25 October 2025

On Arithmetic (1750-1799)

"Arithmetic [...] teaches all the various operations of numbers and demonstrates their properties. [...] The Greeks are said have received it from the Phoenicians. The ancients, who have treated arithmetic most exactness, are Euclid, Nicomachus of Alexandria, and Theon of Smyrna. It was difficult either for the Greeks or the Romans to succeed much in arithmetic, as both used only letters of the alphabet for numbers, the multiplication of which, in great calculations, necessarily occasioned abundance of trouble. The Arabic ciphers [...] are infinitely more commodious, and have contributed very much to the improvement of arithmetic." (Charles Rollin, "The Ancient History of the Egyptians, Carthaginians, Assyrians, Babylonians, Medes and Persians, Grecians and Macedonians", 1754)

"The operations of symbolic arithmetick seem to me to afford men one of the clearest exercises of reason that I ever yet met with, nothing being there to be performed without strict and watchful ratiocination, and the whole method and progress of that appearing at once upon the paper, when the operation is finished, and affording the analyst a lasting and, as it were, visible ratiocination." (Robert Boyle, "The Works of the Honourable Robert Boyle" Vol. III, 1772)

"The scientific part of Arithmetic and Geometry would be of more use for regulating the thoughts and opinions of men than all the great advantage which Society receives from the general application of them: and this use cannot be spread through the Society by the practice; for the Practitioners, however dextrous, have no more knowledge of the Science than the very instruments with which they work. They have taken up the Rules as they found them delivered down to them by scientific men, without the least inquiry after the Principles from which they are derived: and the more accurate the Rules, the less occasion there is for inquiring after the Principles, and consequently, the more difficult it is to make them turn their attention to the First Principles; and, therefore, a Nation ought to have both Scientific and Practical Mathematicians." (James Williamson, "Elements of Euclid with Dissertations", 1781)

"[…] direction is not a subject for algebra except in so far as it can be changed by algebraic operations. But since these cannot change direction (at least, as commonly explained) except to its opposite, that is, from positive to negative, or vice versa, these are the only directions it should be possible to designate. […] It is not an unreasonable demand that operations used in geometry be taken in a wider meaning than that given to them in arithmetic." (Casper Wessel, „On the Analytical Representation of Direction", 1787)

"It seems to me, that if statesmen had a little more arithmetic, or were accustomed to calculation, wars would be much less frequent." (Benjamin Franklin, [Letter to his sister, Mrs. Jane Mecom] 1787)

"An ancient writer said that arithmetic and geometry are the wings of mathematics; I believe one can say without speaking metaphorically that these two sciences are the foundation and essence of all the sciences which deal with quantity. Not only are they the foundation, they are also, as it were, the capstones; for, whenever a result has been arrived at, in order to use that result, it is necessary to translate it into numbers or into lines; to translate it into numbers requires the aid of arithmetic, to translate it into lines necessitates the use of geometry." (Joseph-Louis de Lagrange, "Leçons élémentaires sur les mathématiques", 1795)

"So long as algebra and geometry proceeded separately their progress was slow and their application limited, but when these two sciences were united, they mutually strengthened each other, and marched together at a rapid pace toward perfection." (Joseph-Louis de Lagrange, "Leçons élémentaires sur les mathématiques", 1795)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Arithmetic (1750-1799)

"Arithmetic [...] teaches all the various operations of numbers and demonstrates their properties. [...] The Greeks are said have recei...