: A Response to Complexity of Societies", Handbook of Research on Creative Problem-Solving Skill Development in Higher Education, 2017)

[complex system:] "System made up of many interconnected elements on various levels; interactions on lower levels give rise to events on higher levels." (Naomi Thompson & Joshua Danish, "Designing BioSim: Playfully Encouraging Systems Thinking in Young Children", Handbook of Research on Serious Games for Educational Applications, 2017)

Complex Systems VI

"In short, complex adaptive systems are characterized by perpetual novelty." (M Mitchell Waldrop, "Complexity: The Emerging Science at the Edge of Order and Chaos", 1992)

"[...] it's essentially meaningless to talk about a complex adaptive system being in equilibrium: the system can never get there. It is always unfolding, always in transition. In fact, if the system ever does reach equilibrium, it isn't just stable. It's dead." (M Mitchell Waldrop, "Complexity: The Emerging Science at the Edge of Order and Chaos", 1992)

"If universality is one of the observed characteristics of complex dynamical systems in many fields of study, a second characteristic that flows from the study of these systems is that of emergence. As self-organizing systems go about their daily business, they are constantly exchanging matter and energy with their environment, and this allows them to remain in a state that is far from equilibrium. That allows spontaneous behavior to give rise to new patterns." (Terry Cooke-Davies et al, "Exploring the Complexity of Projects", 2009)

"The difference between complex adaptive systems and self-organizing systems is that the former have the capacity to learn from their experience, and thus to embody successful patterns into their repertoire, although there is actually quite a deep relationship between self-organizing systems and complex adaptive systems. Adaptive entities can emerge at high levels of description in simple self-organizing systems, i.e., adaptive systems are not necessarily self-organizing systems with something extra thrown in." (Terry Cooke-Davies et al, "Exploring the Complexity of Projects", 2009)

"Most systems in nature are inherently nonlinear and can only be described by nonlinear equations, which are difficult to solve in a closed form. Non-linear systems give rise to interesting phenomena such as chaos, complexity, emergence and self-organization. One of the characteristics of non-linear systems is that a small change in the initial conditions can give rise to complex and significant changes throughout the system. This property of a non-linear system such as the weather is known as the butterfly effect where it is purported that a butterfly flapping its wings in Japan can give rise to a tornado in Kansas. This unpredictable behaviour of nonlinear dynamical systems, i.e. its extreme sensitivity to initial conditions, seems to be random and is therefore referred to as chaos. This chaotic and seemingly random behaviour occurs for non-linear deterministic system in which effects can be linked to causes but cannot be predicted ahead of time." (Robert K Logan, "The Poetry of Physics and The Physics of Poetry", 2010)

"Complex systems seem to have this property, with large periods of apparent stasis marked by sudden and catastrophic failures. These processes may not literally be random, but they are so irreducibly complex (right down to the last grain of sand) that it just won’t be possible to predict them beyond a certain level. […] And yet complex processes produce order and beauty when you zoom out and look at them from enough distance." (Nate Silver, "The Signal and the Noise: Why So Many Predictions Fail-but Some Don't", 2012)

"We forget - or we willfully ignore - that our models are simplifications of the world. We figure that if we make a mistake, it will be at the margin. In complex systems, however, mistakes are not measured in degrees but in whole orders of magnitude." (Nate Silver, "The Signal and the Noise: Why So Many Predictions Fail-but Some Don't", 2012)

"If an emerging system is born complex, there is neither leeway to abandon it when it fails, nor the means to join another, successful one. Such a system would be caught in an immovable grip, congested at the top, and prevented, by a set of confusing but locked–in precepts, from changing." (Lawrence K Samuels, "Defense of Chaos: The Chaology of Politics, Economics and Human Action", 2013) 

"Simplicity in a system tends to increase that system’s efficiency. Because less can go wrong with fewer parts, less will. Complexity in a system tends to increase that system’s inefficiency; the greater the number of variables, the greater the probability of those variables clashing, and in turn, the greater the potential for conflict and disarray. Because more can go wrong, more will. That is why centralized systems are inclined to break down quickly and become enmeshed in greater unintended consequences." (Lawrence K Samuels,"Defense of Chaos: The Chaology of Politics, Economics and Human Action", 2013)

"One of the remarkable features of these complex systems created by replicator dynamics is that infinitesimal differences in starting positions create vastly different patterns. This sensitive dependence on initial conditions is often called the butterfly-effect aspect of complex systems - small changes in the replicator dynamics or in the starting point can lead to enormous differences in outcome, and they change one’s view of how robust the current reality is. If it is complex, one small change could have led to a reality that is quite different." (David Colander & Roland Kupers, "Complexity and the art of public policy : solving society’s problems from the bottom up", 2014)

Complex Systems V

"Complexity is the characteristic property of complicated systems we don’t understand immediately. It is the amount of difficulties we face while trying to understand it. In this sense, complexity resides largely in the eye of the beholder - someone who is familiar with s.th. often sees less complexity than someone who is less familiar with it. [...] A complex system is created by evolutionary processes. There are multiple pathways by which a system can evolve. Many complex systems are similar, but each instance of a system is unique." (Jochen Fromm, The Emergence of Complexity, 2004)

"In complexity thinking the darkness principle is covered by the concept of incompressibility [...] The concept of incompressibility suggests that the best representation of a complex system is the system itself and that any representation other than the system itself will necessarily misrepresent certain aspects of the original system." (Kurt Richardson, "Systems theory and complexity: Part 1", Emergence: Complexity & Organization Vol.6 (3), 2004)

"The basic concept of complexity theory is that systems show patterns of organization without organizer (autonomous or self-organization). Simple local interactions of many mutually interacting parts can lead to emergence of complex global structures. […] Complexity originates from the tendency of large dynamical systems to organize themselves into a critical state, with avalanches or 'punctuations' of all sizes. In the critical state, events which would otherwise be uncoupled became correlated." (Jochen Fromm, "The Emergence of Complexity", 2004)

"Complexity arises when emergent system-level phenomena are characterized by patterns in time or a given state space that have neither too much nor too little form. Neither in stasis nor changing randomly, these emergent phenomena are interesting, due to the coupling of individual and global behaviours as well as the difficulties they pose for prediction. Broad patterns of system behaviour may be predictable, but the system's specific path through a space of possible states is not." (Steve Maguire et al, "Complexity Science and Organization Studies", 2006)

"Thus, nonlinearity can be understood as the effect of a causal loop, where effects or outputs are fed back into the causes or inputs of the process. Complex systems are characterized by networks of such causal loops. In a complex, the interdependencies are such that a component A will affect a component B, but B will in general also affect A, directly or indirectly.  A single feedback loop can be positive or negative. A positive feedback will amplify any variation in A, making it grow exponentially. The result is that the tiniest, microscopic difference between initial states can grow into macroscopically observable distinctions." (Carlos Gershenson, "Design and Control of Self-organizing Systems", 2007)

"The butterfly effect demonstrates that complex dynamical systems are highly responsive and interconnected webs of feedback loops. It reminds us that we live in a highly interconnected world. Thus our actions within an organization can lead to a range of unpredicted responses and unexpected outcomes. This seriously calls into doubt the wisdom of believing that a major organizational change intervention will necessarily achieve its pre-planned and highly desired outcomes. Small changes in the social, technological, political, ecological or economic conditions can have major implications over time for organizations, communities, societies and even nations." (Elizabeth McMillan, "Complexity, Management and the Dynamics of Change: Challenges for practice", 2008)

"[a complex system is] a system in which large networks of components with no central control and simple rules of operation give rise to complex collective behavior, sophisticated information processing, and adaptation via learning or evolution." (Melanie Mitchell, "Complexity: A Guided Tour", 2009)

"A typical complex system consists of a vast number of identical copies of several generic processes, which are operating and interacting only locally or with a limited number of not necessary close neighbours. There is no global leader or controller associated to such systems and the resulting behaviour is usually very complex." (Jirí Kroc & Peter M A Sloot, "Complex Systems Modeling by Cellular Automata", Encyclopedia of Artificial Intelligence, 2009)

Complex Systems III

"Complexity must be grown from simple systems that already work." (Kevin Kelly, "Out of Control: The New Biology of Machines, Social Systems and the Economic World", 1995)

"Even though these complex systems differ in detail, the question of coherence under change is the central enigma for each." (John H Holland," Hidden Order: How Adaptation Builds Complexity", 1995)

"By irreducibly complex I mean a single system composed of several well-matched, interacting parts that contribute to the basic function, wherein the removal of any one of the parts causes the system to effectively cease functioning. An irreducibly complex system cannot be produced directly (that is, by continuously improving the initial function, which continues to work by the same mechanism) by slight, successive modification of a precursor, system, because any precursors to an irreducibly complex system that is missing a part is by definition nonfunctional." (Michael Behe, "Darwin’s Black Box", 1996)

"A dictionary definition of the word ‘complex’ is: ‘consisting of interconnected or interwoven parts’ […] Loosely speaking, the complexity of a system is the amount of information needed in order to describe it. The complexity depends on the level of detail required in the description. A more formal definition can be understood in a simple way. If we have a system that could have many possible states, but we would like to specify which state it is actually in, then the number of binary digits (bits) we need to specify this particular state is related to the number of states that are possible." (Yaneer Bar-Yamm, "Dynamics of Complexity", 1997)

"When the behavior of the system depends on the behavior of the parts, the complexity of the whole must involve a description of the parts, thus it is large. The smaller the parts that must be described to describe the behavior of the whole, the larger the complexity of the entire system. […] A complex system is a system formed out of many components whose behavior is emergent, that is, the behavior of the system cannot be simply inferred from the behavior of its components." (Yaneer Bar-Yamm, "Dynamics of Complexity", 1997)

"Complex systems operate under conditions far from equilibrium. Complex systems need a constant flow of energy to change, evolve and survive as complex entities. Equilibrium, symmetry and complete stability mean death. Just as the flow, of energy is necessary to fight entropy and maintain the complex structure of the system, society can only survive as a process. It is defined not by its origins or its goals, but by what it is doing." (Paul Cilliers,"Complexity and Postmodernism: Understanding Complex Systems", 1998)

"There is no over-arching theory of complexity that allows us to ignore the contingent aspects of complex systems. If something really is complex, it cannot by adequately described by means of a simple theory. Engaging with complexity entails engaging with specific complex systems. Despite this we can, at a very basic level, make general remarks concerning the conditions for complex behaviour and the dynamics of complex systems. Furthermore, I suggest that complex systems can be modelled." (Paul Cilliers," Complexity and Postmodernism", 1998)

"The self-similarity of fractal structures implies that there is some redundancy because of the repetition of details at all scales. Even though some of these structures may appear to teeter on the edge of randomness, they actually represent complex systems at the interface of order and disorder."  (Edward Beltrami, "What is Random?: Chaos and Order in Mathematics and Life", 1999)

21 December 2020

On Nonlinearity V (Chaos I)

"When one combines the new insights gained from studying far-from-equilibrium states and nonlinear processes, along with these complicated feedback systems, a whole new approach is opened that makes it possible to relate the so-called hard sciences to the softer sciences of life - and perhaps even to social processes as well. […] It is these panoramic vistas that are opened to us by Order Out of Chaos." (Ilya Prigogine, "Order Out of Chaos: Man's New Dialogue with Nature", 1984)

"Algorithmic complexity theory and nonlinear dynamics together establish the fact that determinism reigns only over a quite finite domain; outside this small haven of order lies a largely uncharted, vast wasteland of chaos." (Joseph Ford, "Progress in Chaotic Dynamics: Essays in Honor of Joseph Ford's 60th Birthday", 1988)

"The term chaos is used in a specific sense where it is an inherently random pattern of behaviour generated by fixed inputs into deterministic (that is fixed) rules (relationships). The rules take the form of non-linear feedback loops. Although the specific path followed by the behaviour so generated is random and hence unpredictable in the long-term, it always has an underlying pattern to it, a 'hidden' pattern, a global pattern or rhythm. That pattern is self-similarity, that is a constant degree of variation, consistent variability, regular irregularity, or more precisely, a constant fractal dimension. Chaos is therefore order (a pattern) within disorder (random behaviour)." (Ralph D Stacey, "The Chaos Frontier: Creative Strategic Control for Business", 1991)

"In the everyday world of human affairs, no one is surprised to learn that a tiny event over here can have an enormous effect over there. For want of a nail, the shoe was lost, et cetera. But when the physicists started paying serious attention to nonlinear systems in their own domain, they began to realize just how profound a principle this really was. […] Tiny perturbations won't always remain tiny. Under the right circumstances, the slightest uncertainty can grow until the system's future becomes utterly unpredictable - or, in a word, chaotic." (M Mitchell Waldrop, "Complexity: The Emerging Science at the Edge of Order and Chaos", 1992)

"There is a new science of complexity which says that the link between cause and effect is increasingly difficult to trace; that change (planned or otherwise) unfolds in non-linear ways; that paradoxes and contradictions abound; and that creative solutions arise out of diversity, uncertainty and chaos." (Andy P Hargreaves & Michael Fullan, "What’s Worth Fighting for Out There?", 1998)

"Let's face it, the universe is messy. It is nonlinear, turbulent, and chaotic. It is dynamic. It spends its time in transient behavior on its way to somewhere else, not in mathematically neat equilibria. It self-organizes and evolves. It creates diversity, not uniformity. That's what makes the world interesting, that's what makes it beautiful, and that's what makes it work." (Donella H Meadow, "Thinking in Systems: A Primer", 2008)

"Complexity theory can be defined broadly as the study of how order, structure, pattern, and novelty arise from extremely complicated, apparently chaotic systems and conversely, how complex behavior and structure emerges from simple underlying rules. As such, it includes those other areas of study that are collectively known as chaos theory, and nonlinear dynamical theory." (Terry Cooke-Davies et al, "Exploring the Complexity of Projects", 2009)

"Most systems in nature are inherently nonlinear and can only be described by nonlinear equations, which are difficult to solve in a closed form. Non-linear systems give rise to interesting phenomena such as chaos, complexity, emergence and self-organization. One of the characteristics of non-linear systems is that a small change in the initial conditions can give rise to complex and significant changes throughout the system. This property of a non-linear system such as the weather is known as the butterfly effect where it is purported that a butterfly flapping its wings in Japan can give rise to a tornado in Kansas. This unpredictable behaviour of nonlinear dynamical systems, i.e. its extreme sensitivity to initial conditions, seems to be random and is therefore referred to as chaos. This chaotic and seemingly random behaviour occurs for non-linear deterministic system in which effects can be linked to causes but cannot be predicted ahead of time." (Robert K Logan, "The Poetry of Physics and The Physics of Poetry", 2010)

"Even more important is the way complex systems seem to strike a balance between the need for order and the imperative for change. Complex systems tend to locate themselves at a place we call 'the edge of chaos'. We imagine the edge of chaos as a place where there is enough innovation to keep a living system vibrant, and enough stability to keep it from collapsing into anarchy. It is a zone of conflict and upheaval, where the old and new are constantly at war. Finding the balance point must be a delicate matter - if a living system drifts too close, it risks falling over into incoherence and dissolution; but if the system moves too far away from the edge, it becomes rigid, frozen, totalitarian. Both conditions lead to extinction. […] Only at the edge of chaos can complex systems flourish. This threshold line, that edge between anarchy and frozen rigidity, is not a like a fence line, it is a fractal line; it possesses nonlinearity." (Stephen H Buhner, "Plant Intelligence and the Imaginal Realm: Beyond the Doors of Perception into the Dreaming of Earth", 2014)

"To remedy chaotic situations requires a chaotic approach, one that is non-linear, constantly morphing, and continually sharpening its competitive edge with recurring feedback loops that build upon past experiences and lessons learned. Improvement cannot be sustained without reflection. Chaos arises from myriad sources that stem from two origins: internal chaos rising within you, and external chaos being imposed upon you by the environment. The result of this push/pull effect is the disequilibrium [...]." (Jeff Boss, "Navigating Chaos: How to Find Certainty in Uncertain Situations", 2015)

20 December 2020

On Nonlinearity III

"Finite systems of deterministic ordinary nonlinear differential equations may be designed to represent forced dissipative hydrodynamic flow. Solutions of these equations can be identified with trajectories in phase space. For those systems with bounded solutions, it is found that nonperiodic solutions are ordinarily unstable with respect to small modifications, so that slightly differing initial states can evolve into considerably different states. Systems with bounded solutions are shown to possess bounded numerical solutions. (Edward N Lorenz, "Deterministic Nonperiodic Flow", Journal of the Atmospheric Science 20, 1963)

"We've seen that even in the simplest situations nonlinearities can interfere with a linear approach to aggregates. That point holds in general: nonlinear interactions almost always make the behavior of the aggregate more complicated than would be predicted by summing or averaging." (Lewis Mumford, "The Myth of the Machine" Vol 1, 1967)

"The structure of a complex system is not a simple feedback loop where one system state dominates the behavior. The complex system has a multiplicity of interacting feedback loops. Its internal rates of flow are controlled by non‐linear relationships. The complex system is of high order, meaning that there are many system states (or levels). It usually contains positive‐feedback loops describing growth processes as well as negative, goal‐seeking loops." (Jay F Forrester, "Urban Dynamics", 1969)

"I would therefore urge that people be introduced to [the logistic equation] early in their mathematical education. This equation can be studied phenomenologically by iterating it on a calculator, or even by hand. Its study does not involve as much conceptual sophistication as does elementary calculus. Such study would greatly enrich the student’s intuition about nonlinear systems. Not only in research but also in the everyday world of politics and economics, we would all be better off if more people realized that simple nonlinear systems do not necessarily possess simple dynamical properties." (Robert M May, "Simple Mathematical Models with Very Complicated Dynamics", Nature Vol. 261 (5560), 1976)

"Most physical systems, particularly those complex ones, are extremely difficult to model by an accurate and precise mathematical formula or equation due to the complexity of the system structure, nonlinearity, uncertainty, randomness, etc. Therefore, approximate modeling is often necessary and practical in real-world applications. Intuitively, approximate modeling is always possible. However, the key questions are what kind of approximation is good, where the sense of 'goodness' has to be first defined, of course, and how to formulate such a good approximation in modeling a system such that it is mathematically rigorous and can produce satisfactory results in both theory and applications." (Guanrong Chen & Trung Tat Pham, "Introduction to Fuzzy Sets, Fuzzy Logic, and Fuzzy Control Systems", 2001) 

"Thus, nonlinearity can be understood as the effect of a causal loop, where effects or outputs are fed back into the causes or inputs of the process. Complex systems are characterized by networks of such causal loops. In a complex, the interdependencies are such that a component A will affect a component B, but B will in general also affect A, directly or indirectly.  A single feedback loop can be positive or negative. A positive feedback will amplify any variation in A, making it grow exponentially. The result is that the tiniest, microscopic difference between initial states can grow into macroscopically observable distinctions." (Carlos Gershenson, "Design and Control of Self-organizing Systems", 2007)

"Where simplifications fail, causing the most damage, is when something nonlinear is simplified with the linear as a substitute. That is the most common Procrustean bed." (Nassim N Taleb, "Antifragile: Things that Gain from Disorder", 2012)

"Complex systems defy intuitive solutions. Even a third-order, linear differential equation is unsolvable by inspection. Yet, important situations in management, economics, medicine, and social behavior usually lose reality if simplified to less than fifth-order nonlinear dynamic systems. Attempts to deal with nonlinear dynamic systems using ordinary processes of description and debate lead to internal inconsistencies. Underlying assumptions may have been left unclear and contradictory, and mental models are often logically incomplete. Resulting behavior is likely to be contrary to that implied by the assumptions being made about' underlying system structure and governing policies." (Jay W Forrester, "Modeling for What Purpose?", The Systems Thinker Vol. 24 (2), 2013)

"There is no linear additive process that, if all the parts are taken together, can be understood to create the total system that occurs at the moment of self-organization; it is not a quantity that comes into being. It is not predictable in its shape or subsequent behavior or its subsequent qualities. There is a nonlinear quality that comes into being at the moment of synchronicity." (Stephen H Buhner, "Plant Intelligence and the Imaginal Realm: Beyond the Doors of Perception into the Dreaming of Earth", 2014)

"Exponentially growing systems are prevalent in nature, spanning all scales from biochemical reaction networks in single cells to food webs of ecosystems. How exponential growth emerges in nonlinear systems is mathematically unclear. […] The emergence of exponential growth from a multivariable nonlinear network is not mathematically intuitive. This indicates that the network structure and the flux functions of the modeled system must be subjected to constraints to result in long-term exponential dynamics." (Wei-Hsiang Lin et al, "Origin of exponential growth in nonlinear reaction networks", PNAS 117 (45), 2020)

On Nonlinearity I

"In complex systems cause and effect are often not closely related in either time or space. The structure of a complex system is not a simple feedback loop where one system state dominates the behavior. The complex system has a multiplicity of interacting feedback loops. Its internal rates of flow are controlled by nonlinear relationships. The complex system is of high order, meaning that there are many system states (or levels). It usually contains positive-feedback loops describing growth processes as well as negative, goal-seeking loops. In the complex system the cause of a difficulty may lie far back in time from the symptoms, or in a completely different and remote part of the system. In fact, causes are usually found, not in prior events, but in the structure and policies of the system." (Jay Wright Forrester, "Urban dynamics", 1969)

"Self-organization can be defined as the spontaneous creation of a globally coherent pattern out of local interactions. Because of its distributed character, this organization tends to be robust, resisting perturbations. The dynamics of a self-organizing system is typically non-linear, because of circular or feedback relations between the components. Positive feedback leads to an explosive growth, which ends when all components have been absorbed into the new configuration, leaving the system in a stable, negative feedback state. Non-linear systems have in general several stable states, and this number tends to increase (bifurcate) as an increasing input of energy pushes the system farther from its thermodynamic equilibrium. " (Francis Heylighen, "The Science Of Self-Organization And Adaptivity", 1970)

"[The] system may evolve through a whole succession of transitions leading to a hierarchy of more and more complex and organized states. Such transitions can arise in nonlinear systems that are maintained far from equilibrium: that is, beyond a certain critical threshold the steady-state regime become unstable and the system evolves into a new configuration." (Ilya Prigogine, Gregoire Micolis & Agnes Babloyantz, "Thermodynamics of Evolution", Physics Today 25 (11), 1972)

"An artificial neural network is an information-processing system that has certain performance characteristics in common with biological neural networks. Artificial neural networks have been developed as generalizations of mathematical models of human cognition or neural biology, based on the assumptions that: 1. Information processing occurs at many simple elements called neurons. 2. Signals are passed between neurons over connection links. 3. Each connection link has an associated weight, which, in a typical neural net, multiplies the signal transmitted. 4. Each neuron applies an activation function (usually nonlinear) to its net input (sum of weighted input signals) to determine its output signal." (Laurene Fausett, "Fundamentals of Neural Networks", 1994)

"Symmetry breaking in psychology is governed by the nonlinear causality of complex systems (the 'butterfly effect'), which roughly means that a small cause can have a big effect. Tiny details of initial individual perspectives, but also cognitive prejudices, may 'enslave' the other modes and lead to one dominant view." (Klaus Mainzer, "Thinking in Complexity", 1994)

"[…] nonlinear interactions almost always make the behavior of the aggregate more complicated than would be predicted by summing or averaging."  (John H Holland," Hidden Order: How Adaptation Builds Complexity", 1995)

“[…] self-organization is the spontaneous emergence of new structures and new forms of behavior in open systems far from equilibrium, characterized by internal feedback loops and described mathematically by nonlinear equations.” (Fritjof  Capra, “The web of life: a new scientific understanding of living  systems”, 1996)

"Bounded rationality simultaneously constrains the complexity of our cognitive maps and our ability to use them to anticipate the system dynamics. Mental models in which the world is seen as a sequence of events and in which feedback, nonlinearity, time delays, and multiple consequences are lacking lead to poor performance when these elements of dynamic complexity are present." (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)

"Even if our cognitive maps of causal structure were perfect, learning, especially double-loop learning, would still be difficult. To use a mental model to design a new strategy or organization we must make inferences about the consequences of decision rules that have never been tried and for which we have no data. To do so requires intuitive solution of high-order nonlinear differential equations, a task far exceeding human cognitive capabilities in all but the simplest systems."  (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)

"All forms of complex causation, and especially nonlinear transformations, admittedly stack the deck against prediction. Linear describes an outcome produced by one or more variables where the effect is additive. Any other interaction is nonlinear. This would include outcomes that involve step functions or phase transitions. The hard sciences routinely describe nonlinear phenomena. Making predictions about them becomes increasingly problematic when multiple variables are involved that have complex interactions. Some simple nonlinear systems can quickly become unpredictable when small variations in their inputs are introduced." (Richard N Lebow, "Forbidden Fruit: Counterfactuals and International Relations", 2010)


On Randomness XII (Chaos I)

"Chaos is but unperceived order; it is a word indicating the limitations of the human mind and the paucity of observational facts. The words ‘chaos’, ‘accidental’, ‘chance’, ‘unpredictable’ are conveniences behind which we hide our ignorance." (Harlow Shapley, "Of Stars and Men: Human Response to an Expanding Universe", 1958)

"The term ‘chaos’ currently has a variety of accepted meanings, but here we shall use it to mean deterministically, or nearly deterministically, governed behavior that nevertheless looks rather random. Upon closer inspection, chaotic behavior will generally appear more systematic, but not so much so that it will repeat itself at regular intervals, as do, for example, the oceanic tides." (Edward N Lorenz, "Chaos, spontaneous climatic variations and detection of the greenhouse effect", 1991)

"The term chaos is used in a specific sense where it is an inherently random pattern of behaviour generated by fixed inputs into deterministic (that is fixed) rules (relationships). The rules take the form of non-linear feedback loops. Although the specific path followed by the behaviour so generated is random and hence unpredictable in the long-term, it always has an underlying pattern to it, a 'hidden' pattern, a global pattern or rhythm. That pattern is self-similarity, that is a constant degree of variation, consistent variability, regular irregularity, or more precisely, a constant fractal dimension. Chaos is therefore order (a pattern) within disorder (random behaviour)." (Ralph D Stacey, "The Chaos Frontier: Creative Strategic Control for Business", 1991)

"In nonlinear systems - and the economy is most certainly nonlinear - chaos theory tells you that the slightest uncertainty in your knowledge of the initial conditions will often grow inexorably. After a while, your predictions are nonsense." (M Mitchell Waldrop, "Complexity: The Emerging Science at the Edge of Order and Chaos", 1992)

"Intriguingly, the mathematics of randomness, chaos, and order also furnishes what may be a vital escape from absolute certainty - an opportunity to exercise free will in a deterministic universe. Indeed, in the interplay of order and disorder that makes life interesting, we appear perpetually poised in a state of enticingly precarious perplexity. The universe is neither so crazy that we can’t understand it at all nor so predictable that there’s nothing left for us to discover." (Ivars Peterson, "The Jungles of Randomness: A Mathematical Safari", 1997)

"When we look at the world around us, we find that we are not thrown into chaos and randomness but are part of a great order, a grand symphony of life. Every molecule in our body was once a part of previous bodies-living or nonliving-and will be a part of future bodies. In this sense, our body will not die but will live on, again and again, because life lives on. We share not only life's molecules but also its basic principles of organization with the rest of the living world. Arid since our mind, too, is embodied, our concepts and metaphors are embedded in the web of life together with our bodies and brains. We belong to the universe, we are at home in it, and this experience of belonging can make our lives profoundly meaningful." (Fritjof Capra, "The Hidden Connections", 2002)

"[…] we would like to observe that the butterfly effect lies at the root of many events which we call random. The final result of throwing a dice depends on the position of the hand throwing it, on the air resistance, on the base that the die falls on, and on many other factors. The result appears random because we are not able to take into account all of these factors with sufficient accuracy. Even the tiniest bump on the table and the most imperceptible move of the wrist affect the position in which the die finally lands. It would be reasonable to assume that chaos lies at the root of all random phenomena." (Iwo Białynicki-Birula & Iwona Białynicka-Birula, "Modeling Reality: How Computers Mirror Life", 2004) 

"Although the potential for chaos resides in every system, chaos, when it emerges, frequently stays within the bounds of its attractor(s): No point or pattern of points is ever repeated, but some form of patterning emerges, rather than randomness. Life scientists in different areas have noticed that life seems able to balance order and chaos at a place of balance known as the edge of chaos. Observations from both nature and artificial life suggest that the edge of chaos favors evolutionary adaptation." (Terry Cooke-Davies et al, "Exploring the Complexity of Projects", 2009)

"Most systems in nature are inherently nonlinear and can only be described by nonlinear equations, which are difficult to solve in a closed form. Non-linear systems give rise to interesting phenomena such as chaos, complexity, emergence and self-organization. One of the characteristics of non-linear systems is that a small change in the initial conditions can give rise to complex and significant changes throughout the system." (Robert K Logan, "The Poetry of Physics and The Physics of Poetry", 2010)

"A system in which a few things interacting produce tremendously divergent behavior; deterministic chaos; it looks random but its not." (Christopher Langton) 

19 December 2020

On Randomness V (Systems I)

"Is a random outcome completely determined, and random only by virtue of our ignorance of the most minute contributing factors? Or are the contributing factors unknowable, and therefore render as random an outcome that can never be determined? Are seemingly random events merely the result of fluctuations superimposed on a determinate system, masking its predictability, or is there some disorderliness built into the system itself?” (Deborah J Bennett, "Randomness", 1998)

"The self-similarity of fractal structures implies that there is some redundancy because of the repetition of details at all scales. Even though some of these structures may appear to teeter on the edge of randomness, they actually represent complex systems at the interface of order and disorder."  (Edward Beltrami, "What is Random?: Chaos and Order in Mathematics and Life", 1999)

"Emergent self-organization in multi-agent systems appears to contradict the second law of thermodynamics. This paradox has been explained in terms of a coupling between the macro level that hosts self-organization (and an apparent reduction in entropy), and the micro level (where random processes greatly increase entropy). Metaphorically, the micro level serves as an entropy 'sink', permitting overall system entropy to increase while sequestering this increase from the interactions where self-organization is desired." (H Van Dyke Parunak & Sven Brueckner, "Entropy and Self-Organization in Multi-Agent Systems", Proceedings of the International Conference on Autonomous Agents, 2001)

"Entropy [...] is the amount of disorder or randomness present in any system. All non-living systems tend toward disorder; left alone they will eventually lose all motion and degenerate into an inert mass. When this permanent stage is reached and no events occur, maximum entropy is attained. A living system can, for a finite time, avert this unalterable process by importing energy from its environment. It is then said to create negentropy, something which is characteristic of all kinds of life." (Lars Skyttner, "General Systems Theory: Ideas and Applications", 2001)

"If a network is solely composed of neighborhood connections, information must traverse a large number of connections to get from place to place. In a small-world network, however, information can be transmitted between any two nodes using, typically, only a small number of connections. In fact, just a small percentage of random, long-distance connections is required to induce such connectivity. This type of network behavior allows the generation of 'six degrees of separation' type results, whereby any agent can connect to any other agent in the system via a path consisting of only a few intermediate nodes." (John H Miller & Scott E Page, "Complex Adaptive Systems", 2007)

"Although the potential for chaos resides in every system, chaos, when it emerges, frequently stays within the bounds of its attractor(s): No point or pattern of points is ever repeated, but some form of patterning emerges, rather than randomness. Life scientists in different areas have noticed that life seems able to balance order and chaos at a place of balance known as the edge of chaos. Observations from both nature and artificial life suggest that the edge of chaos favors evolutionary adaptation." (Terry Cooke-Davies et al, "Exploring the Complexity of Projects", 2009)

"Most systems in nature are inherently nonlinear and can only be described by nonlinear equations, which are difficult to solve in a closed form. Non-linear systems give rise to interesting phenomena such as chaos, complexity, emergence and self-organization. One of the characteristics of non-linear systems is that a small change in the initial conditions can give rise to complex and significant changes throughout the system. This property of a non-linear system such as the weather is known as the butterfly effect where it is purported that a butterfly flapping its wings in Japan can give rise to a tornado in Kansas. This unpredictable behaviour of nonlinear dynamical systems, i.e. its extreme sensitivity to initial conditions, seems to be random and is therefore referred to as chaos. This chaotic and seemingly random behaviour occurs for non-linear deterministic system in which effects can be linked to causes but cannot be predicted ahead of time." (Robert K Logan, "The Poetry of Physics and The Physics of Poetry", 2010)

"Second Law of thermodynamics is not an equality, but an inequality, asserting merely that a certain quantity referred to as the entropy of an isolated system - which is a measure of the system’s disorder, or ‘randomness’ - is greater (or at least not smaller) at later times than it was at earlier times." (Roger Penrose, "Cycles of Time: An Extraordinary New View of the Universe", 2010)

"[...] a high degree of unpredictability is associated with erratic trajectories. This not only because they look random but mostly because infinitesimally small uncertainties on the initial state of the system grow very quickly - actually exponentially fast. In real world, this error amplification translates into our inability to predict the system behavior from the unavoidable imperfect knowledge of its initial state." (Massimo Cencini, "Chaos: From Simple Models to Complex Systems", 2010)

"Although cascading failures may appear random and unpredictable, they follow reproducible laws that can be quantified and even predicted using the tools of network science. First, to avoid damaging cascades, we must understand the structure of the network on which the cascade propagates. Second, we must be able to model the dynamical processes taking place on these networks, like the flow of electricity. Finally, we need to uncover how the interplay between the network structure and dynamics affects the robustness of the whole system." (Albert-László Barabási, "Network Science", 2016)

06 December 2020

On Emergence III

"The principle that whole entities exhibit properties which are meaningful only when attributed to the whole, not to its parts - e.g. the smell of ammonia. Every model of human activity system exhibits properties as a whole entity which derive from it component activities and their structure, but cannot be reduced to them." (Peter Checkland, "Systems Thinking, Systems Practice", 1981)

"[Hierarchy is] the principle according to which entities meaningfully treated as wholes are built up of smaller entities which are themselves wholes […] and so on. In hierarchy, emergent properties denote the levels." (Peter Checkland, "Systems Thinking, Systems Practice", 1981)

"At the other far extreme, we find many systems ordered as a patchwork of parallel operations, very much as in the neural network of a brain or in a colony of ants. Action in these systems proceeds in a messy cascade of interdependent events. Instead of the discrete ticks of cause and effect that run a clock, a thousand clock springs try to simultaneously run a parallel system. Since there is no chain of command, the particular action of any single spring diffuses into the whole, making it easier for the sum of the whole to overwhelm the parts of the whole. What emerges from the collective is not a series of critical individual actions but a multitude of simultaneous actions whose collective pattern is far more important. This is the swarm model." (Kevin Kelly, "Out of Control: The New Biology of Machines, Social Systems and the Economic World", 1995)

"Clearly, complex adaptive systems have a tendency to give rise to other complex adaptive systems. […] The appearance of more and more complex forms is not a phenomenon restricted to the evolution of complex adaptive systems, although for those systems the possibility arises of a selective advantage being associated under certain circumstances with increased complexity." (Murray Gell-Mann, "What is Complexity?", Complexity Vol 1 (1), 1995)

"A complex system is a system formed out of many components whose behavior is emergent, that is, the behavior of the system cannot be simply inferred from the behavior of its components. The amount of information necessary to describe the behavior of such a system is a measure of its complexity." (Yaneer Bar-Yamm, "Dynamics of Complexity", 1997)

"It may not be obvious at first, but the study of emergence and model-building go hand in hand. The essence of model-building is shearing away detail to get at essential elements. A model, by concentrating on selected aspects of the world, makes possible the prediction and planning that reveal new possibilities. That is exactly the problem we face in trying to develop a scientific understanding of emergence." (John H Holland, "Emergence" , Philosophica 59, 1997)

"Emergent self-organization in multi-agent systems appears to contradict the second law of thermodynamics. This paradox has been explained in terms of a coupling between the macro level that hosts self-organization (and an apparent reduction in entropy), and the micro level (where random processes greatly increase entropy). Metaphorically, the micro level serves as an entropy 'sink', permitting overall system entropy to increase while sequestering this increase from the interactions where self-organization is desired." (H Van Dyke Parunak & Sven Brueckner, "Entropy and Self-Organization in Multi-Agent Systems", Proceedings of the International Conference on Autonomous Agents, 2001)

"Although the potential for chaos resides in every system, chaos, when it emerges, frequently stays within the bounds of its attractor(s): No point or pattern of points is ever repeated, but some form of patterning emerges, rather than randomness. Life scientists in different areas have noticed that life seems able to balance order and chaos at a place of balance known as the edge of chaos. Observations from both nature and artificial life suggest that the edge of chaos favors evolutionary adaptation." (Terry Cooke-Davies et al, "Exploring the Complexity of Projects", 2009)

"If universality is one of the observed characteristics of complex dynamical systems in many fields of study, a second characteristic that flows from the study of these systems is that of emergence. As self-organizing systems go about their daily business, they are constantly exchanging matter and energy with their environment, and this allows them to remain in a state that is far from equilibrium. That allows spontaneous behavior to give rise to new patterns." (Terry Cooke-Davies et al, "Exploring the Complexity of Projects", 2009)

"The notion of emergence is used in a variety of disciplines such as evolutionary biology, the philosophy of mind and sociology, as well as in computational and complexity theory. It is associated with non-reductive naturalism, which claims that a hierarchy of levels of reality exist. While the emergent level is constituted by the underlying level, it is nevertheless autonomous from the constituting level. As a naturalistic theory, it excludes non-natural explanations such as vitalistic forces or entelechy. As non-reductive naturalism, emergence theory claims that higher-level entities cannot be explained by lower-level entities." (Martin Neumann, "An Epistemological Gap in Simulation Technologies and the Science of Society", 2011)

28 November 2020

Chaos Theory I

"The chaos theory will require scientists in all fields to, develop sophisticated mathematical skills, so that they will be able to better recognize the meanings of results. Mathematics has expanded the field of fractals to help describe and explain the shapeless, asymmetrical find randomness of the natural environment." (Theoni Pappas, "More Joy of Mathematics: Exploring mathematical insights & concepts", 1991)

"The term chaos is also used in a general sense to describe the body of chaos theory, the complete sequence of behaviours generated by feed-back rules, the properties of those rules and that behaviour." (Ralph D Stacey, "The Chaos Frontier: Creative Strategic Control for Business", 1991)

"Chaos theory reconciles our intuitive sense of free will with the deterministic laws of nature. However, it has an even deeper philosophical ramification. Not only do we have freedom to control our actions, but also the sensitivity to initial conditions implies that even our smallest act can drastically alter the course of history, for better or for worse. Like the butterfly flapping its wings, the results of our behavior are amplified with each day that passes, eventually producing a completely different world than would have existed in our absence!" (Julien C Sprott, "Strange Attractors: Creating Patterns in Chaos", 2000)

"Chaos theory, for example, uses the metaphor of the ‘butterfly effect’. At critical times in the formation of Earth’s weather, even the fluttering of the wings of a butterfly sends ripples that can tip the balance of forces and set off a powerful storm. Even the smallest inanimate objects sent back into the past will inevitably change the past in unpredictable ways, resulting in a time paradox." (Michio Kaku, "Parallel Worlds", 2004)

"This phenomenon, common to chaos theory, is also known as sensitive dependence on initial conditions. Just a small change in the initial conditions can drastically change the long-term behavior of a system. Such a small amount of difference in a measurement might be considered experimental noise, background noise, or an inaccuracy of the equipment." (Greg Rae, "Chaos Theory: A Brief Introduction", 2006)

"Yet, with the discovery of the butterfly effect in chaos theory, it is now understood that there is some emergent order over time even in weather occurrence, so that weather prediction is not next to being impossible as was once thought, although the science of meteorology is far from the state of perfection." (Peter Baofu, "The Future of Complexity: Conceiving a Better Way to Understand Order and Chaos", 2007)

"[chaos theory] presents a universe that is at once deterministic and obeys the fundamental physical laws, but is capable of disorder, complexity, and unpredictability. It shows that predictability is a rare phenomenon operating only within the constraints that science has filtered out from the rich diversity of our complex world." (Ziauddin Sardar & Iwona Abrams, "Introducing Chaos: A Graphic Guide", 2008)

"Complexity theory can be defined broadly as the study of how order, structure, pattern, and novelty arise from extremely complicated, apparently chaotic systems and conversely, how complex behavior and structure emerges from simple underlying rules. As such, it includes those other areas of study that are collectively known as chaos theory, and nonlinear dynamical theory." (Terry Cooke-Davies et al, "Exploring the Complexity of Projects", 2009)

"An ending is an artificial device; we like endings, they are satisfying, convenient, and a point has been made. But time does does not end, and stories march in step with time. Equally, chaos theory does not assume an ending; the ripple effect goes on, and on." (Penelope Lively, "How It All Began", 2011)

"The things that really change the world, according to Chaos theory, are the tiny things. A butterfly flaps its wings in the Amazonian jungle, and subsequently a storm ravages half of Europe." (Neil Gaiman, "Good Omens", 2011)

22 November 2020

On Chaos III

"As perceivers we select from all the stimuli falling on our senses only those which interest us, and our interests are governed by a pattern-making tendency, sometimes called a schema. In a chaos of shifting impressions each of us constructs a stable world in which objects have recognisable shapes, are located in depth and have permanence." (Mary Douglas, "Purity and Danger", 1966)

"The term chaos is used in a specific sense where it is an inherently random pattern of behaviour generated by fixed inputs into deterministic (that is fixed) rules (relationships). The rules take the form of non-linear feedback loops. Although the specific path followed by the behaviour so generated is random and hence unpredictable in the long-term, it always has an underlying pattern to it, a 'hidden' pattern, a global pattern or rhythm. That pattern is self-similarity, that is a constant degree of variation, consistent variability, regular irregularity, or more precisely, a constant fractal dimension. Chaos is therefore order (a pattern) within disorder (random behaviour)." (Ralph D Stacey, "The Chaos Frontier: Creative Strategic Control for Business", 1991)

"The term chaos is also used in a general sense to describe the body of chaos theory, the complete sequence of behaviours generated by feed-back rules, the properties of those rules and that behaviour." (Ralph D Stacey, "The Chaos Frontier: Creative Strategic Control for Business", 1991)

"There are many possible definitions of chaos. In fact, there is no general agreement within the scientific community as to what constitutes a chaotic dynamical system." (Robert L Devaney, "A First Course in Chaotic Dynamical Systems: Theory and Experiment", 1992)

"Chaos provides order. Chaotic agitation and motion are needed to create overall, repetitive order. This ‘order through fluctuations’ keeps dynamic markets stable and evolutionary processes robust. In essence, chaos is a phase transition that gives spontaneous energy the means to achieve repetitive and structural order." (Lawrence K Samuels, "Defense of Chaos: The Chaology of Politics, Economics and Human Action", 2013)

"Order is not universal. In fact, many chaologists and physicists posit that universal laws are more flexible than first realized, and less rigid - operating in spurts, jumps, and leaps, instead of like clockwork. Chaos prevails over rules and systems because it has the freedom of infinite complexity over the known, unknown, and the unknowable." (Lawrence K Samuels, "Defense of Chaos: The Chaology of Politics, Economics and Human Action", 2013)

"Things evolve to evolve. Evolutionary processes are the linchpin of change. These processes of discovery represent a complexity of simple systems that flux in perpetual tension as they teeter at the edge of chaos. This whirlwind of emergence is responsible for the spontaneous order and higher, organized complexity so noticeable in biological evolution - one–celled critters beefing up to become multicellular organisms." (Lawrence K Samuels, "Defense of Chaos: The Chaology of Politics, Economics and Human Action", 2013)

12 October 2020

On Self-Organization IV

"Every system of whatever size must maintain its own structure and must deal with a dynamic environment, i.e., the system must strike a proper balance between stability and change. The cybernetic mechanisms for stability (i.e., homeostasis, negative feedback, autopoiesis, equifinality) and change (i.e., positive feedback, algedonodes, self-organization) are found in all viable systems." (Barry Clemson, "Cybernetics: A New Management Tool", 1984)

"Autopoietic systems, then, are not only self-organizing systems, they not only produce and eventually change their own structures; their self-reference applies to the production of other components as well. This is the decisive conceptual innovation. […] Thus, everything that is used as a unit by the system is produced as a unit by the system itself. This applies to elements, processes, boundaries, and other structures and, last but not least, to the unity of the system itself." (Niklas Luhmann, "The Autopoiesis of Social Systems", 1990)

"The cybernetics phase of cognitive science produced an amazing array of concrete results, in addition to its long-term (often underground) influence: the use of mathematical logic to understand the operation of the nervous system; the invention of information processing machines (as digital computers), thus laying the basis for artificial intelligence; the establishment of the metadiscipline of system theory, which has had an imprint in many branches of science, such as engineering (systems analysis, control theory), biology (regulatory physiology, ecology), social sciences (family therapy, structural anthropology, management, urban studies), and economics (game theory); information theory as a statistical theory of signal and communication channels; the first examples of self-organizing systems. This list is impressive: we tend to consider many of these notions and tools an integrative part of our life […]" (Francisco Varela, "The Embodied Mind", 1991)

"Through self-organization, the behavior of the group emerges from the collective interactions of all the individuals. In fact, a major recurring theme in swarm intelligence (and of complexity science in general) is that even if individuals follow simple rules, the resulting group behavior can be surprisingly complex - and remarkably effective. And, to a large extent, flexibility and robustness result from self-organization." (Eric Bonabeau & Christopher Meyer, "Swarm Intelligence: A Whole New Way to Think About Business", Harvard Business Review, 2001)

"[…] swarm intelligence is becoming a valuable tool for optimizing the operations of various businesses. Whether similar gains will be made in helping companies better organize themselves and develop more effective strategies remains to be seen. At the very least, though, the field provides a fresh new framework for solving such problems, and it questions the wisdom of certain assumptions regarding the need for employee supervision through command-and-control management. In the future, some companies could build their entire businesses from the ground up using the principles of swarm intelligence, integrating the approach throughout their operations, organization, and strategy. The result: the ultimate self-organizing enterprise that could adapt quickly - and instinctively - to fast-changing markets." (Eric Bonabeau & Christopher Meyer, "Swarm Intelligence: A Whole New Way to Think About Business", Harvard Business Review, 2001)

"A system described as self-organizing is one in which elements interact in order to achieve dynamically a global function or behavior." (Carlos Gershenson, "A general methodology for designing self-organizing systems", 2006)

"In engineering, a self-organizing system would be one in which elements are designed to dynamically and autonomously solve a problem or perform a function at the system level. In other words, the engineer will not build a system to perform a function explicitly, but elements will be engineered in such a way that their behaviour and interactions will lead to the system function. Thus, the elements need to divide, but also to integrate, the problem." (Carlos Gershenson, "Design and Control of Self-organizing Systems", 2007)

"The second law of thermodynamics states that in an isolated system, entropy can only increase, not decrease. Such systems evolve to their state of maximum entropy, or thermodynamic equilibrium. Therefore, physical self-organizing systems cannot be isolated: they require a constant input of matter or energy with low entropy, getting rid of the internally generated entropy through the output of heat ('dissipation'). This allows them to produce ‘dissipative structures’ which maintain far from thermodynamic equilibrium. Life is a clear example of order far from thermodynamic equilibrium." (Carlos Gershenson, "Design and Control of Self-organizing Systems", 2007)

"Most systems in nature are inherently nonlinear and can only be described by nonlinear equations, which are difficult to solve in a closed form. Non-linear systems give rise to interesting phenomena such as chaos, complexity, emergence and self-organization. One of the characteristics of non-linear systems is that a small change in the initial conditions can give rise to complex and significant changes throughout the system. This property of a non-linear system such as the weather is known as the butterfly effect where it is purported that a butterfly flapping its wings in Japan can give rise to a tornado in Kansas. This unpredictable behaviour of nonlinear dynamical systems, i.e. its extreme sensitivity to initial conditions, seems to be random and is therefore referred to as chaos. This chaotic and seemingly random behaviour occurs for non-linear deterministic system in which effects can be linked to causes but cannot be predicted ahead of time." (Robert K Logan, "The Poetry of Physics and The Physics of Poetry", 2010)

"Cybernetics studies the concepts of control and communication in living organisms, machines and organizations including self-organization. It focuses on how a (digital, mechanical or biological) system processes information, responds to it and changes or being changed for better functioning (including control and communication)." (Dmitry A Novikov, "Cybernetics 2.0", 2016)

08 October 2020

Systems Thinking II

"The systems approach to problems focuses on systems taken as a whole, not on their parts taken separately. Such an approach is concerned with total - system performance even when a change in only one or a few of its parts is contemplated because there are some properties of systems that can only be treated adequately from a holistic point of view. These properties derive from the relationship between parts of systems: how the parts interact and fit together." (Russell L Ackoff, "Towards a System of Systems Concepts", 1971)

"Early scientific thinking was holistic, but speculative - the modern scientific temper reacted by being empirical, but atomistic. Neither is free from error, the former because it replaces factual inquiry with faith and insight, and the latter because it sacrifices coherence at the altar of facticity. We witness today another shift in ways of thinking: the shift toward rigorous but holistic theories. This means thinking in terms of facts and events in the context of wholes, forming integrated sets with their own properties and relationships."(Ervin László, "Introduction to Systems Philosophy", 1972) 

“The notion of ‘system’ has gained central importance in contemporary science, society and life. In many fields of endeavor, the necessity of a ‘systems approach’ or ‘systems thinking’ is emphasized, new professions called ‘systems engineering’, ‘systems analysis’ and the like have come into being, and there can be little doubt that this this concept marks a genuine, necessary, and consequential development in science and world-view.” (Ervin László, “Introduction to Systems Philosophy: Toward a New Paradigm of Contemporary Thought”, 1972)

"A company is a multidimensional system capable of growth, expansion, and self-regulation. It is, therefore, not a thing but a set of interacting forces. Any theory of organization must be capable of reflecting a company's many facets, its dynamism, and its basic orderliness. When company organization is reviewed, or when reorganizing a company, it must be looked upon as a whole, as a total system." (Albert Low, "Zen and Creative Management", 1976)

"There is a strong current in contemporary culture advocating ‘holistic’ views as some sort of cure-all […] Reductionism implies attention to a lower level while holistic implies attention to higher level. These are intertwined in any satisfactory description: and each entails some loss relative to our cognitive preferences, as well as some gain [...] there is no whole system without an interconnection of its parts and there is no whole system without an environment." (Francisco Varela, "On being autonomous: The lessons of natural history for systems theory", 1977)

"Holism traditionally says that a collection of beings may have a collective property that cannot be inferred from the properties of its members." (C West Churchman, "The Systems Approach and Its Enemies" , 1979) 

"Systems thinking is a special form of holistic thinking - dealing with wholes rather than parts. One way of thinking about this is in terms of a hierarchy of levels of biological organization and of the different 'emergent' properties that are evident in say, the whole plant (e.g. wilting) that are not evident at the level of the cell (loss of turgor). It is also possible to bring different perspectives to bear on these different levels of organization. Holistic thinking starts by looking at the nature and behaviour of the whole system that those participating have agreed to be worthy of study. This involves: (i) taking multiple partial views of 'reality' […] (ii) placing conceptual boundaries around the whole, or system of interest and (iii) devising ways of representing systems of interest." (C J Pearson and R L Ison, "Agronomy of Grassland Systems", 1987)

"Systems thinking is most effective when it’s used to look at a problem in a new way, not to advocate a predetermined solution. Strong advocacy will create resistance - both to your ideas, and to systems thinking itself. Present systems thinking in the spirit of inquiry, not inquisition." (Virginia Anderson & Lauren Johnson, "Systems Thinking Basics: From Concepts to Causal Loops", 1997)

Previous Post <<||>> Next Post

18 August 2020

On Prediction VIII (Systems II)

"Computation offers a new means of describing and investigating scientific and mathematical systems. Simulation by computer may be the only way to predict how certain complicated systems evolve." (Stephen Wolfram, "Computer Software in Science and Mathematics", 1984)

"When a system is predictable, it is already performing as consistently as possible. Looking for assignable causes is a waste of time and effort. Instead, you can meaningfully work on making improvements and modifications to the process. When a system is unpredictable, it will be futile to try and improve or modify the process. Instead you must seek to identify the assignable causes which affect the system. The failure to distinguish between these two different courses of action is a major source of confusion and wasted effort in business today." (Donald J Wheeler, "Understanding Variation: The Key to Managing Chaos" 2nd Ed., 2000)

"Complexity arises when emergent system-level phenomena are characterized by patterns in time or a given state space that have neither too much nor too little form. Neither in stasis nor changing randomly, these emergent phenomena are interesting, due to the coupling of individual and global behaviours as well as the difficulties they pose for prediction. Broad patterns of system behaviour may be predictable, but the system's specific path through a space of possible states is not." (Steve Maguire et al, "Complexity Science and Organization Studies", 2006)

"The only way to look into the future is use theories since conclusive data is only available about the past." (Clayton Christensen et al, "Seeing What’s Next: Using the Theories of Innovation to Predict Industry Change", 2004)

"A scientific theory is a concise and coherent set of concepts, claims, and laws (frequently expressed mathematically) that can be used to precisely and accurately explain and predict natural phenomena." (Mordechai Ben-Ari, "Just a Theory: Exploring the Nature of Science", 2005)

"Complexity carries with it a lack of predictability different to that of chaotic systems, i.e. sensitivity to initial conditions. In the case of complexity, the lack of predictability is due to relevant interactions and novel information created by them." (Carlos Gershenson, "Understanding Complex Systems", 2011)

"Complexity scientists concluded that there are just too many factors - both concordant and contrarian - to understand. And with so many potential gaps in information, almost nobody can see the whole picture. Complex systems have severe limits, not only to predictability but also to measurability. Some complexity theorists argue that modelling, while useful for thinking and for studying the complexities of the world, is a particularly poor tool for predicting what will happen." (Lawrence K Samuels, "Defense of Chaos: The Chaology of Politics, Economics and Human Action", 2013)

"Without precise predictability, control is impotent and almost meaningless. In other words, the lesser the predictability, the harder the entity or system is to control, and vice versa. If our universe actually operated on linear causality, with no surprises, uncertainty, or abrupt changes, all future events would be absolutely predictable in a sort of waveless orderliness." (Lawrence K Samuels, "Defense of Chaos: The Chaology of Politics, Economics and Human Action", 2013)

"The problem of complexity is at the heart of mankind’s inability to predict future events with any accuracy. Complexity science has demonstrated that the more factors found within a complex system, the more chances of unpredictable behavior. And without predictability, any meaningful control is nearly impossible. Obviously, this means that you cannot control what you cannot predict. The ability ever to predict long-term events is a pipedream. Mankind has little to do with changing climate; complexity does." (Lawrence K Samuels, "The Real Science Behind Changing Climate", 2014)

"[...] perhaps one of the most important features of complex systems, which is a key differentiator when comparing with chaotic systems, is the concept of emergence. Emergence 'breaks' the notion of determinism and linearity because it means that the outcome of these interactions is naturally unpredictable. In large systems, macro features often emerge in ways that cannot be traced back to any particular event or agent. Therefore, complexity theory is based on interaction, emergence and iterations." (Luis Tomé & Şuay Nilhan Açıkalın, "Complexity Theory as a New Lens in IR: System and Change" [in "Chaos, Complexity and Leadership 2017", Şefika Şule Erçetin & Nihan Potas], 2019)
Related Posts Plugin for WordPress, Blogger...

On Leonhard Euler

"I have been able to solve a few problems of mathematical physics on which the greatest mathematicians since Euler have struggled in va...