"According to the special theory there is a finite limit to the speed of causal chains, whereas classical causality allowed arbitrarily fast signals. Foundational studies […] soon revealed that this departure from classical causality in the special theory is intimately related to its most dramatic consequences: the relativity of simultaneity, time dilation, and length contraction. By now it had become clear that these kinematical effects are best seen as consequences of Minkowski space-time, which in turn incorporates a nonclassical theory of causal structure. However, it has not widely been recognized that the converse of this proposition is also true: the causal structure of Minkowski space-time contains within itself the entire geometry (topological and metrical structure) of Minkowski space-time." (John A. Winnie," The Causal Theory of Space-Time", 1977)
"A model […] is a story with a specified structure: to explain this catch phrase is to explain what a model is. The structure is given by the logical and mathematical form of a set of postulates, the assumptions of the model. The structure forms an uninterpreted system, in much the way the postulates of a pure geometry are now commonly regarded as doing. The theorems that follow from the postulates tell us things about the structure that may not be apparent from an examination of the postulates alone." (Allan Gibbard & Hal R. Varian, "Economic Models", The Journal of Philosophy, Vol. 75, No. 11, 1978)
“Every branch of geometry can be defined as the study of properties that are unaltered when a specified figure is given specified symmetry transformations. Euclidian plane geometry, for instance, concerns the study of properties that are 'invariant' when a figure is moved about on the plane, rotated, mirror reflected, or uniformly expanded and contracted. Affine geometry studies properties that are invariant when a figure is 'stretched' in a certain way. Projective geometry studies properties invariant under projection. Topology deals with properties that remain unchanged even when a figure is radically distorted in a manner similar to the deformation of a figure made of rubber.” (Martin Gardner, "Aha! Insight", 1978)
“Geometry is the study of shapes. Although true, this definition is so broad that it is almost meaningless. The judge of a beauty contest is, in a sense, a geometrician because he is judging […] shapes, but this is not quite what we want the word to mean. It has been said that a curved line is the most beautiful distance between two points. Even though this statement is about curves, a proper element of geometry, the assertion seems more to be in the domain of aesthetics rather than mathematics.” (Martin Gardner, "Aha! Insight", 1978)
"To enter a temple constructed wholly of invariable geometric proportions is to enter an abode of eternal truth." (Robert Lawlor, "Sacred Geometry", 1982)
"The beauty that Nature has revealed to physicists in Her laws is a beauty of design, a beauty that recalls, to some extent, the beauty of classical architecture, with its emphasis on geometry and symmetry. The system of aesthetics used by physicists in judging Nature also draws its inspiration from the austere finality of geometry." (Anthony Zee, "Fearful Symmetry: The Search for Beauty in Modern Physics", 1986)
"The precise mathematical definition of symmetry involves the notion of invariance. A geometrical figure is said to be symmetric under certain operations if those operations leave it unchanged." (Anthony Zee, "Fearful Symmetry: The Search for Beauty in Modern Physics", 1986)
"Elementary functions, such as trigonometric functions and rational functions, have their roots in Euclidean geometry. They share the feature that when their graphs are 'magnified' sufficiently, locally they 'look like' straight lines. That is, the tangent line approximation can be used effectively in the vicinity of most points. Moreover, the fractal dimension of the graphs of these functions is always one. These elementary 'Euclidean' functions are useful not only because of their geometrical content, but because they can be expressed by simple formulas. We can use them to pass information easily from one person to another. They provide a common language for our scientific work. Moreover, elementary functions are used extensively in scientific computation, computer-aided design, and data analysis because they can be stored in small files and computed by fast algorithms." (Michael Barnsley, "Fractals Everwhere", 1988)
"Fractal geometry is concerned with the description, classification, analysis, and observation of subsets of metric spaces (X, d). The metric spaces are usually, but not always, of an inherently 'simple' geometrical character; the subsets are typically geometrically 'complicated'. There are a number of general properties of subsets of metric spaces, which occur over and over again, which are very basic, and which form part of the vocabulary for describing fractal sets and other subsets of metric spaces. Some of these properties, such as openness and closedness, which we are going to introduce, are of a topological character. That is to say, they are invariant under homeomorphism." (Michael Barnsley, "Fractals Everwhere", 1988)
"In deterministic geometry, structures are defined, communicated, and analysed, with the aid of elementary transformations such as affine transfor- transformations, scalings, rotations, and congruences. A fractal set generally contains infinitely many points whose organization is so complicated that it is not possible to describe the set by specifying directly where each point in it lies. Instead, the set may be defined by "the relations between the pieces." It is rather like describing the solar system by quoting the law of gravitation and stating the initial conditions. Everything follows from that. It appears always to be better to describe in terms of relationships." (Michael Barnsley, "Fractals Everwhere", 1988)
"Instead of a state of nature evolving according to a mathematical fomula, the evolution is given geometrically. The full advantage of the geometrical point of view is beginning to appear. The more traditional way of dealing with dynamics was with the use of algebraic expressions. But a description given by formulae would be cumbersome. That form of description wouldn't have led me to insights or to perceptive analysis. My background as a topologist, trained to bend objects like squares, helped to make it possible to see the horseshoe." (Steven Smale, "What is chaos?", 1990)
"Percolation is a widespread paradigm. Percolation theory can therefore illuminate a great many seemingly diverse situations. Because of its basically geometric character, it facilitates the analysis of intricate patterns and textures without needless physical complications. And the self-similarity that prevails at critical points permits profitably mining the connection with scaling and fractals." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)
"There are at least three (overlapping) ways that mathematics may contribute to science. The first, and perhaps the most important, is this: Since the mathematical universe of the mathematician is much larger than that of the physicist, mathematicians are able to go beyond existing frameworks and see geometrical or analytic structures unavailable to tie physicist. Instead of using the particular equations used previously to describe reality, a mathematician has at his disposal an unused world of differential equations, to be studied with no a priori constraints. New scientific phenomena, new discoveries, may thus generated. Understanding of the present knowledge may be deepened via the corresponding deductions. [...] The second way [...] has to do with the consolidation of new physical ideas. One may express this as the proof of consistency of physical theories. [...] mathematical foundations of quantum mechanics with Hilbert space, its operator theory, and corresponding differential equations. [...] The third way [...] is by describing reality in mathematical terms, or by simply constructing a mathematical model." (Steven Smale, "What is chaos?", 1990)
"Mathematics is more than doing calculations, more than solving equations, more than proving theorems, more than doing algebra, geometry or calculus, more than a way of thinking. Mathematics is the design of a snowflake, the curve of a palm frond, the shape of a building, the joy of a game, the frustration of a puzzle, the crest of a wave, the spiral of a spider's web. It is ancient and yet new. Mathematics is linked to so many ideas and aspects of the universe." (Theoni Pappas, "More Joy of Mathematics: Exploring mathematical insights & concepts", 1991)
"Geometry and topology most often deal with geometrical figures, objects realized as a set of points in a Euclidean space (maybe of many dimensions). It is useful to view these objects not as rigid (solid) bodies, but as figures that admit continuous deformation preserving some qualitative properties of the object. Recall that the mapping of one object onto another is called continuous if it can be determined by means of continuous functions in a Cartesian coordinate system in space. The mapping of one figure onto another is called homeomorphism if it is continuous and one-to-one, i.e. establishes a one-to-one correspondence between points of both figures." (Anatolij Fomenko, "Visual Geometry and Topology", 1994)
"A good map tells a multitude of little white lies; it suppresses truth to help the user see what needs to be seen. Reality is three-dimensional, rich in detail, and far too factual to allow a complete yet uncluttered two-dimensional graphic scale model. Indeed, a map that did not generalize would be useless. But the value of a map depends on how well its generalized geometry and generalized content reflect a chosen aspect of reality." (Mark S Monmonier, "How to Lie with Maps" 2nd Ed., 1996)
"Geometry is the science of figures. We study various properties of figures, and classify given figures according to the results. We have the notion of invariants, which can serve as the most effective method of classification. We may briefly say that invariants describe geometric structures in terms of numbers." (Shigeyuki Morita, "Geometry of Differential Forms", 1997)
No comments:
Post a Comment