"Indeed, many geometric things can be discovered or elucidated by algebraic principles, and yet it does not follow that algebra is geometrical, or even that it is based on geometric principles (as some would seem to think). This close affinity of arithmetic and geometry comes about, rather, because geometry is, as it were, subordinate to arithmetic, and applies universal principles of arithmetic to its special objects." (John Wallis, "Mathesis Universalis", 1657)
"Algebra is nothing but the characteristic of undetermined numbers or magnitudes. But it does not directly express the place, angles and motions, from which it follows that it is often difficult to reduce, in a computation, what is in a figure, and that it is even more difficult to find geometrical proofs and constructions which are enough practical even when the Algebraic calculus is all done." (Gottfried W Leibniz, [letter to Christiaan Huygens] 1679)
"I found the elements of a new characteristic, completely different from Algebra and which will have great advantages for the exact and natural mental representation, although without figures, of everything that depends on the imagination. Algebra is nothing but the characteristic of undetermined numbers or magnitudes. But it does not directly express the place, angles and motions, from which it follows that it is often difficult to reduce, in a computation, what is in a figure, and that it is even more difficult to find geometrical proofs and constructions which are enough practical even when the Algebraic calculus is all done." (Gottfried W Leibniz, [letter to Christiaan Huygens] 1679)
"These Imaginary Quantities (as they are commonly called) arising from the Supposed Root of a Negative Square (when they happen,) are reputed to imply that the Case proposed is Impossible. And so indeed it is, as to the first and strict notion of what is proposed. For it is not possible that any Number (Negative or Affirmative) Multiplied into it- self can produce (for instance) -4. Since that Like Signs (whether + or -) will produce +; and there- fore not -4. But it is also Impossible that any Quantity (though not a Supposed Square) can be Negative. Since that it is not possible that any Magnitude can be Less than Nothing or any Number Fewer than None. Yet is not that Supposition(of Negative Quantities,) either Unuseful or Absurd; when rightly understood. And though, as to the bare Algebraick Notation, it import a Quantity less than nothing. Yet, when it comes to a Physical Application, it denotes as Real a Quantity as if the Sign were +; but to be interpreted in a contrary sense." (John Wallis, in "Treatise of Algebra", 1685)
“They that are ignorant of Algebra cannot imagine the wonders in this kind are to be done by it: and what further improvements and helps advantageous to other parts of knowledge the sagacious mind of man may yet find out, it is not easy to determine. This at least I believe, that the ideas of quantity are not those alone that are capable of demonstration and knowledge; and that other, and perhaps more useful, parts of contemplation, would afford us certainty, if vices, passions, and domineering interest did not oppose and menace such endeavors.” (John Locke, “An Essay Concerning Human Understanding”, 1689)
"[…] it is algebraic notation that incarnates, so to speak, the ideal of the characteristic and which is to serve as a model. It is also the example of algebra that Leibniz cites consistently to show how a system of properly chosen symbols is useful and indeed indispensible for deductive thought." (Louis Couturat, [letter to L'Hospital] 1693)
No comments:
Post a Comment