19 October 2025

On Geometry (1925-1949)

"As the objects of abstract geometry cannot be totally grasped by space intuition, a rigorous proof in abstract geometry can never be based only on intuition, but it must be founded on logical deduction from valid and precise axioms." (Felix Klein, "Elementary Mathematics from a Higher Standpoint" 3rd Ed. Vol. 3, 1928)

"What had already been done for music by the end of the eighteenth century has at last been begun for the pictorial arts. Mathematics and physics furnished the means in the form of rules to be followed and to be broken. In the beginning it is wholesome to be concerned with the functions and to disregard the finished form. Studies in algebra, in geometry, in mechanics characterize teaching directed towards the essential and the functional, in contrast to apparent. One learns to look behind the façade, to grasp the root of things. One learns to recognize the undercurrents, the antecedents of the visible. One learns to dig down, to uncover, to find the cause, to analyze." (Paul Klee, "Bauhaus prospectus", 1929)

"Any mathematical science is a body of theorems deduced from a set of axioms. A geometry is a mathematical science. The question then arises why the name geometry is given to some mathematical sciences and not to others. It is likely that there is no definite answer to this question, but that a branch of mathematics is called a geometry because the name seems good, on emotional and  people." (John H C Whitehead, „The Foundation of Differential Geometry", 1932)

"Given any group of transformations in space which includes the principal group as a sub-group, then the invariant theory of this group gives a definite kind of geometry, and every possible geometry can be obtained in this way. Thus each geometry is characterized by its group, which, therefore, assumes the leading place in our considerations." (Felix Klein, "Elementary Mathematics from an Elementary Standpoint: Geometry", 1939)

"Mathematical reasoning may be regarded rather schematically as the exercise of a combination of two facilities, which we may call intuition and ingenuity. The activity of the intuition consists in making spontaneous judgements which are not the result of conscious trains of reasoning. [...] The exercise of ingenuity in mathematics consists in aiding the intuition through suitable arrangements of propositions, and perhaps geometrical figures or drawings." (Alan M Turing, "Systems of Logic Based on Ordinals", Proceedings of the London Mathematical Society Vol 45 (2), 1939)

"Geometry, whatever others may think, is the study of different shapes, many of them very beautiful, having harmony, grace and symmetry. […] Most of us, if we can play chess at all, are content to play it on a board with wooden chess pieces; but there are some who play the game blindfolded and without touching the board. It might be a fair analogy to say that abstract geometry is like blindfold chess – it is a game played without concrete objects." (Edward Kasner & James R Newman, "New Names for Old", 1940)

"It is difficult, however, to learn all these things from situations such as occur in everyday life. What we need is a series of abstract and quite impersonal situations to argue about in which one side is surely right and the other surely wrong. The best source of such situations for our purposes is geometry. Consequently we shall study geometric situations in order to get practice in straight thinking and logical argument, and in order to see how it is possible to arrange all the ideas associated with a given subject in a coherent, logical system that is free from contradictions. That is, we shall regard the proof of each proposition of geometry as an example of correct method in argumentation, and shall come to regard geometry as our ideal of an abstract logical system. Later, when we have acquired some skill in abstract reasoning, we shall try to see how much of this skill we can apply to problems from real life." (George D Birkhoff & Ralph Beately, "Basic Geometry", 1940)

"The main thing geometry gives us is the ideal of a logical system and of precise thinking, and some acquaintance with the language in which logical arguments are usually expressed. The answer to a problem in actual life can often be obtained by further investigation of the actual facts, while in geometry it can always be obtained by reasoning alone." (George D Birkhoff & Ralph Beately, "Basic Geometry", 1940)

"The majority of geometric relations cluster around the ideas ‘equal’ and ‘similar’. That is why the simplest notions about equal and similar triangles are taken as the basis of this geometry. From these simplest notions we derive the more complicated relations of geometry." (George D Birkhoff & Ralph Beately, "Basic Geometry", 1940)

 "Geometry, then, is the application of strict logic to those properties of space and figure which are self-evident, and which therefore cannot be disputed. But the rigor of this science is carried one step further; for no property, however evident it may be, is allowed to pass without demonstration, if that can be given. The question is therefore to demonstrate all geometrical truths with the smallest possible number of assumptions." (Augustus de Morgan, "On the Study and Difficulties of Mathematics", 1943)

"With a literature much vaster than those of algebra and arithmetic combined, and as least as extensive as that of analysis, geometry is a richer treasure house of more interesting and half-forgotten things, which a hurried generation has no leisure to enjoy, than any other division of mathematics." (Eric T Bell, "The Development of Mathematics", 1945)

"The field equation may [...] be given a geometrical foundation, at least to a first approximation, by replacing it with the requirement that the mean curvature of the space vanish at any point at which no heat is being applied to the medium - in complete analogy with […] the general theory of relativity by which classical field equations are replaced by the requirement that the Ricci contracted curvature tensor vanish." (Howard P Robertson, "Geometry as a Branch of Physics", 1949)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Hendrik Lorentz

"We may assume the existence of an aether; only we must give up ascribing a definite state of motion to it, i. e. we must by abstractio...